Modulhandbuch
Bachelor-Studiengang
IT-Management, -Consulting & -Auditing
Prüfungsordnung 19.0

Wedel, den 22.04.2020
Teil I

Modulhandbuch
Kapitel I.1

Modulhandbuch
Modulverzeichnis nach Modulkürzel

B001 Grundlagen der Mathematik 1 14
B002 Mathematische Konzepte und Diskrete Mathematik 19
B003 Programmstrukturen 1 23
B005 Rechnungswesen 1 28
B017 Einführung in die VWL 31
B019 Grundlagen der Mathematik 2 34
B020 Programmstrukturen 2 39
B024 Rechnungswesen 2 45
B036 Programmierpraktikum 49
B037 Rechnernetze .. 53
B040 Algorithmen und Datenstrukturen 62
B041 Statistik .. 66
B042 Datenschutz und Wirtschaftsprivatrecht 70
B052 Datenbanken 1 ... 73
B057 Fortgeschrittene Objektorientierte Programmierung 78
B058 Software-Design ... 83
B059 Web-Anwendungen ... 87
B081 Betriebswirtschaftliche Prozesse mit ERP-Systemen 92
B086 Unternehmensführung ... 97
B087 Systemmodellierung 102
B093 Software-Qualität ... 108
B098 Anwendungsentwicklung in ERP-Systemen 113
B099 Auslandssemester .. 116
B118 Soft Skills .. 118
B120 Entre- und Intrapreneurship 123
B122 IT-Sicherheit .. 129
B123 Prozessmodellimplementation 134
B150 Bachelor-Thesis .. 139
B159 Betriebspraktikum ... 142
B160 Bachelor-Kolloquium 144
B161 Einführung IT-Management & -Prüfung 146
B162 Lebenszyklus von IT-Systemen 149
B164 Projekt IT-Management, Consulting & Auditing 152
B174 Seminar IT-Management, Consulting und Auditing 156
B175 Beratungskompetenz 158
B176 Praxissemester (dual) 161
B179 Wissenschaftliche Ausarbeitung (dual) 165
B209 Applied Data Science and Machine Learning 168
Modulverzeichnis nach Modulbezeichnung

Algorithmen und Datenstrukturen .. 62
Anwendungsentwicklung in ERP-Systemen 113
Applied Data Science and Machine Learning 168
Auslandssemester ... 116
Bachelor-Kolloquium ... 144
Bachelor-Thesis .. 139
Beratungskompetenz .. 158
Betriebspraktikum ... 142
Betriebswirtschaftliche Prozesse mit ERP-Systemen 92
Datenbanken 1 .. 73
Datenschutz und Wirtschaftsprivatrecht 70
Einführung in die VWL ... 31
Einführung IT-Management & -Prüfung .. 146
Entre- und Intrapreneurship .. 123
Finanzwirtschaft .. 195
Fortgeschrittene Objektorientierte Programmierung 78
Grundlagen der Betriebswirtschaftslehre 198
Grundlagen der Mathematik 1 ... 14
Grundlagen der Mathematik 2 .. 34
Internationale Rechnungslegung & Unternehmensbesteuerung 1 180
IT-Sicherheit .. 129
IT-Steuerung und IT-gestütztes BPM .. 177
Konzernehrungslegung & Unternehmensbesteuerung 2 187
Lebenszyklus von IT-Systemen ... 149
Mathematische Konzepte und Diskrete Mathematik 19
Praxissemester (dual) ... 161
Programmierpraktikum ... 49
Programmstrukturen 1 ... 23
Programmstrukturen 2 ... 39
Projekt IT-Management, Consulting & Auditing 152
<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prozessmodellimplementation</td>
<td>134</td>
</tr>
<tr>
<td>Prüfungswesen & Praxisworkshops IT-Audit</td>
<td>193</td>
</tr>
<tr>
<td>Rechnernetze</td>
<td>53</td>
</tr>
<tr>
<td>Rechnungswesen 1</td>
<td>28</td>
</tr>
<tr>
<td>Rechnungswesen 2</td>
<td>45</td>
</tr>
<tr>
<td>Seminar IT-Management, Consulting und Auditing.</td>
<td>156</td>
</tr>
<tr>
<td>Soft Skills</td>
<td>118</td>
</tr>
<tr>
<td>Software-Design</td>
<td>83</td>
</tr>
<tr>
<td>Software-Qualität</td>
<td>108</td>
</tr>
<tr>
<td>Statistik</td>
<td>66</td>
</tr>
<tr>
<td>Strategisches IT-Management</td>
<td>173</td>
</tr>
<tr>
<td>Systemmodellierung</td>
<td>102</td>
</tr>
<tr>
<td>Unternehmensführung</td>
<td>97</td>
</tr>
<tr>
<td>Web-Anwendungen</td>
<td>87</td>
</tr>
<tr>
<td>Wissenschaftliche Ausarbeitung (dual)</td>
<td>165</td>
</tr>
</tbody>
</table>
I.1.1 Erläuterungen zu den Modulbeschreibungen

