
FH Wedel Prof. Dr. Sebastian Iwanowski Alg1 slide 1

Algorithmics

Sebastian Iwanowski

FH Wedel

1. Introduction into formal algorithmics

FH Wedel Prof. Dr. Sebastian Iwanowski Alg1 slide 2

 Algorithmics 1

1.1 Comparing basic sorting techniques

• Decription and functionality of algorithms:

Permutationsort, Selectionsort, Mergesort, Quicksort

Description in words, graphic visualization using arrays

• Estimating the run time for the worst case

Setting up recursive equations, computing an explicite solution

Run time estimation using the Big-O notation

References

Alt S. 4 – 7 (in German), Cormen ch. 2, Levitin ch. 3.1, ch. 4

visual demonstration: https://www.youtube.com/watch?v=yn0EgXHb5jc

• Results: Permutationsort: O(exp(n))

Selectionsort: O(n2)

Mergesort: O(n log n)

Quicksort: O(n2)

https://www.youtube.com/watch?v=yn0EgXHb5jc

FH Wedel Prof. Dr. Sebastian Iwanowski Alg1 slide 3

• Pass all positions of data array in order.

• Search the minimum element upward from current position.

• Swap this element with element of current position.

procedure selectionsort (data): array

begin

 pos := 1;

 while pos < length(data) do

 begin

 newPos := minPos (data, pos, length(data));

 aux := data[pos];

 data[pos] := data[newPos];

 data[newPos] := aux;

 pos := pos + 1;

 end; {while}

 return data;

end {selectionsort}

• Output the new array after all positions have been passed.

Details of Selectionsort:

procedure sort (data): array

begin

 newData := copy (data);

 return selectionsort (newData);

end {sort}

 Algorithmics 1

„brute force“ strategy

1.1 Comparing basic sorting techniques

FH Wedel Prof. Dr. Sebastian Iwanowski Alg1 slide 4

Details of auxiliary procedure minPos:

procedure minPos (data, first, last): integer

begin

 resultPos := first;

 resultValue := data[resultPos];

 pos := first;

 while pos < last do

 begin

 pos := pos + 1;

 if data[pos] < resultValue

 then

 begin

 resultPos := pos;

 resultValue := data[resultPos];

 end;

 end; {while}

 return resultPos;

end {minPos}

 Algorithmics 1

1.1 Comparing basic sorting techniques

FH Wedel Prof. Dr. Sebastian Iwanowski Alg1 slide 5

• Divide data array into 2 halves.

• Sort the halves separately.

• Merge the sorted halves into a second array.

procedure mergesort

 (fromData, toData, left, right)

begin

 if left < right

 then

 begin

 mid := (left + right) div 2;

 mergesort (toData, fromData,

 left, mid);

 mergesort (toData, fromData,

 mid+1, right);

 merge (fromData, toData,

 left, mid, mid+1, right);

 end {if}

 end {mergesort}

procedure sort (data): array

begin

 data1 := copy (data);

 data2 := copy (data);

 mergesort (data1,

 data2, 1, length(data));

 return data2

end {sort}

Recursive version

 Algorithmics 1

Details of Mergesort: „divide and conquer“ strategy

1.1 Comparing basic sorting techniques

FH Wedel Prof. Dr. Sebastian Iwanowski Alg1 slide 6

procedure merge (fromData, toData, left1,

 right1, left2, right2)

begin

 pos1 := left1; pos2 := left2; pos := left1;

 while (pos ≤ right2) do

 begin

 if pos1 > right1 /** first array has been used up already **/

 then

 begin toData[pos] := fromData[pos2]; pos2++ end

 else if pos2 > right2 /** second array has been used up already **/

 then

 begin toData[pos] := fromData[pos1]; pos1++ end

 else if fromData[pos1] ≤ fromData[pos2] /** regular case **/

 then

 begin toData[pos] := fromData[pos1]; pos1++ end

 else

 begin toData[pos] := fromData[pos2]; pos2++ end;

 pos++;

 end {while}

end {merge}

 Algorithmics 1

Details of auxiliary procedure merge:

1.1 Comparing basic sorting techniques

FH Wedel Prof. Dr. Sebastian Iwanowski Alg1 slide 7

procedure mergesortIter (data): array

begin

 data2 := copy (data); n := length(data);

 sortedLength := 1;

 while sortedLength < n do

 begin

 left1 := 1;

 while (left1+sortedLength) < n do

 begin

 right1 := left1+sortedLength; left2 := right1+1; right2 := left2+sortedLength;

 merge (data, data2, left1, right1, left2, right2);

 left1 := right2 + 1

 end;

 sortedLength := sortedLength + sortedLength;

 aux := data; data := data2; data2 := aux

 end;

 return data

end {sort2}

procedure sort (data): array

begin

 newData := copy (data);

 return mergesortIter(newData)

end {sort}

Iterative version

 Algorithmics 1

• Divide data array into 2 halves.

• Sort the halves separately.

• Merge the sorted halves into a second array.

Details of Mergesort: „divide and conquer“ strategy

1.1 Comparing basic sorting techniques

FH Wedel Prof. Dr. Sebastian Iwanowski Alg1 slide 8

 Algorithmics 1

• Partition (A,i,k,j)  order number:

At the end, A is rearranged between a[i] and a[j] such that

first, only elements ≤ x := a[k] are placed, then x, then only elements > x.
The return value order number is the new position of x.

1.1 Comparing basic sorting techniques

Details of Quicksort

• Quicksort (A, i, j):

A is an array of n elements (a[1], …, a[n]).

i,j are indices between 1 and n.

At the end, the elements between a[i] and a[j] are sorted in an increasing order.

• Implementation of Quicksort (A, i, j):
if i < j

 then k := random number between i and j; /** k is the Pivot index *//

 dividingIndex := Partition (A,i,k,j);

 /** dividingIndex is the order number of the Pivot element *//

 Quicksort (A, i, dividingIndex-1);

 Quicksort (A, dividingIndex+1,j);

„divide and conquer“ strategy

Start with Quicksort (A,1,n)

References:

Cormen ch. 7.1 (algorithm there without random number)

Levitin ch. 4.2

FH Wedel Prof. Dr. Sebastian Iwanowski Alg1 slide 9

 Algorithmics 1

x := a[k];

count := number of elements ≤ x between a[i] and a[j];

order := i+count-1;

Swap x with a[order]; // now x is placed on correct new position

right := j;

for left := i to count-2 do

 if a[left] > x

 then while a[right] > x do right := right - 1;

 Swap a[left] with a[right];

return order;

1.1 Comparing basic sorting techniques

Details of Quicksort

• Partition (A,i,k,j)  order number:

• Implementation of Partition:

At the end, A is rearranged between a[i] and a[j] such that

first, only elements ≤ x := a[k] are are placed, then x, then only elements > x.
The return value order number is the new position of x.

References:

Cormen ch. 7.1 (algorithm there without random number)

Levitin ch. 4.2

„divide and conquer“ strategy

FH Wedel Prof. Dr. Sebastian Iwanowski Alg1 slide 10

 Algorithmics 1

References:

Alt S. 7 (in German)

Cormen ch. 7.2

• lower run time estimate Ω(n2) :

For each n there is an input of size n with run time in Ω(n2)

• upper run time estimate O(n2) :

using the recursive equation of script and explicite solution of the following: T(n) ≤ c ∙ n2

(proof by mathematical induction using n)

Remark to German script:

The proposition that k=1 or k= n are the worst cases (which is true) is not proven in the

script, but this is not necessary to show in order to show the above run time limits.

1.1 Comparing basic sorting techniques

Exact run time estimate: Θ (n2)

FH Wedel Prof. Dr. Sebastian Iwanowski Alg1 slide 11

 Algorithmics 1

Calculating with Landau symbols (“asymptotic size”)

• Definition of O, Ω and Θ

T(n) ∈ O (f(n)) ⇔ ∃c∈ℝ ∃n0∈ℕ ∀n ≥ n0: T(n) ≤ c ∙ f(n)

T(n) ∈ Ω (f(n)) ⇔ ∃c∈ℝ ∃n0∈ℕ ∀n ≥ n0: T(n) ≥ c ∙ f(n)

T(n) ∈ Θ (f(n)) ⇔ ∃c1,c2∈ℝ ∃n0∈ℕ ∀n ≥ n0: c1 ∙ f(n) ≤ T(n) ≤ c2 ∙ f(n)

• Computational rules for Landau symbols

References:

Cormen ch. 3

1) x < y ⇒ O(nx) ⊊ O(ny)

2) x > 0 ⇒ O(log n) ⊊ O(nx)

3) O (f(n)+g(n)) ∈ O(f(n)) ⋃ O(g(n)) (“maximum”)

1.2 Complexity measures for the analysis of algorithms

FH Wedel Prof. Dr. Sebastian Iwanowski Alg1 slide 12

 Algorithmics 1

Computational model: RAM (Random Access Machine)

References:

Alt S. 11-13 (in German) Mehlhorn ch. 2.2, 2.3 (outline, with a different perspective)

Skript Lang, Kap. 4.5 (in German)

• Definition of a RAM

small assembler-like command pool,

control unit with constant time access to program storage and data storage

1.2 Complexity measures for the analysis of algorithms

from Lang, ch. 4.5

FH Wedel Prof. Dr. Sebastian Iwanowski Alg1 slide 13

 Algorithmics 1

Computational model: RAM (Random Access Machine)

References:

Alt S. 11-13 (in German) Mehlhorn ch. 2.2, 2.3 (outline, with a different perspective)

Skript Lang, Kap. 4.5 (in German)

• Run time equivalence

Algorithm requires on a RAM time in Θ(f(n)) (UCM oder LCM)

 ⇔ Algorithm requires the same time class Θ(f(n)) on a „normal“ computer.

• Polynomial relation

Algorithm requires on a RAM time in Θ(f(n)) using LCM

⇔ Algorithm requires on a Turing machine time in Θ(P(f(n))) for a polynomial P.

• Cost measures

UCM: All operations cost the same independent of operands’ size.

1.2 Complexity measures for the analysis of algorithms

LCM: The cost of an operation depends on size of operand.

FH Wedel Prof. Dr. Sebastian Iwanowski Alg1 slide 14

 Algorithmics 1

Master-Theorem

for the asymptotic run time estimation of divide & conquer algorithms

References:

Cormen ch. 4

1) a < bk ⇒ T(n) ∈ Θ(nk)

2) a = bk ⇒ T(n) ∈ Θ(nk log n)

3) a > bk ⇒ T(n) ∈ Θ(nlogba)

1.2 Complexity measures for the analysis of algorithms

Let T(n) be the recursive equation for a divide & conquer algorithm given by:

T(n) = a T(n/b) + f(n)

Then for b > 1 and f(n) ∈ Θ (nk) the following holds:

The same results hold for O and Ω

FH Wedel Prof. Dr. Sebastian Iwanowski Alg1 slide 15

 Algorithmics 1

Denoting the complexity of algorithms by Landau symbols

• Exact asymptotic run time in worst case:

References: ? (thanks for giving me hints)

• Upper run time limit in worst case:

Let I(A) be an admissible input for algorithm A and size(I(A)) be the input size.

Let TA(I(A)) be the run time of A (counting the number of operations), when I(A) is the input.