Im Folgenden wird jedes Modul in tabellarischer Form beschrieben. Die Reihenfolge der Beschreibungen richtet sich nach der Abfolge im Curriculum.

Vor den Modulbeschreibungen sind zwei Verzeichnisse aufgeführt, die den direkten Zugriff auf einzelne Modulbeschreibungen unterstützen sollen. Ein Verzeichnis listet die Modulbeschreibungen nach Kürzel sortiert auf, das zweite Verzeichnis ist nach Modulbezeichnung alphabetisch sortiert.

Die folgenden Erläuterungen sollen die Interpretation der Angaben in einzelnen Tabellenfeldern erleichtern, indem sie die Annahmen darstellen, die beim Ausfüllen der Felder zugrunde gelegt wurden.

Angaben zum Modul

Modulkürzel: FH-internes, bezogen auf den Studiengang eindeutiges Kürzel des Moduls

Modulbezeichnung: Textuelle Kennzeichnung des Moduls

Lehrveranstaltungen: Lehrveranstaltungen, die im Modul zusammen gefasst sind, mit dem FH-internen Kürzel der jeweiligen Leistung und ihrer Bezeichnung

Prüfung im Semester: Auflistung der Semester, in denen nach Studienordnung erstmals Moduleistungen erbracht werden können

Modulverantwortliche(r): Die strategischen Aufgaben des Modulverantwortlichen umfassen insbesondere:

- Synergetische Verwendung des Moduls auch in weiteren Studiengängen
- Entwicklung von Anstößen zur Weiterentwicklung der Moduls und seiner Bestandteile
- Qualitätsmanagement im Rahmen des Moduls (z.B. Relevanz, ECTS-Angemessenheit)
- Inhaltsübergreifende Prüfungstechnik.

Die operativen Aufgaben des Modulverantwortlichen umfassen insbesondere:

- Koordination von Terminen in Vorlesungs- und Klausurplan
- Aufbau und Aktualisierung der Modul- und Vorlesungsbeschreibungen
- Zusammenführung der Klausurbestandteile, die Abwicklung der Klausur (inkl. Korrekturüberwachung bis hin zum Noteneintrag) in enger Zusammenarbeit mit den Lehrenden der Modulbestandteile
Funktion als Ansprechpartner für Studierende des Moduls bei sämtlichen modulbezogenen Fragestellungen.

Zuordnung zum Curriculum: Auflistung aller Studiengänge, in denen das Modul auftritt

Querweise: Angabe, in welchem Zusammenhang das Modul zu anderen Modulen steht

SWS des Moduls: Summe der SWS, die in allen Lehrveranstaltungen des Moduls anfallen

ECTS des Moduls: Summe der ECTS-Punkte, die in allen Lehrveranstaltungen des Moduls erzielt werden können

Arbeitsaufwand: Der Gesamtarbeitsaufwand in Stunden ergibt sich aus den ECTS-Punkten multipliziert mit 30 (Stunden). Der Zeitaufwand für das Eigenstudium ergibt sich, wenn vom Gesamtaufwand die Präsenzzeiten abgezogen werden. Diese ergeben sich wiederum aus den Semesterwochenstunden (SWS), die multipliziert mit 45 (Minuten) geteilt durch 60 die Präsenzzeit ergeben.

Voraussetzungen: Module und Lehrveranstaltungen, die eine inhaltliche Grundlage für das jeweilige Modul darstellen. Bei Lehrveranstaltungen ist der Hinweis auf das jeweilige Modul enthalten, in dem die Lehrveranstaltung als Bestandteil auftritt.

Dauer: Anzahl der Semester die benötigt werden, um das Modul abzuschließen

Häufigkeit: Angabe, wie häufig ein Modul pro Studienjahr angeboten wird (jedes Semester bzw. jährlich)

Studien-/Prüfungsleistungen: Auflistung aller Formen von Leistungsermittlung, die in den Veranstaltungen des Moduls auftreten

Sprache: In der Regel werden die Lehrveranstaltungen aller Module auf Deutsch angeboten. Um Gaststudierenden unserer Partnerhochschulen, die nicht der deutschen Sprache mächtig sind, die Teilnahme an ausgewählten Lehrveranstaltungen zu ermöglichen, ist die Sprache in einigen Modulen als "deutsch/englisch" deklariert. Dieses wird den Partnerhochschulen mitgeteilt, damit sich die Interessenten für ihr GasteSemester entsprechende Veranstaltungen herausuchen können.

Lernziele des: Übergeordnete Zielsetzungen hinsichtlich der durch das Modul zu vermittelnden Kompetenzen und Fähigkeiten aggregierter Form
<table>
<thead>
<tr>
<th>Angaben zu den Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltung:</td>
</tr>
<tr>
<td>Dozent(en):</td>
</tr>
<tr>
<td>Hörtermin:</td>
</tr>
<tr>
<td>Art:</td>
</tr>
<tr>
<td>Lehrform:</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
</tr>
<tr>
<td>ECTS:</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Lernziele:</td>
</tr>
<tr>
<td>Inhalt:</td>
</tr>
<tr>
<td>Literatur:</td>
</tr>
</tbody>
</table>
I.1.2 Grundlagen der Mathematik 1

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B001</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Grundlagen der Mathematik 1</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B001a Analysis</td>
</tr>
<tr>
<td></td>
<td>B001b Übg. Analysis</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Prof. Dr.-Ing. Eike Harms</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Betriebswirtschaftslehre (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Computer Games Technology (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Data Science (Bachelor Studiengang)</td>
</tr>
<tr>
<td></td>
<td>E-Commerce (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Ingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Medieninformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Smart Technology (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Technische Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsinformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td>Verwendbarkeit</td>
<td>Das Modul ist sinnvoll mit anderen Modulen der Mathematik zu</td>
</tr>
<tr>
<td></td>
<td>kombinieren und zur Bildung mathematischer Grundlagenkompe</td>
</tr>
<tr>
<td></td>
<td>tenzen in allen naturwissenschaftlichen, ingenieurtechnis</td>
</tr>
<tr>
<td></td>
<td>chen und wirtschaftswissenschaftlichen Studiengängen ver</td>
</tr>
<tr>
<td></td>
<td>verwendbar. Es stellt Querbezüge zur Finanzmathematik, Lin</td>
</tr>
<tr>
<td></td>
<td>earen Algebra, Statistik, Physik und Betriebswirtschaftsle</td>
</tr>
<tr>
<td></td>
<td>hre her.</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>6</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Voraussetzung zur Teilnahme am Modul sind schulische Grundl</td>
</tr>
<tr>
<td></td>
<td>gen der Mathematik. Insbesondere gehören hierzu die grundli</td>
</tr>
<tr>
<td></td>
<td>gedrungenen Begriffe über Mengen, das Rechnen mit reellen Z</td>
</tr>
<tr>
<td></td>
<td>ahlen, Gleichungen mit einer Unbekannten, Basiswissen zur e</td>
</tr>
<tr>
<td></td>
<td>lementaren Geometrie sowie zu Funktionen und Kurven.</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>
Lernziele