A is an O(f(n)) algorithm ⇔ ∀n ∈ ℕ ∀ I(A),size(I(A))=n: TA(I(A)) ∈ O (f(n))

“All inputs are bounded by this asymptotic run time.”

• Lower run time limit in worst case:

A is an Ω(f(n)) algorithm ⇔ ∀n ∈ ℕ ∃ I(A),size(I(A))=n: TA(I(A)) ∈ Ω (f(n))

“For each n there is an input with this asymptotic run time bound.”

A is a Θ(f(n)) algorithm in a weak sense ⇔

 A is an O(f(n)) algorithm and A is an Ω(f(n)) algorithm

1.2 Complexity measures for the analysis of algorithms

A is a Θ(f(n)) algorithm in a strong sense ⇔ ∀n ∈ ℕ ∀ I(A),size(I(A))=n: TA(I(A)) ∈ Θ (f(n))

“All inputs have this asymptotic run time.”

FH Wedel Prof. Dr. Sebastian Iwanowski Alg1 slide 16

 Algorithmics 1

1.3 Lower bounds for algorithms using comparisons only

• Lower bound for sorting

Correlate depth of a compare tree with the number of comparisons

Correlate depth of a binary search tree with the number of leaves

Estimate n! and make a conclusion for log (n!)  at least Ω(n log n) comparisons

Mergesort needs only O(n log n) comparisons  Mergesort is optimal.

References:

Alt S. 17 – 21 (in German) Cormen ch. 8.1 Levitin ch. 11.1 (outline)

• Lower bound for the search of a maximal element

Given n elements (input size).

Compare graph must be connected  at least n-1 comparisons (Ω(n))

There is an O(n) algorithm for this problem  This algorithm is optimal.

• Lower bound for the search of the k-th element of a given set

Given n elements (input size).

Compare graph must be connected  at least n-1 comparisons (Ω(n))

Optimal algorithm for this problem?  Chapter 2

FH Wedel Prof. Dr. Sebastian Iwanowski Alg2 slide 1

Algorithmics

Sebastian Iwanowski

FH Wedel

2. Advanced searching and sorting

FH Wedel Prof. Dr. Sebastian Iwanowski Alg2 slide 2

 Algorithmics 2

2.1 Order statistics

References:

Alt, S. 23 (in German) Cormen, ch. 9.1

 Levitin, ch. 5.6 (first problem, very superficial)

1. Sort the array and then determine the k-th element.

2. k = 1 or k = n:

Traverse the array in a single pass

and update the current maximum or minimum during traversal.

Search for the k-th element of an unsorted array A with n elements, i.e. search for the

Element x ∈ A such that k Elements of A are less or equal.

Straightforward solutions

SELECT (k,A): Element

run time Θ(n log n)

 w.c. and a.c.

run time Θ(n) w.c. and a.c.

FH Wedel Prof. Dr. Sebastian Iwanowski Alg2 slide 3

References:

Alt, S. 23 – 26 (in German) Cormen, ch. 9.2

1. Choose an arbitrary index j from {1,...,n} and consider element a = A[j].

2. Swap the elements of A with quicksort partition such that a is placed into its correct

position, all smaller elements left of a and all greater elements right of a.

Partition A into three subsequences A<, A= and A>.

3. | A<| < k ≤ | A<| + | A=| => return a

k ≤ | A<| => return SELECT (k, A<)

k > | A<| + | A=| => return SELECT (k - (| A<|+| A=|), A>)

Randomised algorithm run time Θ(n2) w.c., Θ(n) a.c.
If A contains less than c elements (for an abitrary constant c), determine the k-th

Element directly with a straightforward method.

Else:

 Algorithmics 2

2.1 Order statistics

Search for the k-th element of an unsorted array A with n elements, i.e. search for the

Element x ∈ A such that k Elements of A are less or equal.

SELECT (k,A): Element

FH Wedel Prof. Dr. Sebastian Iwanowski Alg2 slide 4

References: Alt, S. 27 – 29 (in German) Cormen, ch. 9.3

1. Partition A into ⌈n/5⌉ subsequences of length 5.

2. Sort each subsequence i and determine its median ai.

3. Determine the median a of the medians ai invoking SELECT(⌈n/10⌉,{a1,...,a ⌈n/5⌉ })

4. Swap the elements of A with quicksort partition such that a is placed into its correct

position, all smaller elements left of a and all greater elements right of a.

Partition array A into three subsequences A<, A= and A>.

5. | A<| < k ≤ | A<| + | A=| => return a

k ≤ | A<| => return SELECT (k, A<)

k > | A<| + | A=| => return SELECT (k - (| A<|+| A=|), A>)

run time Θ(n) w.c. and a.c.

 Algorithmics 2

2.1 Order statistics

Search for the k-th element of an unsorted array A with n elements, i.e. search for the

Element x ∈ A such that k Elements of A are less or equal.

SELECT (k,A): Element

Deterministic algorithm
If A contains less than c elements (for an abitrary constant c), determine the k-th

Element directly with a straightforward method.

Else:

FH Wedel Prof. Dr. Sebastian Iwanowski Alg2 slide 5

2.2 Searching in sorted arrays

References:

Alt, S. 30 – 35 (in German) Levitin, ch. 4.3; ch. 5.6 (second problem)

Mehlhorn 1988 (in German) Sedgewick ch. 14 (superficial)

Cormen ? Knuth ch. 6.2.1

Advantage to dynamic data structures (cf. ch. 3): less storage space

SELECT (a,A,left,right): Element

run time Θ(log n) w.c. and a.c. 1. Binary search

2. Interpolation search

3. Quadratic binary search

run time Θ(n) w.c. and Θ(log(log n)) a.c.

run time Θ(n0,5) w.c. und Θ(log(log n)) a.c.

Search for index of element a in an n-element sorted array A[1..n] between indices left

and right. If a ∉ A, return 0.

 Algorithmics 2

FH Wedel Prof. Dr. Sebastian Iwanowski Alg2 slide 6

2.3 Sorting in finite domains

References:

Alt, S. 21 – 22 (in German),

Cormen, ch. 8

• Countingsort (for n data with k different values)

Simple variant (Alt), complex data variant (Cormen),

run time Θ(n+k), stable, i.e. preserves the input order for equal data

Utilisation: for all data with compare key domain that is discrete and linearily ordered

• Bucketsort (for n data within bounded limits)

Originally only for real numbers from [0,1) (Cormen), but can be used for any

bounded domains having a function f: U -> {1,…,k} which preserves the order (f(x) ≤

f(y) ⇔ x ≤ y) and which can be computed in constant time.

The crucial run time advantage is sorting of buckets, which is O(n log n) w.c.,

but for k ∈ Θ(n) run time is O(n) a.c., even if bucket sorting is executed by O(n2) w.c.

algorithm, proof in Cormen.

If data consists of k different values only, sorting of k Buckets needs run time Θ(n+k)

a.c., algorithm is stable.

 Algorithmics 2

FH Wedel Prof. Dr. Sebastian Iwanowski Alg2 slide 7

2.3 Sorting in finite domains

• Radixsort

Sorting of n words of finite length s over alphabet with k characters.

Run time Θ(s‧(n+k)), uses countingsort (Cormen) or bucketsort (Alt) as subroutine.

May be generalised to any domain which is lexicographically ordered, i.e. numbers in

logarithmic representation.

 Algorithmics 2

References:

Alt, S. 21 – 22 (in German),

Cormen, ch. 8

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg31 slide 1

Algorithmics

Sebastian Iwanowski

FH Wedel

3. Solutions for the dictionary problem

3.1 Hashing and other methods for optimizing the avarage case behaviour

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg31 slide 2

 Algorithmics 3

Implementation of dictionaries

References:

Skript Alt, S. 30 – 35 (for search) in German

more information: cf. previous chapter

A dictionary is a data structure for elements comparable by a key implementing the functions

search (key), insert (key, newdata) and delete (key)

Using a sorted array for a dictionary:

run time Θ(log n) w.c. and Θ(log log n) a.c. achievable search (key)

not by the same algorithm

insert (key, newdata) run time Θ(n) w.c. and a.c.

delete (key) run time Θ(n) w.c. and a.c.







Better method for insert / delete with indexed arrays: Hashing (cf. following slides)

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg31 slide 3

Which problem does hashing solve?

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

key for searching

identifies

data record

uniquely

data record: data base:

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

• insert

data administration operations:

• delete

• search

 Hashing is a method implementing

these operations efficiently.

key value

map operations

get (key)

put (key, value)

remove (key)

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg31 slide 4

Outline of method

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

search key s

data record:

0 i-1 i+1 m i

hash table T:

.

hash number hash(s)

function hash: key  integer

„Max Mustermann“  i

hash(„Max Mustermann“) = i

Data record searched is in T[i]. • search Determine i=hash(s)

Determine i=hash(s) Store new data record in T[i]. • insert

Delete data record from T[i]. (T[i] = null) • delete Determine i=hash(s)

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg31 slide 5

Discussing details

data record: hash table T:

1) How to define a good

hash function?

2) Where to store the data

record in the hash table?

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

0 i-1 i+1 m i

.

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg31 slide 6

1) How to define a good hash function ?

Solution: Sort the keys by order (e.g. lexikographically) !

Map each key to its order number!

„Max Mustermann“  (13 1 24 0 13 21 19 20 5 18 13 1 14 14)

hash („Max Mustermann“) = 13*2713 + 1*2712 + 24*2711 + 0*2710 + 13*279 + 21*278 + 19*277

 + 20*276 + 5*275 + 18*274 + 13*273 + 1*272 + 14*271 + 14*270

 ≈ 52966834350000000000 (20-digit number)

In general a lot of different keys are possible!

perfect hashing

Case 1:

Goal:

Hash table contains at least as many records as different keys are possible.

Each key is mapped to a different hash number.

Conclusion: Case 1 is not realistic !

Example:
 (for strings

as keys)

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg31 slide 7

Solution: Sort the keys by order (e.g. lexikographically) !

Map each key to its order number modulo m !

Case 2: Hash table contains fewer records than different keys that are possible.

1) How to define a good hash function ?

Conclusion: Different keys have to be mapped to the same hash number

collision

m k

Case 2: m < k

Each hash number 0 thru m-1 is the function value of aproximately equally many keys

Goal:

(i.e. approximately k/m).

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg31 slide 8

hash („Antje“) = (1 * 274 + 14 * 273 + 20 * 272 + 10 * 271 + 5) mod 1000

 = 821858 mod 1000

„Antje“  (1 14 20 10 5) m = 1000

1) How to define a good hash function ?

hash(„Antje“) = ((((1 * 27 + 14) * 27 + 20) * 27 + 10) * 27 + 5) mod 1000

 = (((((((1 mod 1000 * 27 + 14) mod 1000) * 27 + 20) mod 1000) * 27 + 10) mod 1000) * 27 + 5) mod 1000

Algorithm for a good hash function (according to Horner‘s method) :

Example:
 (for strings

as keys)

static int hash (String key, int m)

 {

 int result = 0, numberSymbols = 27;

 for (int i = 0; i < key.length(); i++)

 result = (result*numberSymbols + order (key.charAt(i))) % m;

 return result;

 }

Java code:

= 858

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg31 slide 9

2) Where to store the data record in the hash table?

Problem: How to handle collisions?

Example: hash („Max Mustermann“) = 858

hash („Antje“) = 858

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

0 857 859 m 858

.

Max Mustermann

●

●

●

Antje

●

●

●

Hash table T:
Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Does anybody have a better idea?

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg31 slide 10

2) Where to store the data record in the hash table?

Problem: How to handle collisions?

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Solution: T[i] contains pointers to linked lists of those data records

whose keys have the same hash number i.

0 857 859 m 858

. T:

Max Mustermann

●

●

●

Antje

●

●

●

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg31 slide 11

2) Where to store the data record in the hash table?

Problem: How to handle collisions?

Solution:

0 857 859 m 858

.

 T[i] contains pointers to linked lists of those data records

whose keys have the same hash number i.

 T:

1) Determine hash („Antje“) = 858

Antje ?

no show !

2) Traverse list of T[858]

Antje ?

found !

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Search: Antje ?
Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg31 slide 12

2) Where to store the data record in the hash table?

Problem: How to handle collisions?

0 857 859 m 858

. T:

1) Determine hash („Fridolin Krapulapinski“)=858

2) Traverse list of T[858].

Insert: Fridolin Krapulapinski

●

●

●

3) Insert at end of list.

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Fridolin ?
no show !

Fridolin ?
no show !

End of list found!

Solution: T[i] contains pointers to linked lists of those data records

whose keys have the same hash number i.

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg31 slide 13

2) Where to store the data record in the hash table?

Problem: How to handle collisions?

0 857 859 m 858

. T:

1) Determine hash („Antje“)=858

2) Traverse list of T[858].

3) Remove the respective data record.

Antje ?

no show !

Antje ?

found !

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Delete: Antje
Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

establish new link

remove data record

Solution: T[i] contains pointers to linked lists of those data records

whose keys have the same hash number i.

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg31 slide 14

2) Where to store the data record in the hash table?

Problem: How to handle collisions?

0 857 859 m 858

. T: Evaluating the

presented method:

• easy to implement

• implements hashing for arbitrary k and m

 (k: number of keys, m: number of places)

objection:

• waste of storage space !

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Solution: T[i] contains pointers to linked lists of those data records

whose keys have the same hash number i. (closed hashing)

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg31 slide 15

2) Where to store the data record in the hash table?

Problem: How to handle collisions?

Alternative solution:
 Search for other free space in hash table:

Proceed from T[i] according to a certain rule

until free space is found

Example for probing rule: move right by one

probing rule
(open hashing)

0 857 859 m 858

. T:

860 861 862

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

hash („Max Mustermann“) = 858

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

hash („Antje“) = 858

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

hash („Fridolin Krapulapinski“) = 858

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

hash („Wilhelmine Wiesel“) = 861

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg31 slide 16

2) Where to store the data record in the hash table?

Problem: How to handle collisions?

Alternative solution:
 Search for other free space in hash table:

Proceed from T[i] according to a certain rule

until free space is found

Other methods for probing rules:

1. move by quadratically increasing distances

probing rule
(open hashing)

2. move according to a second hash function (double hashing)

3. lots more of rules in literature and practice

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg31 slide 17

Compare with other techniques

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

„Antje“

„Fridolin Krapulapinski“

„Max Mustermann“

„Wilhelmine Wiesel“

Search trees

0 857 859 m 858

.

860 861 862

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Max Mustermann

Musterstr. 1

12345 Musterdorf

Tel.: 010 123 45 67

●

●

●

Hash tables

What is better?

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg31 slide 18

Search trees Hash tables
(containing n entries)

Storage O(n) O(m+n)

avarage run time

of one operation
(search / insert / delete)

O(log n) O(n/m)

Applicability for arbitrarily many data
 only for constant

number of data (n ≈ m)

improvement

by open hashing

improvement by

dynamic hashing

for frequent

insert and delete

for frequent

search

Recommendation

of use

(containing n entries

and m hash places)

m = 1000

n = 500

n = 1000

n = 2000

≈ 1500 ≈ 500

≈ 1000

≈ 2000

≈ 2000

≈ 3000

≈ 9 ≈ 1,2

≈ 10 ≈ 1,3

≈ 11 ≈ 2,1

n = 1 000 000

≈ 20 ≈ 1000

Compare with other techniques

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg31 slide 19

 Algorithmics 3

References:

Cormen, ch. 11

Summarizing hashing

data type: Indexed array with m positions

• There is a hash function h: Keys → {0,…,m-1}

• Each element is stored at h(k),

as long as this position is still free (where k is the element’s key)

• If position h(k) is occupied,

a collision handling must be performed (different strategies available)

Principle of

operation:

run time Θ(n) w.c. and Θ(n/m) a.c. All 3 dictionary functions:

⇒ for n ∈ O(m): run time Θ(1) a.c.

Implementation of dictionaries

A dictionary is a data structure for elements comparable by a key implementing the functions

search (key), insert (key, newdata) and delete (key)

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg31 slide 20

 Algorithmics 3

Summarizing hashing: Strategies for collision handling

• At position h(k), there is a pointer to a linked lists instead of the data record .

• All data to be mapped to h(k) will be inserted sequentially into the linked list.

Hash lists

Open hashing

• If position h(k) is occupied,

a special probing rule determine a different position.

• There are different strategies for probing rules.

• If all positions are occupied, the array must be enhanced

and the hash function must be adapted (rehashing)

References:

Cormen, ch. 11

Implementation of dictionaries

A dictionary is a data structure for elements comparable by a key implementing the functions

search (key), insert (key, newdata) and delete (key)

data type: Indexed array with m positions

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg31 slide 21

 Algorithmics 3

References:

Cormen, ch. 12, Skript Alt, S. 40-41 (in German)

Summarizing search trees:

data type: pair (data, list of children trees)

Principle of

operation:

run time Θ(h) All 3 dictionary functions

h is between Ω(log n) and O(n) w.c., Θ(log n) a.c.

• Each operation inspects the data of the node where it is invoked.

• If the operation may not be executed directly at node,

it will be passed to one of the children.

The choice to which child will be decided locally in the node.

• The search tree bares invariants that must be maintained

(e.g. property that each node has got exactly 2 children)

• The maintenance of the invariants may require additional

operations for insert and delete.

nodes

h is height of search tree

different ways of considering a.c.

Implementation of dictionaries

A dictionary is a data structure for elements comparable by a key implementing the functions

search (key), insert (key, newdata) and delete (key)

Each operation

must be performed in

constant time per node.

FH Wedel Prof. Dr. Sebastian Iwanowski Alg32 slide 1

Algorithmics

Sebastian Iwanowski

FH Wedel

3. Solutions for the dictionary problem

3.2 (2,3)-trees as example for an optimal worst case behaviour tree

FH Wedel Prof. Dr. Sebastian Iwanowski Alg32 slide 2

 Algorithmics 3

3.2 (2,3)-trees

i. All data is stored in the leaves which are all on equal level.

ii. All inner nodes have 2 or 3 children (thus, a (2,3)-tree is not binary!)

iii. For directions, the inner nodes contain for each child the greatest key of the subtree

rooted in the respective child.

Data structure: Search tree with the following properties:

References:

Skript Alt S. 44 – 51 (Kap. 3.1.5) in German

Levitin, ch. 6.3 AHU (in balanced tree section)

same run time for w.c. and a.c. => for all 3 dictionary operations:

A (2,3)-tree is height balanced (due to i.)

run time Θ(log n) w.c. and a.c. due to ii) (+ update of a node in constant time):

Implementation of dictionaries

A dictionary is a data structure for elements comparable by a key implementing the functions

search (key), insert (key, newdata) and delete (key)

FH Wedel Prof. Dr. Sebastian Iwanowski Alg32 slide 3

 Algorithmics 3

Implementation of the core functions of a (2,3)-tree

search23 (returns reference to node containing key data)

1. If node is a leaf:

If node data contains key, return root, else null.

2. Else: Determine child where search has to continue:

This is the child whose tree contains the smallest key greater or equal to searched key.

3. If such a child exists: Invoke search23 for this child recursively.

4. Else: Return null (key is evidently not found in the tree).

FH Wedel Prof. Dr. Sebastian Iwanowski Alg32 slide 4

1. If root is a leaf: Generate another leaf for newdata and return the reference to this and the old root (resulting in 2 roots).

2. Else: Determine child root in which newdata has to be inserted.

3. Invoke insert23rec for this child root recursively.

4. If only one root is returned, adopt this as new child (instead of the former one) and return own root.

5. If two roots are returned and only one more child exists, adopt both roots as new children and return own root.

6. If two roots are returned and two more other children exist (resulting in four new children),

split root node into 2 nodes, distribute the children such that each node has 2 of them and return the references to the

nodes of the split.

insert23rec (returns 1 or 2 roots of (2,3)-trees one of them containing newdata)

insert23 (returning root of a (2,3)-tree containing newdata)
1. If root is an inner node (otherwise special handling necessary):

Determine child root in which newdata has to be inserted:

This is the child whose tree contains the smallest key greater or equal to searched key (if existing)

or the child with greatest key (otherwise).

2. Invoke insert23rec for this child.

3. If only one root is returned, adopt this as new child (instead of the former one) and return own root.

4. If two roots are returned and only one more child exists, adopt both roots as new children and return own root.

5. If two roots are returned and two more other children exist (resulting in four new children),

split root node into 2 nodes, generate a new root node and attach the nodes of the split as children.

Return the new root. (Remark:This increases the depth by 1)

 Algorithmics 3

Implementation of the core functions of a (2,3)-tree

FH Wedel Prof. Dr. Sebastian Iwanowski Alg32 slide 5

1. If the children of root are leaves, return those children not containing data with the searched key (1, 2, or 3).

2. Else: Determine child root from which data has to be removed:

This is the child whose tree contains the smallest key greater of equal to searched key (if existing).

3. If such a child does not exist, stop recursion and return the former children as new children (2 or 3).

4. Else: Invoke delete23rec for the determined child recursively.

5. If this invocation gets at least 2 children in return, adopt the old child with these children and change nothing.

6. Else (only 1 child returned):

If there are only 2 other grandchildren, generate one child with the 3 remaining grandchildren as children and

return just this child (only 1).

Otherwise distribute the 4 to 8 remaining grandchildren to 2 or 3 new children and return these children:

The new grandchildren distribution will be (2,2), (2,3), (3,3), (2,2,3), (2,3,3)

depending on how many grandchildren are left.

delete23rec (returns 1 – 3 children of invoked node not containing any data with searched key).

delete23 (returns root of a (2,3)-tree not containing any data with searched key).
1. If root is an inner node, invoke delete23rec for root (otherwise special handling necessary).

2. If only one child is returned, return this child as new root.

(Remark: This decreases the depth by 1)

3. Else: Generate a new node with the returned nodes as children and return reference to this node.

 Algorithmics 3

Implementation of the core functions of a (2,3)-tree

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg33 slide 1

Algorithmics

Sebastian Iwanowski

FH Wedel

 3. Solutions for the dictionary problem

3.3 Other optimal worst case methods for search trees

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg33 slide 2

 Algorithmics 3

3.3 Other optimal worst-case methods for search trees

(a,b)-tree: Generalisation of (2,3)-trees (a ≥ 2, b ≥ 2a-1)

i. All data is stored in the leaves which are all on equal level.

ii. All inner nodes (except for the root) have at least a and at most b children.