Durch die Übungen erarbeiten sie sich einen sicheren, präzisen und selbständigen Umgang mit den in den Vorlesungen behandelten Begriffen, Aussagen und Methoden. Praxisorientierte Problemstellungen können sie in mathematische Beziehungen und Modelle umsetzen und anhand dieser Modelle bearbeiten. Sie können die Praxisrelevanz der Analysis für verschiedene Fachgebieten bewerten und die Analysis auf Problemstellungen aus Informatik, Technik und Ökonomie anwenden.
I.1.2.1 Analysis

Lehrveranstaltung: Analysis
Dozent(en): Eike Harms
Hörtermin: 1
Häufigkeit: jedes Semester
Art: 1
Lehrform: Vorlesung
Semesterwochenstunden: 4
ECTS: 3.0
Prüfungsform: Klausur
Sprache: deutsch
Lehr- und Medienform(en): Handout, Tutorien

Lernziele
Die Studierenden …

- kennen und verstehen die grundlegenden Begriffe, Aussagen und Methoden der Analysis,
- können mathematische Regeln korrekt anwenden,
- verstehen Beweistechniken,
- erkennen die fundamentale Bedeutung des Grenzwertbegriffes für die Analysis,
- beherrschen die Methoden des Differenzierens und Integrierens,
- können die eindimensionale Differentialrechnung bei praxisorientierten Fragestellungen flexibel in unterschiedlichen Fachgebieten einsetzen und dabei beurteilen, welche analytischen Hilfsmittel für welche Problemstellungen zielführend sind,
- erkennen die Anwendbarkeit und den Nutzen der Analysis für unterschiedliche Fachgebiete und deren spezifischen Problemstellungen,
- können praxisorientierte Problemstellungen in mathematische Beziehungen bzw. Modelle umzusetzen und anhand analytischer Modelle weiter bearbeiten
- können neue, unklare und ungewöhnliche Aufgabenstellungen als solche erkennen und zur Bearbeitung weiterführende Hilfestellung in Anspruch nehmen,
- verfügen über gesteigerte Kompetenzen sich Fähigkeit durch Selbststudium anzueignen und sich in neue formale Systeme einzuarbeiten

Inhalt
- Zahlentypen
- Folgen
 - Bildungsgesetze
 - Grenzwerte
- Funktionen, Relationen
- Funktionstypen
- Umkehrfunktion

- Differentialrechnung
 - Differentiationsregeln
 - Anwendungen der Differentialrechnung (Kurvendiskussionen und Extremwerte)

- Integralrechnung
 - Integrationsmethoden
 - Anwendungen der Integralrechnung (Bestimmte Integrale)

- Funktionen mit zwei Variablen
 - Partielle Differentiation
 - Extremwertaufgaben mit Nebenbedingungen

Literatur

- BÖHME, Gert: Analysis 1.

- FETZER, Albert; FRÄNKEL, Heiner: Mathematik 1.

- FETZER, Albert; FRÄNKEL, Heiner: Mathematik 2.
 6. korrigierte Aufl.. Berlin: Springer-Verlag, 2009

- HENZE, Norbert; Last, Günter: Mathematik für Wirtschaftsingenieure 1.
 2. Aufl. Wiesbaden: Vieweg + Teubner Verlag, 2005

- PAPULA, Lothar: Mathematik für Ingenieure und Naturwissenschaftler 1: Ein Lehr- und Arbeitsbuch für das Grundstudium.