The root has at least 2 and at most b children.

iii. For directions, the inner nodes contain for each child the greatest key of the subtree

rooted in the respective child.

Data structure: search tree with the following properties:

References:

Skript Alt S. 44 – 51 (Kap. 3.1.5) in German

Mehlhorn ch. 7

A dictionary is a data structure for elements comparable by a key implementing the functions

member (key), insert (key, newdata) and delete (key)

same run time for w.c. and a.c. => for all 3 dictionary operations:

An (a,b)-tree is height balanced (due to i.)

run time Θ(log n) w.c. and a.c. due to ii) (+ update of a node in constant time):

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg33 slide 3

 Algorithmics 3

AVL tree

For each node, the height of the children subtrees differs by at most 1.

References:

Skript Alt S. 41 – 44 (Kap. 3.1.4)

Knuth ch. 6.2.3

same run time Θ(log n) w.c. and a.c. All 3 dictionary operations:

Proof is complicated (via Fibonacci estimations).

The maintenance of this invariant is guaranteed by rotations and double rotations of nodes

which can be executed during insert and delete in constant time per node.

contain both exact functionality and run time proof,

not relevant for exam

3.3 Other optimal worst-case methods for search trees

A dictionary is a data structure for elements comparable by a key implementing the functions

member (key), insert (key, newdata) and delete (key)

Data structure: binary search tree with the following property:

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg33 slide 4

 Algorithmics 3

Red-black tree

i. The tree is full (each inner vertex has got two children) *) .

ii. Red nodes have black children.

iii. For each node n, each path from n to any leaf contains the same number b(n) of black nodes.

References:

Skript Alt S. 54 (Kap. 3.1.7) in German

Cormen ch.13 (including algorithmic details and run time estimation)

3.3 Other optimal worst-case methods for search trees

A dictionary is a data structure for elements comparable by a key implementing the functions

member (key), insert (key, newdata) and delete (key)

Data structure: binary search tree, each node being red or black, with the following properties:

same run time Θ(log n) w.c. and a.c. All 3 dictionary operations:

Proof is shown in class.

The maintenance of this invariant is guaranteed by rotations and double rotations of nodes

which can be executed during insert and delete in constant time per node.

*) In standard references this property is replaced by: Leaves must be black. NIL leaves are mandatory at each level.

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg33 slide 5

 Algorithmics 3

Red-black tree

References: Skript Alt S. 54 (Kap. 3.1.7) in German

Prop.::

: Each black node is combined with its red children.

The children of the red children and the possibly existing other black child of the

original node become the children of the combined node.

: i. Any node with 2 children becomes a black node with 2 black children.

ii. Any node with 3 children a1, a2, a3 becomes a black node with a black child a1

and a new red child having a2, a3 as black children.

iii. Any node with 4 children becomes a black node with 2 new red children, each

having 2 of the former children as own black children.

3.3 Other optimal worst-case methods for search trees

A dictionary is a data structure for elements comparable by a key implementing the functions

member (key), insert (key, newdata) and delete (key)

Red-black trees may be easily transformed to (2,4)-trees and vice versa.

Glossary:

 A binary tree is called full (or saturated), if all inner nodes have exactly 2 children.

 A binary tree is called complete, if all leaves are located on the lowest levels (completely filled from left to right)

 A binary tree is called perfect, if all leaves are located on the same level.

Note: A red-black tree must be full while an AVL tree need not.

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg33 slide 6

 Algorithmics 3

B trees: Special (a,b)-trees

A B tree is equivalent to a (t,2t)-tree (t ≥ 2)

References:

Cormen ch. 18 (B trees)

Knuth ch. 6.2.4

same run time Θ(log n) for w.c. and a.c. All 3 dictionary operations:

Practical application: rapid disc access

A B* tree (Knuth) is defined as ((2m-1)/3,m)-tree

where the root may have between 2 and 2‧(2m-1)/3 + 1 children.

“filled at least by half”

“filled at least by 2/3”

3.3 Other optimal worst-case methods for search trees

A dictionary is a data structure for elements comparable by a key implementing the functions

member (key), insert (key, newdata) and delete (key)

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg33 slide 7

 Algorithmics 3

Trie tree(from retrieval) for strings over a k element alphabet

Data structure: k-ary tree having the following properties:

References:

Skript Alt S. 54 – 56 (Kap. 3.1.8) in German

Knuth ch. 6.3 (Digital Searching)

Seminar talk Nr. 8 in https://intern.fh-wedel.de/mitarbeiter/iw/lv/ws-2019/seminar/ (in German)

All 3 dictionary operations

with several improvements, not relevant for exam

i. The root is empty.

ii. Each other node contains a letter being used in some string stored.

For each string using this node there is a child containing the next letter of the string.

iii. Each node has a flag indicating if this is the end of a string or not.

Space for a tree storing n strings: n/ln k a.c. (Knuth, summary)

Run time for a search in a tree storing n strings:

 logk(n) a.c. (Knuth, summary)

Run time: Θ(length of string) w.c. and a.c. (clear)

3.3 Other optimal worst-case methods for search trees

A dictionary is a data structure for elements comparable by a key implementing the functions

member (key), insert (key, newdata) and delete (key)

https://intern.fh-wedel.de/mitarbeiter/iw/lv/ws-2019/seminar/
https://intern.fh-wedel.de/mitarbeiter/iw/lv/ws-2019/seminar/
https://intern.fh-wedel.de/mitarbeiter/iw/lv/ws-2019/seminar/
https://intern.fh-wedel.de/mitarbeiter/iw/lv/ws-2019/seminar/
https://intern.fh-wedel.de/mitarbeiter/iw/lv/ws-2019/seminar/

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg34 Slide 1

Algorithmics

Sebastian Iwanowski

FH Wedel

 3. Solutions for the dictionary problem

3.4 Optimal binary search trees

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg34 Slide 2

 Algorithmics 3

3.4 Optimal binary search trees

References:

Skript Alt S. 65 – 70 (ch. 3.3) in German: Other references are less clear

i. Let S = {a1,a2,…,an} be a linearily ordered set with predetermined probablities pi for the

occurrence of ai und qi für the occurrence of an element a in between: ai < a < ai+1.

ii. Construct a binary search tree which minimizes the expected response time (i.e. number of

comparisons with elements ai).

Time for the construction of the search tree: O(n3) (easy to prove)

Solution by the algorithm of Bellman (1957)

Problem:

Improvement: O(n2)

Knuth 6.2.2 (Binary Tree Searching)

Cormen 15.5 (ch. Dynamic Programming)

Required tree properties:

The tree should not only find the position of elements contained in the given dictionary,

but also locate the position where new elements would be placed:

Inner nodes correspond to elements contained, leaves correspond to elements in between

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg34 Slide 3

Bellman’s Algorithm for optimal binary search trees:

Ti,j: subtree for search items greater than ai-1 and less than aj+1

Ti,n: subtree for search items greater than ai-1

T1,j: subtree for search items less than aj+1

T1,n: tree for all search items

Special cases:

Ti,i: subtree for search items greater than ai-1 and less than ai+1.

 This tree consist of one node comparing with ai

Ti,i-1: subtree for search items greater than ai-1 and less than ai.

 This tree is empty and corresponds to a leaf.

Notation: Skript Alt

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg34 Slide 4

Determine m where s. that is minimal

P(Ti,j): expected costs for Ti,j if Ti,j is chosen

ci,j: expected costs for Ti,j if no precondition is known

wi,j: probability that Ti,j is chosen

ri,j: index m of the root of Ti,j: The item to be compared with is am

wi,j = wi,m-1 + pm + wm+1,,j

ci,j = wi,j ∙ P(Ti,j)

 = wi,j ∙ (1 + P(Ti,m-1) + P(Tm+1,j))

 = wi,j + ci,m-1 + cm+1,,j

Lemma 3.3.5: If Ti,j is optimal, then each subtree is also optimal.

Assertion 3.3.6:

k+1 is the number of elements considered in Ti,j

This is improved in Knuth

Lemma 3.3.7:

ri,j-1 ≤ ri,j ≤ ri+1,j

Initialization for empty trees corresponding to

the intervals in between the search keys

Bellman’s Algorithm for optimal binary search trees:

Ti,j: subtree for search items greater than ai-1 and less than aj+1

Notation: Skript Alt

does not depend on m

depends on m

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg34 Slide 5

Resulting construction of search tree:
Example from Skript Alt:

p1=0 p2=0,1 p3=0,2 p4=0,2

q0=0,1 q1=0,1 q2=0,1 q3=0,1 q4=0,1

0,1

1

Notation: Skript Alt

Short notation:

(0,1) – 1(0) – (0,1) – 2(0,1) – (0,1) – 3(0,2) – (0,1) – 4(0,2) – (0,1)

FH Wedel Prof. Dr. Sebastian Iwanowski Alg41 Slide 1

Algorithmics

Sebastian Iwanowski

FH Wedel

4. Graph algorithms

4.1 Minimum spanning trees as motivation for basic algorithms

FH Wedel Prof. Dr. Sebastian Iwanowski Alg41 Slide 2

 Algorithmics 4

4.1 Minimum spanning trees

References for catching up and delving into:

Skript Diskrete Mathematik 6, Folien 2,3,4,8,11,12,13 (graph theoretic basics)

Turau Kap. 2.4 (Grundlagen), 3.6.1 (Kruskal)

Cormen ch. 23 (Minimum spanning trees)

Construction of a minimum spanning tree for an arbitrary graph G:

• Start with an empty forest F consisting of no edge

• Repeat for all edges e1, e2, ..., em of G (edges are in sorted order):

 Check if ei may be inserted into F

 such that F is still without circles;

 If so, insert ei into F;

until F consists of n-1 edges (let n be the number of vertices of G).

Thus constructed forest F is a minimum spanning tree of G

Kruskal‘s Algorithm (simple variant):

Theorem:

O(m log m + nm) (nm due to determination of connectivity component) Time complexity:

see next slide Proof:
How to do this smarter?

FH Wedel Prof. Dr. Sebastian Iwanowski Alg41 Slide 3

 Algorithmics 4

Deutschsprachige Referenzen zum Nacharbeiten und Vertiefen:

Skript Alt, Lemma 4.3.2 (S. 76): Beweisskizze eines verwandten Satzes

Turau, Kapitel 3.6.1: genauer Beweis des Satzes wie oben (inkl. Induktionsverankerung)

Lang: Skript Berechenbarkeit und Komplexität, Kap. 4.2.3 (Greedy-Algorithmen für Matroide)

Proposition (implies correctness of Kruskal‘s algorithm, why?):

For each edge set {e1, e2, ..., ej} which is successively constructed by Kruskal‘s algorithm

there is a minimum spanning tree Tj of G containing this edge set.

Proof by mathematical induction over j

The assumption may hold for an edge set Ej consisting of j edges, i.e. there is a minimum

spanning tree Tj where Ej ⊆ Tj.

Let ej+1 be the next edge chosen by Kruskal. If ej+1 ∈ Tj, choose Tj+1 = Tj.