- PREUSS, Wolfgang; WENISCH, Günter: Lehr- und Übungsbuch Mathematik 1: Grundlagen - Funktionen - Trigonometrie.
 2. neu bearbeitete Aufl. München: Carl Hanser Verlag, 2003

- PREUSS, Wolfgang; WENISCH, Günter: Lehr- und Übungsbuch Mathematik 2: Analysis.
I.1.2.2 Übg. Analysis

Lehrveranstaltung Übg. Analysis
Dozent(en) Fikret Koyuncu
Hörtermin 1
Häufigkeit jedes Semester
Art 1
Lehrform Übung/Praktikum/Planspiel
Semesterwochenstunden 2
ECTS 2.0
Prüfungsform Teilnahme
Sprache deutsch
Lehr- und Medienform(en) Handout, Tafel

Lernziele
Die Studierenden können …

- praktische Problemstellungen mathematisch formulieren
- beurteilen, welche analytischen Hilfsmittel zielführend sind
- neue, unklare und ungewöhnliche Aufgabenstellungen als solche erkennen und mit weiterführender Hilfestellung bearbeiten
- Lösungsansätze präsentieren und begründen

Inhalt

- Bearbeitung von Übungsaufgaben aus dem Themenspektrum der zugehörigen Lehrveranstaltung
- Vorstellung und Diskussion möglicher Lösungswege
- Heranführung an mathematische Softwaretools

Literatur
1.1.3 Mathematische Konzepte und Diskrete Mathematik

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B002</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Mathematische Konzepte und Diskrete Mathematik</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B002a Diskrete Mathematik</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Prof. Dr. Sebastian Iwanowski</td>
</tr>
</tbody>
</table>
| **Zuordnung zum Curriculum** | Computer Games Technology (Bachelor)
Data Science (Bachelor Studiengang)
E-Commerce (Bachelor)
IT-Ingenieurwesen (Bachelor)
IT-Management, -Consulting & -Auditing (Bachelor)
Informatik (Bachelor)
Medieninformatik (Bachelor)
Smart Technology (Bachelor)
Technische Informatik (Bachelor)
Wirtschaftsinformatik (Bachelor) |
| ** Semesterwochenstunden** | 4 |
| **ECTS** | 5.0 |
ein gutes logisches Denkvermögen vorausgesetzt.

Dauer

1

Lernziele

I.1.3.1 Diskrete Mathematik

Lehrveranstaltung Diskrete Mathematik
Dozent(en) Sebastian Iwanowski
Hörtermin 1
Häufigkeit jedes Semester
Art 1
Lehrform Vorlesung
Semesterwochenstunden 4
ECTS 5.0
Prüfungsform Klausur
Sprache deutsch
Lehr- und Medienform(en) Beamerpräsentation, Overheadfolien, Software-Demonstration, Tafel, Tutorien

Lernziele

Nach Abschluss der Veranstaltung besitzen die Studierenden folgende Kompetenzen:

- Beherrschen der grundlegenden mathematischen Begriffe und Konzepte (Definition, Satz, Beweis) und Fähigkeit zur Unterscheidung derselben.
- Beherrschen der Grundlagen und der Formalisierung logischen Denkens.
- Verständnis elementarer Logik und Mengenlehre und des inneren Zusammenhangs dieser Gebiete.
- Darauf aufbauendes Verständnis von Relationen und Funktionen.
- Fähigkeit, elementare Beweisprinzipien wie vollständige Induktion in verschiedenen Kontexten anzuwenden.