Otherwise there must be a circle in Tj ∪ {ej+1} containing ej+1. At least one of the other edges e0 of

this circle should not be contained in Ej (otherwise, Kruskal would not have chosen ej+1 because

Ej would not have been free of circles). Replace this edge e0 by edge ej+1 => spanning tree Tj+1

containing Ej ∪ {ej+1}.

c(e0) ≥ c(ej+1), because otherwise Kruskal would have chosen e0 before ej+1.

Thus, Tj+1 must be minimum as well as Tj.

Inductive step:

4.1 Minimum spanning trees

FH Wedel Prof. Dr. Sebastian Iwanowski Alg41 Slide 4

 Algorithmics 4

4.1 Basic algorithms for graph theory

References:

Skript Alt, Kap. 3.2 (p. 56 ff.), Cormen ch. 21 (Data structures for disjoint sets)

Union-Find-Structure
In general: works on sets of disjoint sets, administrates the change of set partitions:

 implements the efficient identification of the set containing a given element

 and the efficient union of sets

With path compression:

returns a unique reference node of the connectivity component of v.

unifies the connectivity components of v and w after reference node

has been determined

O(log n) Find (v)

O(1) Union (v,w)

Expected time complexity of Find is in O(log*n)

Data representation:

Array of nodes: The contents are pairs of the form (index of parent, height of subtree)
The subtree height is only important for root elements, for other elements the height is not considered anymore.

Graph theoretic application: efficient location and union of connectivity components

Other applications: segmentation of images, unification of expressions in compiling

FH Wedel Prof. Dr. Sebastian Iwanowski Alg41 Slide 5

 Algorithmics 4

References:

Cormen, ch. 6 (Heapsort)

Heap

Efficient management of a priority queue

DeleteMin() deletes the minimum element of the heap.

Insert (v) inserts an arbitrary new element into the heap.

SearchMin() finds the minimum element of the heap.

O(log n)

O(log n)

O(1)

Data representation:

Array of the heap nodes:

 The contents are the contents of the heap nodes.

 The children of the node with index i are the nodes with indices 2i und 2i+1

 (assuming that the array starts with index 1)

Invariants:

1) A heap is a complete binary tree (elements may be missing only in the last depth level).

2) The keys of the children of each node are not less than the key of each node.

4.1 Basic algorithms for graph theory

FH Wedel Prof. Dr. Sebastian Iwanowski Alg41 Slide 6

 Algorithmics 4

4.1 Minimum spanning trees

Construction of a minimum spanning tree for an arbitrary graph G:

• Start with an empty forest F consisting of no edge

• While F consists of less than n-1 edges:

 Search and delete the minimum element emin from the heap;

 Check if the vertices v and w incident with emin are in the same connectvity component

 If not: Insert emin into F and unify the connectivity components of v and w.

Kruskal‘s Algorithm (efficient variant):

O(m log m) (m is the number of edges in G) Time complexity:

• Start with a union-find-structure in which each vertex has its own connectivity component

• Insert all edges into a heap

References:

Cormen, ch. 23.2 (Algorithms of Kruskal and Prim)

FH Wedel Prof. Dr. Sebastian Iwanowski Alg42 Slide 1

Algorithmics

Sebastian Iwanowski

FH Wedel

4. Graph algorithms

4.2 Shortest paths

FH Wedel Prof. Dr. Sebastian Iwanowski Alg42 Slide 2

 Algorithmics 4

SSSP: Single Source Shortest Path

Algorithm of Dijkstra for SSSP: (for graphs G with nonnegative edge costs only)

Find the shortest paths from a source s to all other nodes

• Initialize the node set Done by s;

Initialize the node set Undone by all other nodes of graph G;

For all nodes v of the graph G:

 Let label (v) := length of edge from s to v (∞ if no edge is existing, 0 if v = s);

• While Undone is not empty:

 Search and delete the node v from Undone with minimal label;

 Insert v into Done;

 Update all neighbors n of v that are in Undone:

 If label (n) > label (v) + length of edge between v and n:

 Replace label (n) by that number;

 Let v be the predecessor of n.

Theorem: The labels of nodes v in Done are always the shortest path length from s to v

 and the shortest path is the shortest path from s to the predecessor of v

 followed by the edge from the predecessor to v.

Proof: Mathematical induction by number of iterations.

Remark: For the problem to find the shortest path between two given nodes there is no better

algorithm known than those for SSSP, and those have not been proved being optimal even for SSSP.

FH Wedel Prof. Dr. Sebastian Iwanowski Alg42 Slide 3

Theorem of correctness (to be proven):

For each node v ∈ Done holds:

 label (v) = ds(v).

where label (v) is the length of a path found from s to v

and ds(v) is the length of a shortest path from s to v

Lemma Subpath:

For each node u on the shortest path from s to v holds:

The subpath from s to u is the shortest path from s to u.

Proof by contraposition:

Let u be on any path from s to v and the subpath from s to u be not the shortest path from s to u.

Then the path from s to v is not the shortest path from s to v.

(Details: Exercise)

 Algorithmics 4

Algorithm of Dijkstra for SSSP: (for graphs G with nonnegative edge costs only)

SSSP: Single Source Shortest Path

FH Wedel Prof. Dr. Sebastian Iwanowski Alg42 Slide 4

Proof of the theorem of correctness by mathematical induction over iteration cycle i,
which shifts v to Done:

Base case for i = 0 clear (Exercise!)

Inductive step ≤ i -> i+1:

(*) Let w be the node, which is shifted to Done in the (i+1). cycle

Assume, label (w) ≠ ds(w) (will be used to contradict (*)).

Since label (w) = ∞ or label (w) = length of some path to w, the following holds: ds(w) < label (w).
Let (u,v) be the first edge on the shortest path to w leaving Done, i.e. u ∈ Done and v ∉ Done.

Then: ds(v) = ds(u) + c(u,v) = label (u) + c(u,v) ≥ label (v) => ds(v) = label (v)

This holds: label(v) = ds(v) ≤ ds(w) < label (w).
Since v,w ∉ Done, the following holds: v is shifted to Done before w => contradiction to (*)

Thus: label (w) = ds(w) q.e.d.

cf. Lemma Subpath Ind.ass.

shortest path some path

has been set to minimum of path via u (since u ∈ Done)

and previous value ass. above

 Algorithmics 4

SSSP: Single Source Shortest Path

FH Wedel Prof. Dr. Sebastian Iwanowski Alg42 Slide 5

 Algorithmics 4

SSSP: Single Source Shortest Path

References:

Skript Alt 4.4.1 (p. 79-81),

Cormen, ch. 24 (much more detailed: SSSP)

Organize the edge costs in a heap.

Find the shortest paths from a source s to all other nodes

Remark: For the problem to find the shortest path between two given nodes there is no better

algorithm known than those for SSSP, and those have not been proved being optimal even for SSSP.

Algorithm of Dijkstra for SSSP: (for graphs G with nonnegative edge costs only)

Time complexity: O((m+n)log n) (by direct inspection of the nodes)

for arbitrary graphs: O(n2log n)

for graphs with a constant number of neighbors per node: O(n log n)

Remark: Using the special structure Fibonacci Heap with corresponding methods for

decreasing keys, a very careful analysis using amortised time arguments over all loops shows

that the worst case is O(m + n log n) only. This is an improvement for dense graphs only.

FH Wedel Prof. Dr. Sebastian Iwanowski Alg42 Slide 6

 Algorithmics 4

APSP: All Pairs Shortest Path

References:

Skript Alt 4.4.2, 4.4.3 (p. 81-83),

Cormen, ch. 25.2 (Floyd-Warshall)

Trivial solution: Apply Dijkstra iteratively for all nodes as sources

Find the shortest paths between all pairs of nodes

Algorithm of Floyd-Warshall:

Let V = {1,...n}.

dij
(k) is the length of the shortest path between i and j

using in between at most nodes from {1,...k}.

Time complexity: O(n3) (with simple implementation)

for arbitrary graphs: O(n3log n) (or only O(n3))

for graphs with a constant number of neighbors per node: O(n2 log n)

Apply Dijkstra iteratively for all nodes as sources

Time complexity: O(n(m+n)log n) (or only O(n(m + n log n))

Other advantage of FW to Dijkstra:

 FW works also for negative weights

 (but no negative cycles).

FH Wedel Prof. Dr. Sebastian Iwanowski Alg42 Slide 7

 Algorithmics 4

APSP: All Pairs Shortest Path

References for a deeper insight:

Cormen, ch. 25.1 (relation to matrix multiplication)

Relation to matrix multiplication:

Let V = {1,...n}.

dij
(k) is the length of the shortest path between i und j using at most k edges.

Note: This definition is different from Floyd-Warshall‘s!

 Let A be the adjacency matrix.

Define the operation min instead of addition and the operation + instead of multiplication.

Then Ak stores in position (i,j) the length dij
(k).

In particular, An-1 stores in position (i,j) the length of the shortest path from i to j.

Theorem:

Quadratic potentiation: An-1 may be computed with O(log n) matrix multiplications.

Find the shortest paths between all pairs of nodes

Standard matrix multiplication: 2 matrices may be multiplied with O(n3) number operations.

Conclusion for APSP: O(n3log n) number operations (worse than Floyd-Warshall!)

FH Wedel Prof. Dr. Sebastian Iwanowski Alg42 Slide 8

 Algorithmics 4

APSP: All Pairs Shortest Path

References for a deeper insight:

Cormen, ch. 25.1 (relation to matrix multiplication), ch. 28.2 (Strassen’s algorithm)

Time complexity O(nlog 7 log n)

Strassens‘s algorithm

for matrix multiplication: Two nxn-matrices may be multiplied with O(nlog 7) operations.

Conclusion for APSP?

Note that log 7 ≈ 2,81

Find the shortest paths between all pairs of nodes

?

Unfortunately, no!

Strassen‘s algorithm needs inverse functions to the additive operation.

This does not hold for the minimum operation needed in the transform from APSP to

matrix multiplication.

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 1

Algorithmics

Sebastian Iwanowski

FH Wedel

4. Graph algorithms

4.3 Computation of maximum flows in s/t-networks

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 2

 Algorithmics 4

4.3 Computation of maximum flows in s/t-networks

References:

Cormen, ch. 26.1 (flow networks)

Alt, Kap. 4.5.1

Turau, Kap. 6.1 (siehe auch Ausarbeitung und Vortrag Seminararbeit Claudia Padberg)

Notation

Complete directed graph (V,E) with nonnegative edge capacities c(e) for all edges e

and a selected source vertex s (Quelle q) and a selected target vertex t (Senke s)

Def.: s/t-network (q/s-Netzwerk):

Def.: flow f: function E→ℝ where

• f(e) ≤ c(e) for all edges e

• f(u,v) = - f(v,u)

• For all vertices v ≠ s,t the following holds:

 The sum of all flows from v to all neighbors is 0.

Def.: value |f| of a flow:

net flow out of s resp. net flow into t (both values must be equal)

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 3

References:

Cormen, ch. 26.2 (Ford-Fulkerson method)

Alt, Kap. 4.5.2

Turau, Kap. 6.1, 6.3 (Restegraph) (siehe auch Ausarbeitung und Vortrag Seminararbeit C. Padberg)

Def.: Augmenting path (Erweiterungsweg) of a flow f:

Path from s to t where the following holds for each edge (u,v): f(u,v) < c(u,v)

The value c(u,v) – f(u,v) is called the remainder capacity.