Inhalt

- Logik
 - Einführung
 - Aussagenlogik
 - Prädikatenlogik
- Mengenlehre
 - Grundlegende Begriffe und Konzepte
 - Relationen
 - Funktionen
 - Boolesche Algebren
• Beweisführung
 – Strukturen der mathematischen Beweisführung
 – Vollständige Induktion
 – Beweisstrategien

• Zahlentheorie
 – Teilbarkeit
 – Teilen mit Rest
 – Primzahlen
 – Modulare Arithmetik

• Algebraische Strukturen
 – Gruppen
 – Körper

• Kombinatorik
 – Zählformeln für Mengen
 – Permutationen

• Graphentheorie
 – Terminologie und Repräsentation
 – Wege in Graphen
 – Bäume
 – Planare Graphen
 – Färbungen

Literatur
I.1.4 Programmstrukturen 1

<table>
<thead>
<tr>
<th>B003 Programmstrukturen 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiengang</td>
</tr>
<tr>
<td>Kürzel</td>
</tr>
<tr>
<td>Bezeichnung</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Verwendbarkeit</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
</tr>
<tr>
<td>ECTS</td>
</tr>
<tr>
<td>Voraussetzungen</td>
</tr>
<tr>
<td>Dauer</td>
</tr>
</tbody>
</table>

Lernziele

Nach Abschluss des Moduls sind die unterschiedlichen Vorkenntnisse angeglichen und es ist eine gemeinsame Kompetenzbasis für die weiteren Veranstaltungen im thematischen Umfeld der Programmierung und Software-Entwicklung gelegt.

Die Studierenden beherrschen sowohl die grundlegenden theoretischen Aspekte der Programmierung als auch die Basiskonzepte von imperativen, prozeduralen Programmiersprachen: Sie kennen alle wesentlichen Anweisungen zur Umsetzung algorithmischer Strukturen ebenso wie die typischen einfachen und strukturierten Datentypen. Dies schließt die Kenntnis einfacher dynamischer Datenstrukturen (dyn. Listen) hinsichtlich ihres Aufbaus und ihrer Verarbeitung mit ein. Die Studierenden kennen die Strukturierungsmöglichkeiten, die durch Prozeduren und Funktionen eröffnet werden und können diese zur Strukturierung ihrer Programme angemessen einsetzen. Die Studierenden können auf Basis dieser Kenntnis die programmiersprachlichen Mittel problemadäquat bei der Formulierung von Programmentexten nutzen.

Sie sind in der Lage, vollständige Programme begrenzter Komplexität eigenständig zu entwickeln und dabei die funktionale Korrektheit der Software sicherzustellen.

Die Studierenden kennen die typischen Funktionen einer Integrierten Entwicklungsumgebung und können diese angemessen zur Software-Entwicklung nutzen.

I.1.4.1 Programmstrukturen 1

Lehrveranstaltung: Programmstrukturen 1
Dozent(en): Andreas Häuslein
Hörtermin: 1
Häufigkeit: jedes Semester
Art: 1
Lehrform: Vorlesung
Semesterwochenstunden: 4
ECTS: 3.0
Prüfungsform: Klausur
Sprache: deutsch
Lehr- und Medienform(en): Beamerpräsentation, Handout, interaktive Entwicklung und Diskussion von Modellen, Overheadfolien, Softwaredemonstration, Tafel

Lernziele

Die Studierenden ...

- kennen die grundlegenden Konzepte imperativer Programmiersprachen und ihre Umsetzung in der Programmiersprache Pascal und können diese benennen.
- kennen der Syntax, Semantik und Pragmatik als wesentliche Aspekte von Programmiersprachen und können diese unterscheiden.
- kennen wichtigsten Sprachbestandteile der Programmiersprache Pascal und beschreiben diese.
- setzen die Konzepte und Sprachbestandteile angemessen zur Lösung von Problemstellungen begrenzter Komplexität ein und bauen vollständige Programme für diese Problemstellungen auf.
- kennen die wesentlichen statischen Datenstrukturen imperativer Programmiersprachen, wählen bei der Programmierung zwischen diesen in Abhängigkeit von der Aufgabenstellung sicher aus und setzen sie angemessen zur Realisierung der Programmfunktionalität ein.
- kennen die Realisierung einfacher dynamischer Datenstrukturen und können diese zur Realisierung von Algorithmen nutzen.
- kennen wesentliche Qualitätskriterien für Software und können diese bei der Software-Entwicklung berücksichtigen.
- führen eine Fehlersuche und -beseitigung (Debugging) bei ihren Programmtexten durch.