Def.: Residual network (Restegraph, Restnetz) Gf:

For each edge (u,v) with positive remainder capacity in G, insert an edge (u,v) ∈ Gf

where the capacity is equal to that remainder capacity.

For each edge (u,v) with positive flow f(u,v) in G, insert an edge (v,u) ∈ Gf

where c(v,u)= f(u,v)

Prop. 1: A path p is an augmenting path in G ⇔ p is a directed path from s to t in Gf

Prop. 2: A flow f may be increased by the residual flow (Restfluss) whose value is the

minimum capacity of a directed path from s to t in Gf.

 Algorithmics 4

4.3 Computation of maximum flows in s/t-networks

Notation

Note: f(u,v) may be negative which means that f(v,u) > 0.

 In this case, f(v,u) = c (v,u) is permitted.

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 4

References:

Cormen, ch. 26.2 (Ford-Fulkerson method)

Turau, Kap. 6.1 (siehe auch Ausarbeitung und Vortrag Seminararbeit Claudia Padberg)

Def.: s/t-cut (X,Y) (q/s-Schnitt):

Partition of vertices in G such that s ∈ X und t ∈ Y

Prop. 1: For each s/t-cut (X,Y) and any given flow f the following holds: |f| = f(X,Y)

Def.: capacity c(X,Y) of an s/t-cut:

Sum of all capacities c(u,v) where u ∈ X and v ∈ Y

Def.: flow f(X,Y) of an s/t-cut:

Sum of all flows f(u,v) where u ∈ X and v ∈ Y

Prop. 2: |f| ≤ min {c(X,Y); (X,Y) is s/t-cut}

 Algorithmics 4

4.3 Computation of maximum flows in s/t-networks

Notation

Note: If there is a backward flow from v to u, this means that f(u,v) is negative.

 In this case, the flow value f(v,u) must be subtracted.

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 5

References:

Cormen, ch. 26.2 (Ford-Fulkerson method)

Turau, Kap. 6.2 (anderer Beweis)

Max-flow min-cut theorem (Ford-Fulkerson theorem)

The following propositions are equivalent:

Proof:

• f is a maximum flow in G

• There is no augmenting path for f in G

• There is an s/t-cut (X,Y) where |f| = c(X,Y)

Circular argument:

 1) => 2) trivial

 2) => 3) will be shown in class (according to Cormen)

 3) => 1) follows by Prop.2 of last slide

 Algorithmics 4

4.3 Computation of maximum flows in s/t-networks

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 6

References:

Cormen, ch. 26.2 (Ford-Fulkerson method)

Alt, Kap. 4.5.4

Turau, Kap. 6.3 (mit Pseudocode) (siehe auch Seminararbeit Claudia Padberg)

Algorithm of Edmonds-Karp:

1) Initialize f by 0 for all edges.

Repeat

 2a) Compute residual graph Gf

 2b) Find augmenting path in Gf with breadth first search

 3) Increase f by the residual flow of the augmenting path (Prop. 2, slide 3)

until no augmenting path exists

Correctness:

Time complexity:

follows by Ford-Fulkerson theorem

O(nm2)

Outline of time complexity proof:

Each operation of type 2a), 2b) and 3) costs time O(m) (easy to see) Each loop costs O(m) time, and there are O(nm) loop iterations because of the following:

Each augmenting path has got a critical edge, i.e. an edge of which the capacity is used up

completely by the maximum possible augmentation.

Each edge can be critical at most O(n) times. There are m edges.

(using the notation of Skript Alt)

 Algorithmics 4

4.3 Computation of maximum flows in s/t-networks

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 7

References:

Cormen, ch. 26.2 (Ford-Fulkerson method)

Alt, Kap. 4.5.4

Turau, Kap. 6.3 (anderer Beweisaufbau und Notation)

Algorithm of Edmonds-Karp:

Each path in a graph found by breadth first search starting at a source s

has got the minimum number of edges.

Lemma 1:

For each edge (u,v) of a path Pf in the residual network Gf found by breadth first search,

the following holds: δf(s,v) = δf(s,u) + 1

Lemma 2:

For a breadth first search, a source s and a target t, the following holds:

Let f1, f2 be two flows subsequently generated by Edmonds-Karp:

Then for all vertices v holds: δf1
(s,v) ≤ δf2

(s,v)
Lemma 4.5.8 / 26.8:

(Monotonicity)

Each edge will be at most n/2 times a critical one. Lemma 4.5.9 / 26.9:

(O(n) theorem)

Let δf(u,v) be the minimum number of edges between u and v in the residual network Gf Def.:

 Algorithmics 4

4.3 Computation of maximum flows in s/t-networks

Details of time complexity proof:

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 8

Algorithm of Edmonds-Karp:

Let for v the following hold: δf1
(s,v) > δf2

(s,v). It is obvious that v ≠ s.

 Algorithmics 4

4.3 Computation of maximum flows in s/t-networks

Proof of Lemma 4.5.8:

Let v be the node with property (*) having minimal distance from s in Gf2
,

i.e. for all u with δf2
(s,u) < δf2

(s,v), the following holds: δf1
(s,u) ≤ δf2

(s,u)

Let P2 be the shortest path from s to v in Gf2
, and let u be the predecessor of v on that path.

Since v ≠ s , such predecessor u exists. Thus, (u,v) ∈ Gf2
, and u satisfies (**).

Consider the following two cases:

(*)

(**)

a) f1(u,v) < c(u,v).

This implies: (u,v) ∈ Gf1
=> δf1

(s,v) ≤ δf1
(s,u) + 1 ≤ δf2

(s,u) + 1 = δf2
(s,v) contradicting (*)

b) f1(u,v) = c(u,v).

This implies: (u,v) ∉ Gf1
Since (u,v) ∈ Gf2

, f2(v,u) > 0 and (since (u,v) ∉ Gf1
) f1(v,u) = 0

Thus, (v,u) is part of an augmenting path which was used in order to increase f1 to obtain f2.

By Lemma 2, δf1
(s,v) = δf1

(s,u) - 1 ≤ δf2
(s,u) - 1 = δf2

(s,v) – 2 < δf1
(s,v)

In either case, we get a contradiction

which proves that for all v the following holds: δf1
(s,v) ≤ δf2

(s,v)

because v can be

reached via (u,v) in Gf1

(**)

because (u,v) is part

of the shortest path in Gf2

(**)
 (*)

Lemma 2

contradiction !

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 9

Algorithm of Edmonds-Karp:

Let (u,v) be a critical edge in an augmenting path for flow f1.

 Algorithmics 4

4.3 Computation of maximum flows in s/t-networks

Proof of Lemma 4.5.9:

By Lemma 2, δf1
(s,v) = δf1

(s,u) + 1
(**)

δf2
(s,u) = δf2

(s,v) + 1 ≥ δf1
(s,v) + 1 = δf1

(s,u) + 2

Thus, the distance from u to the source s has increased by at least 2

(**)

Lemma 2

If (u,v) becomes a critical edge again implies:

(v,u) is in an augmenting path some time in between for a flow f2.

Lemma 4.5.8

This can happen at most n/2 times, because the distance is never greater than n.
q.e.d.

Consider the following:

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 10

References:

 Cormen, ch. 26.4 (push relabel algorithms)

Turau, Kap. 6.4 (siehe auch Ausarbeitung und Vortrag Seminararbeit C. Padberg)

Alt, Kap. 4.7

Algorithm of Dinic

Def.: blocking flow:

A flow where each path from s to t has got a critical edge,

i.e. an edge where the flow uses up all of the capacity.

Def.: Level graph Lf:

Delete all edges (u,v) from Gf where δf(s,v) ≤ δf(s,u)

(Turau: Niveaugraph G‘f)

Theorem: f is maximal ⇒ f is blocking

Theorem: |f‘| = |f| + |r|

Def. (Increase of a flow f by a flow r in Lf):

Let r be a flow in Lf. For each edge e, let f‘(e) = f(e) + r(e) – r(e)

 Algorithmics 4

4.3 Computation of maximum flows in s/t-networks

Notation:

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 11

References for the details:

 Cormen, ch. 26.4 (push relabel algorithms: with proof of correctness)

Turau, Kap. 6.4 (siehe auch Ausarbeitung und Vortrag Seminararbeit C. Padberg)

Alt, Kap. 4.7

1) Initialize f by 0 for all edges.

Repeat

 2a) Compute Lf

 2b) Search for a blocking flow r in Lf

 3) Increase f by the blocking flow r

until no blocking flow exists (t cannot be reached anymore in Lf from s)

Time complexity: O(n2m)

Outline of time complexity proof:

In each iteration, δf(s,t) is increased by at least 1 ⇒ there are O(n) loop iterations

2a) and b) may be combined with a repeated depth first search: O(nm)

Improvement in Turau: O(n2)

Improvement in Turau: O(n3)

Difference to Edmonds-Karp:

Maximize each path in the flow, not just one.

Algorithm of Dinic

 Algorithmics 4

4.3 Computation of maximum flows in s/t-networks

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg44 Slide 1

Algorithmics

Sebastian Iwanowski

FH Wedel

4. Graph algorithms

4.4 Computation of graph matchings

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg44 Slide 2

 Algorithmics 4

Matchings in graphs

Def.: A matching is a set of edges such that no edge is adjacent to another edge.

Def.: maximum matching:

i) maximum number of edges (only this is investigated in the references below)

ii) for valued edges: matching with maximum value

Def.: Set theoretic statement of graph matching (2DM):

Given a set E ⊆ VxV: Find a maximal subset T ⊆ E where: All elements of T are pairwise disjoint.

Def.: Generalization of graph matching (kDM):

Given an set E ⊆ Vx...xV: Find a maximal subset T ⊆ E where: All elements of T are pairwise disjoint.

Theorem: kDM is NP-complete for k ≥ 3 and 2DM is in P.

References:

Alt, Definition 4.6.1

Laszlo Lovasz / Michael Plummer: Matching Theory, North Holland 1986, ISBN 9630541688, ch. 9.1

James McHugh: Algorithmic Graph Theory, Prentice Hall 1990, ISBN 0130236152, ch. 8.3

Christos Papadimitriou / Kenneth Steiglitz: Combinatorial Optimization, Dover 1998, ch. 10

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg44 Slide 3

 Algorithmics 4

Matchings in graphs (maximum number of edges)

References:

Alt, Kap. 4.6

Cormen, ch. 26.3 (maximum bipartite matching)

Def.: A flow f is integer-valued ⇔ f(u,v) is integer-valued for each edge (u,v)

Def.: For a given bipartite Graph G = ((V,U),E), construct an s/t-network G‘ as follows:

Lemma:
(Alt 4.6.3)

G has got a matching where |M|=k ⇔ G‘ has got an integer valued flow where |f| = k

Special case considered in detail: Matchings in bipartite graphs

There is a source s ∈ G‘ with a directed edge to each vertex of V, each edge having capacity 1.

There is a target t ∈ G‘ with a directed edge from each vertex of U, each edge having capacity 1.

For each edge of G, there is a directed edge from a vertex in V to a vertex in U having capacity 1.

Theorem:
(Alt 4.6.4,

 Cormen 26.11)

Given an s/t-network with integer capacities for all edges:

i) Then the value of a maximum flow is an integer as well.

ii) There exists always a maximum flow that is integer-valued.

Proof: i) follows from max flow / min cut theorem

ii) has to be proven separately

Corollary: The maximum matching in G is one-to-one related to the maximum flow in G‘.

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg44 Slide 4

 Algorithmics 4

References:

Alt, Kap. 4.7

Cormen, Problem 26-7

Turau Kap. 7 (vor allem Literaturhinweise 7.6)

Prop.: A maximum bipartite matching can be found by the maximum flow algorithm of

Edmonds-Karp in O(nm).

(Remark: For integer-valued networks, time complexity is better than for arbitrary networks).

Algorithms for bipartite matchings und integer valued flows

Improvements:

Hopcroft-Karp: O(n0.5m)

Alt et al.: O(n1.5(m/log n)0.5) (this is an improvement for dense graphs)

Prop.: In unit networks (networks where each edge has got capacity 1),

the algorithm of Dinic needs only n0.5 iterations.

The inner operations do not sum up to O(nm) as in the general case, but only to O(m).

Thus, the algorithm of Dinic performed in unit networks requires run time O(n0.5m).

Corollary: The run time of Hopcroft-Karp for bipartite matching may be achieved also with

the algorithm of Dinic.

Matchings in graphs (maximum number of edges)

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg44 Slide 5

 Algorithmics 4

Def.: An augmenting path is a path from an unmatched vertex to an unmatched vertex

using unmatched and matched edges alternately.

Techniques for matchings in general graphs

Def.: An outer vertex of an augmenting path is a vertex being an odd successor in the path,

i.e., it is the 1., 3., 5., ... vertex of the augmenting path.

Except for the first, an outer vertex is always at the end of a matched edge.

Def.: A blossom is an odd cycle with a maximum matching:

A blossom consists of 2k+1 edges, k being matched.

Remark: A blossom will be discovered in the course of the search for augmenting paths

whenever the fact is discovered that two outer edges are adjacent.

(good examples in McHugh)

Matchings in graphs (maximum number of edges)

References for details:

Laszlo Lovasz / Michael Plummer: Matching Theory, North Holland 1986, ISBN 9630541688, ch. 9.1

James McHugh: Algorithmic Graph Theory, Prentice Hall 1990, ISBN 0130236152, ch. 8.3

Christos Papadimitriou / Kenneth Steiglitz: Combinatorial Optimization, Dover 1998, ch. 10

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg44 Slide 6

 Algorithmics 4

Algorithm of Edmonds for general graphs
 1) Search for augmenting path AP:

 1a) Start with an unmatched vertex and an empty augmenting path AP.

 1b) Look at neighbors:

 If one is not matched -> augmenting path AP is found.

 Otherwise, augment AP by an unmatched edge to a neighbor and its matched vertex:

 If this yields a blossom (outer vertex adjacent to outer vertex),

 contract the blossom and continue with the contracted graph

 If this yields an even cycle (outer vertex connected to inner vertex)

 or if an unmatched edge to a neighbor does not exist,

 backtrack to a previous outer vertex and augment AP with other unmatched edge

 Continue with 1b)

2) If no augmenting path AP has been found -> Matching is maximum.

 If augmenting path AP has been found:

 2a) Decontract graph by all previously found blossoms in reverse order of their findings.

 2b) Augment AP in original (decontracted) graph.

 2c) Increase matching by inverting the matching of AP and continue at 1)

Main loop:

Matchings in graphs (maximum number of edges)

References for details:

Laszlo Lovasz / Michael Plummer: Matching Theory, North Holland 1986, ISBN 9630541688, ch. 9.1

James McHugh: Algorithmic Graph Theory, Prentice Hall 1990, ISBN 0130236152, ch. 8.3

Christos Papadimitriou / Kenneth Steiglitz: Combinatorial Optimization, Dover 1998, ch. 10

Seminarvortrag Nr. 5 (in German), https://intern.fh-wedel.de/mitarbeiter/iw/lv/ss2013/seminar/

Demonstration and tutorial at https://www-m9.ma.tum.de/graph-algorithms/matchings-blossom-algorithm/index_en.html

https://intern.fh-wedel.de/mitarbeiter/iw/lv/ss2013/seminar/
https://intern.fh-wedel.de/mitarbeiter/iw/lv/ss2013/seminar/
https://intern.fh-wedel.de/mitarbeiter/iw/lv/ss2013/seminar/

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg44 Slide 7

 Algorithmics 4

Matchings in graphs (maximum number of edges)

Time complexity: 1) O(n2) (proof nontrivial)

Correctness:

Matching is maximum ⇔ There is no augmenting path

2) O(n) (clear)

The main loop is performed O(n) times, because each time the matching is

increased by one edge -> total time complexity: O(n3)

Prop. 1:

Let M be a matching in G. Let G have a blossom and let G‘ be the contracted graph:

G has got an augmenting path for M ⇔ G‘ has got an augmenting path for M

Prop. 2:

Algorithm of Edmonds for general graphs

References for details:

Laszlo Lovasz / Michael Plummer: Matching Theory, North Holland 1986, ISBN 9630541688, ch. 9.1

James McHugh: Algorithmic Graph Theory, Prentice Hall 1990, ISBN 0130236152, ch. 8.3

Christos Papadimitriou / Kenneth Steiglitz: Combinatorial Optimization, Dover 1998, ch. 10

Seminarvortrag Nr. 5 (in German), https://intern.fh-wedel.de/mitarbeiter/iw/lv/ss2013/seminar/

Demonstration and tutorial at https://www-m9.ma.tum.de/graph-algorithms/matchings-blossom-algorithm/index_en.html

„⇦ “ is not trivial, will be shown in class (Papadimitriou, prop. 10.1)

(proof not difficult, but lengthy in detail, cf. Papadimitriou, prop. 10.4)

https://intern.fh-wedel.de/mitarbeiter/iw/lv/ss2013/seminar/
https://intern.fh-wedel.de/mitarbeiter/iw/lv/ss2013/seminar/
https://intern.fh-wedel.de/mitarbeiter/iw/lv/ss2013/seminar/

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg5 Slide 1

Algorithmics

Sebastian Iwanowski

FH Wedel

5. String Matching

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg5 Slide 2

 Algorithmics 5

String Matching

References:

Alt, Kap. 4.8

Cormen, ch. 32 (String matching), esp. 32.4 (KMP)

Task: Given a text T = {t1,…,tn} with n literals and a pattern P = {p1,…,pm} with m literals:

Find the starting positions where P occurs in T.

naive algorithm: needs O(nm) time

Algorithm of Knuth-Morris-Pratt: needs O(n) time

Def.: The prefix function π: ℕ\{0} → ℕ for the pattern P is defined as:

π(q) = k ⇔ k is the length of the longest strict prefix of Pq (strict means: k < q)

which is also a Suffix of Pq

Def.: Pq denotes the prefix of P consisting of the first q literals. (Pq = P[1],…,P[q])

General method of the KMP algorithm:

For each q ≤ m, compute the value π(q) of the prefix function and store it.

Then scan T in only one iteration and shift P at any mismatch in pattern position q+1

by q - π(q). This does not omit any valid match. In class: Why is this correct?

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg5 Slide 3

 Algorithmics 5

String Matching

 i := 1; q := 0;

while i ≤ n do

{

 while (q>0)and (T[i] ≠ P[q+1])

 q := π (q);

 if T[i] = P[q+1] then q := q+1;

 if q = m

 then

 {

 print („Matching at position “, i-m);

 q := π (q);

 }

 i := i+1;

}

Implementation of main procedure:

Algorithm of Knuth-Morris-Pratt: needs O(n) time

References:

Alt, Kap. 4.8

Cormen, ch. 32 (String matching), esp. 32.4 (KMP)

q=0: no prefix of P coincides at a suffix of T ending at i

q>0 corresponds to the maximum index ≤ i s.t.

(T[i-q+1],…,T[i]) coincides with (P[1],…,P[q])

In class: Why is this algorithm correct?

Invariant:

Home work:

Why does this algorithm need O(n) time?

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg5 Slide 4

 Algorithmics 5

String Matching

i = 1:

 Then q has an initial value of 0. => Inner loop is not executed.

q = 1 if comparison with P(1) is true and 0 otherwise which is the statement of the invariant.

Assume the invariant holds for i and consider i+1:

 If T(i+1) = P(q+1) before the inner loop,

 then the maximum prefix of P until i+1 has length maximum length of P until i plus 1

 which is by assumption q + 1. So the assignment of the new q is correct.

 If T(i+1) ≠ P(q+1) before the inner loop and q = 0,

 then q remains 0 which is correct.

 If T(i+1) ≠ P(q+1) before the inner loop and q > 0,

 then (T[i-q+1],…,T[i]) coincides with (P[1],…,P[q]) by inductive assumption for i.

 If there is no q‘ < q where T(i+1) = P(q‘+1), then no prefix coincides at a suffix of T ending at i+1.

 The inner while loop will then eventually set q to 0 which is the correct invariant for i+1.

 If for some q‘ < q, T(i+1) = P(q‘+1), and this is the end of a matched prefix,

 such that T[i-q‘+1],…,T[i]) coincides with (P[1],…,P[q‘]), then by the above assumption
 (P[1],…,P[q‘]) also coincides with (P[q-q‘+1],…,P[q]) which means that q‘ ≤ π(q).

 Thus, it is ok if q is reduced accordingly in the inner while loop.
 If q‘ = π(q), it is clearly the maximum and thus the q defined in the invariant.

 Otherwise, q‘ < π(q) and will be found in a later loop iteration.

Mathematical induction using i (where i is the loop counter which is increased at the end of the loop):

Proof of the invariant:

References:

Alt, Kap. 4.8

Cormen, ch. 32 (String matching), esp. 32.4 (KMP)

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg5 Slide 5

 Algorithmics 5

String Matching

π(1) := 0;

i := 2; q := 0;

while i ≤ m do

{

 while (q>0) and (P[i]≠P[q+1]) do

 q := π(q);

 if P[i]=P[q+1] then q := q+1;

 π(i) := q;

 i := i+1;

}

Implementation of prefix function (according to Cormen/Alt):

In class:

Why does this algorithm need O(m) time?

needs O(m) time

Algorithm of Knuth-Morris-Pratt: needs O(n) time

References:

Alt, Kap. 4.8

Cormen, ch. 32 (String matching), esp. 32.4 (KMP)

Home work: Why is this algorithm correct?

q=0: no strict prefix of P coincides at a suffix of P ending at i

q>0 corresponds to the maximum index < i s.t.

(P[i-q+1],…,P[i]) coincides with (P[1],…,P[q])

Invariant:

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg61 Slide 1

Algorithmics

Sebastian Iwanowski

FH Wedel

6. Fundamentals of Computational Geometry

6.1 Basic Problems and the Use of Voronoi Diagrams for Solving them

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg61 Slide 2

 Algorithmics 6

6.1 Basic Problems

References:

deBerg et al., ch. 1, Levitin, ch. 3.3

1) Detection of the closest reference point for a new point x ∈ ℝk

Brute force algorithm:

Compute the distance between x and each reference point.

Successively update the reference point with minimum distance to x.

O(n)

i)

ii)

Given n reference points in ℝk

2) Detection of the closest pair among the reference points

Compute the distance between each pair of reference points.

Successively update the closest pair.

i)

ii)

Brute force algorithm: O(n2)

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg61 Slide 3

 Algorithmics 6

4) Detection of a set of reference points comprising the convex hull

For each subset of k points, compute the supporting hyperplane determined by them.

For each hyperplane, check if the other points are located on the same side:

The supporting hyperplane is part of the convex hull

 ⇔ All points are located on the same side.

Collect the points belonging to the supporting lines of the convex hull.

i)

ii)

iii)

3) Minimum spanning tree between all reference points

Brute force algorithm:

Compute the distance for each pair of reference points and create an edge weighted

with that distance.

In the resulting graph, compute the minimum spanning tree with the algorithm of

Kruskal.

i)

ii)

O(n2 log n)

6.1 Basic Problems

Given n reference points in ℝk

Brute force algorithm: O(nk+1)

References:

deBerg et al., ch. 1, Levitin, ch. 3.3

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg61 Slide 4

 Algorithmics 6

6.1 Voronoi Diagrams in the plane ℝ2

References:

Klein, Kap. 5.1, 5.2 (in German), de Berg et al., ch. 7.1

Def.: Given a set S of n reference points in the plane.

The Voronoi diagram is a data structure belonging to the equivalence classes

of the closest reference points if that point is unique:

The diagram partitions the plane into disjoint regions, each having exactly one reference

point as the closest. The boundaries of these regions consist of the points whose closest

reference point is not unique.

Theorem: There are only O(n) Voronoi objects.

nodes: points having at least three reference points as the closest

edges: points having exactly two reference points as the closest

regions: points having exactly one reference point as the closest

One region is uniquely associated with one reference point.

The incident edges and nodes are attributes of a region.

The attributes of an edge are the incident regions and nodes.

Structure: The Voronoi diagram V(S) consists of the following type of objects:

The attributes of a node are the incident regions and edges.

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg61 Slide 5

 Algorithmics 6

References:

Klein, Kap. 5.3.1 (in German), Edelsbrunner ch. 13 (superficially)

Algorithm:

Sort the nodes of V(S) by their y-coordinate and divide the plane into according

horizontal strips.

Intersect all edges of V(S) with the horizontal strips and sort them by x-coordinate

within a particular strip.

Preprocessing:

Runtime:

i)

ii)

Determine the correct horizontal strip for x by binary search towards the y-coordinate.

Determine the two edges closest to x by binary search towards the x-coordinate.

The region belonging to both of the edges is the correct one.

i)

ii)

iii)

6.1 Voronoi Diagrams in the plane ℝ2

Applications

1) Detection of the closest reference point for a new point x ∈ ℝ2

O(n2 log n)

O(n2 log n) preprocessing + O (log n) runtime

O(log n)

Note: This may yield O(n2) segments

O(n) preprocessing time

is achievable by a more

sophisticated method

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg61 Slide 6

 Algorithmics 6

References:

Klein, Kap. 5.3.2, 5.3.3 (in German), Edelsbrunner ch. 13 (superficially)

Algorithm:

Compute the distance only between points whose regions are adjacent.

Successively update the closest pair.

i)

ii)

of order O(n), because there are

only O(n) Voronoi objects

3) Minimum spanning tree in the plane

Algorithm:

Compute the distance from each reference point only to those reference points

belonging to adjacent regions and create an edge weighted with that distance.

In the resulting graph, compute the minimum spanning tree with the algorithm of

Kruskal.

i)

ii)

6.1 Voronoi Diagrams in the plane ℝ2

Applications

O(n)

O(n log n)

2) Detection of the closest pair among the reference points

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg61 Slide 7

 Algorithmics 6

of order O(n), because there are

only O(n) Voronoi objects

6.1 Voronoi Diagrams in the plane ℝ2

Applications

4) Detection of a set of reference points comprising the convex hull

O(n)-Algorithm for Problem 4):

Consider the dual graph of the Voronoi diagram:

Connect two reference points by an edge iff the corresponding regions are adjacent.

1) The circumference of any triple of reference points belonging to a triangle of

the triangulation does not contain any other reference point.

2) The minimum angle among all triangles is maximized among all possible

triangulations.

3) The convex hull of the reference points is obtained by the edges between

points of infinite regions of the Voronoi diagram.

important for

computer

graphics

i. Start with an arbitrary voronoi region and proceed via adjacent regions to an infinite region:

The correspondent reference point p0 is the first point of the convex hull.

ii. Consecutively, proceed to adjacent regions that are infinite as well until p0 is reached again.

If no four points are cocircular, this is a triangulation with the following properties:

References:
Klein, Kap. 5.4 (in German), Preparata ch. 3,4 (other algorithms), deBerg et al. ch. 9,11 (advanced)

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg62 Slide 1

Algorithmics

Sebastian Iwanowski

FH Wedel

 6. Fundamentals of Computational Geometry

6.2 Sweep Techniques

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg62 Slide 2

Preprocessing: Sort all numbers

Sweep: Scan from left to right and keep the closest pair respectively

 Algorithmics 6

6.2 Sweep Techniques

References:

Klein, Kap. 2.2 (in German)

O(n log n)

d = 1: Line Sweep

Transformation static d-dimensional  dynamic (d-1)-dimensional

1) Maximum search among n numbers

2) Closest Pair: Among n numbers, search the two that are closest together.

O(n)

O(n log n)

O(n)

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg62 Slide 3

 Algorithmics 6

References: Klein, Kap. 2.3.1 (in German)

d = 2: Plane Sweep

3) Closest Pair: Among n points, search the two that are closest together. O(n log n)

Preprocessing: Sort all points by x-coordinate

Sweep: Scan from left to right with 2 vertical lines left and right:

Horizontal distance between left and right is the minimum distance of

 the closest pair left of left.

Line content maintains all points between left and right sorted by y-coordinate.

left passes point p: p is deleted

right passes point p: p is inserted into line content and its distance is computed

 to all other points of line content of which the y coordinate differs from p

 at most by the minimum distance between points found so far.

Invariants:

Events and actions:

O(log n)

O(log n)

only constant number!

6.2 Sweep Techniques

Transformation static d-dimensional  dynamic (d-1)-dimensional

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg62 Slide 4

 Algorithmics 6

References:

Klein, Kap. 2.3.1 (in German), Preparata (see subject index), de Berg et al., ch. 2 (for other application)

Characteristic properties of sweep techniques:

Sweep status structure (SSS) with invariants (SLS: Sweep Line Status)

Scan over selected and sorted x-coordinates (events) from left to right:

The events lie in an EPS (Event point schedule)

Events are computed statically during preprocessing (i.e. original reference points) and

dynamically during updating the SSS.

Sleeping objects: right of SSS, will yet be considered

Active objects: within SSS, are currently relevant for updating the SSS

Dead objects: left of SSS, need never be considered again

∙

∙

∙

∙

6.2 Sweep Techniques

Transformation static d-dimensional  dynamic (d-1)-dimensional

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg62 Slide 5

 Algorithmics 6

Application: Computation of Voronoi diagrams by plane sweep

Objects of SSS:

Left beach line consisting of:

Right vertical line L (current x of EPS)

Parabolic segments P(p,q,r) belonging to Bisector (p, L)

 and adjacent to Bisector (q,L) above and Bisector (r,L) below.

Spikes: Bisectors B(p,q) for two adjacent parabolic segments

 belonging to Bisector (p, L) and Bisector (q, L).

 Each parabolic segment has got two adjacent spikes

 (except for the first and the last).

∙

∙

-

-

Lemma: The overall size of the beach line and hence of SSS is of order O(n)

References:

Klein, Kap. 6.3 (in German), de Berg et al., ch. 7.2

The parabolic segments are ordered in SSS by y coordinate of their intersection points
(Note: An intersection coordinate will only be computed explicitely when a parabola vanishes in a spike event,

 see next slide)

All segments have got a horizontal axis,

because L is vertical.

This makes the intersection points of adjacent

parabolic segments monotonic in y coordinate.

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg62 Slide 6

 Algorithmics 6

Application: Computation of Voronoi diagrams by plane sweep

Objects of EPS:

Spike events: x coordinate of the sweep line at which a beach line segment vanishes.

Point events: x coordinate of a reference point p (px,py) ∙

∙

References:

Klein, Kap. 6.3 (in German), de Berg et al., ch. 7.2

How do we compute the x coordinate of a spike event?

Let (x0,y0) be the intersection point of two adjacent spikes.

Let pi = (xi,yi) be one of the 3 reference points contributing to one of the two spikes.

Then x := x0 + | (xi,yi) - (x0,y0) |.

How do we insert the corresponding parabolic segment at the correct position into the SSS?

Perform a logarithmic search in the SSS and check with each parabolic segment

P(r,q1,q2) encountered in the SSS:

Compute the y coordinates y1 and y2 of the real intersection between parabolas (r, q1) and

(r, q2) respectively. Note that these real intersection coordinates must be computed now

because the parabola equations change dynamically depending on p.

If both, y1 and y2, is higher (lower) than py, search below (above).

If py is in between y1 and y2, P(r,q1,q2) is the correct parabolic segment hit by the new

parabola. P(r,q1,q2) has to be replaced by P(r,q1,p), P(p,r,r), P(r,p,q2).

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg62 Slide 7

 Algorithmics 6

References:

Klein, Kap. 6.3 (in German), de Berg et al., ch. 7.2

Events and actions during sweep:

Point event: New point is passed: Generation of new beach line segment.

 Analogously to the above, this requires the computation of new spikes

 (new adjacencies, update of SSS) and spike events (update of EPS).

Spike event: Intersection of adjacent spikes: Associated beach line segment vanishes.

 This requires an update of the beach line in the SSS:

 The reference point between the two intersecting spikes is not relevant anymore.

 Its Voronoi cell is finally computed.

 This requires the computation of a new spike and the intersection with its

 upper and lower neighbor (if on the right hand) as new spike events.

 These spike events have to be inserted into the EPS.

NOTE: A spike event may not be relevant anymore because the involved spikes have been

terminated due to another spike event from above or below earlier in this sweep. Thus, the

adjacency of the involved bisectors must be checked again, and if not adjacent anymore, the

spike event is ignored. Acknowledged spike events will lead to the creation of Voronoi nodes

(the common center of three involved reference points). The started and terminated spikes are

the Voronoi edges.

∙

∙

Application: Computation of Voronoi diagrams by plane sweep

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg62 Slide 8

 Algorithmics 6

References:

Klein, Kap. 6.3 (in German), de Berg et al., ch. 7.2

Run time analysis:

Point event: inserts at most 3 items into SSS, deletes at most 1 item from SSS,

 inserts at most 2 items into EPS (the spike events),

Spike event: deletes 1 item from SSS (the vanishíng parabola), inserts 2 items into EPS

∙

∙

Run time: Update of each event in O(log n)

O(n) events  Total time complexity: O(n log n)

This is optimal!

Application: Computation of Voronoi diagrams by plane sweep

crucial!

The n point events are inserted at the initialisation of the algorithm into EPS.

The SSS is initialised empty.

∙

During the sweep:

O(n log n)