Inhalt

- Grundkonzepte der Datenverarbeitung
- Entwurf und Darstellung von Algorithmen
- Allgemeine Aspekte von Programmiersprachen
• Daten in Programmen
 – Grundlegende Datentypen
 – Variablen, Zuweisungen, Konstanten
• Grundsätzlicher Aufbau von Programmen
• Operatoren und Ausdrücke
• Einfache und strukturierte Anweisungen
• Statische strukturierte Datentypen und ihre Nutzung
 – Strings
 – Arrays
 – Records
 – Sets
• Zeigertypen
 – Besonderheiten und Probleme bei der Nutzung von Zeigertypen
 – Aufbau dynamischer Datenstrukturen mit Hilfe von Zeigertypen
• Strukturierung von Programmen
 – Prozeduren und Funktionen
 – Units

Literatur

• OTTMANN, Thomas; WIDMAYER, Peter: Programmierung mit PASCAL: Eine Einführung für Programmieranfänger, 9. Aufl., Springer Vieweg, 2018
• WIRTH, Niklaus: Algorithmen und Datenstrukturen: Pascal-Version. 5. Aufl., Teubner-Verlag, 2013
I.1.4.2 Übg. Programmstrukturen 1

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Übg. Programmstrukturen 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(en)</td>
<td>Lars Neumann</td>
</tr>
<tr>
<td>Hörtermin</td>
<td>1</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Art</td>
<td>1</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Übung/Praktikum/Planspiel</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>6</td>
</tr>
<tr>
<td>ECTS</td>
<td>2.0</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>Abnahme</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehr- und Medienform(en)</td>
<td>Beamerpräsentation, Software demonstration, studentische Arbeit am Rechner, Tafel, Tutorien</td>
</tr>
</tbody>
</table>

Lernziele

Die Studierenden ...

- festigen und vertiefen ihr Wissen zu den in der zugehörigen Vorlesung “Programmstrukturen 1” vorgestellten Konzepten
- beherrschen die Arbeit mit einer modernen Entwicklungsumgebung (Embarcadero Rad Studio XE2)
- lernen Grundlagen des Debugging und der Versionsverwaltung kennen
- erweitern ihre Teamfähigkeit durch die eigenständige praktische Anwendung des erlernten Wissens in Zweiergruppen

Inhalt

Die Inhalte höherer Aufgaben schließen dabei in der Regel die Inhalte der vorherigen mit ein.

Literatur

Skript:

- Vorlesungsskript unter https://stud.fh-wedel.de/handout/Haeuslein/Programmstrukturen%201/
- Weiteres Material unter http://www.fh-wedel.de/mitarbeiter/ne/uebung-programmstrukturen-1/
I.1.5 Rechnungswesen 1

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B005</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Rechnungswesen 1</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B005a Rechnungswesen 1</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Prof. Dr. StB. Stefan Christoph Weber</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Betriebswirtschaftslehre (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Data Science (Bachelor Studiengang)</td>
</tr>
<tr>
<td></td>
<td>E-Commerce (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Medieninformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsinformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>6</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Keine</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>

Lernziele

Die Studierenden beherrschen zum anderen die Partialbereiche der Kostenrechnung (Kostenarten-, Kostenstellen-, Kostenträgerstück-, Kostenträgerzeitrechnung) sowie die Klassifizierung von Systemen der Kostenrechnung und verfügen darüber hinaus über ein Grundverständnis für die Teilkosten, und Deckungsbeitragsrechnung als unternehmerische Entscheidungshilfe.
I.1.5.1 Rechnungswesen 1

Lehrveranstaltung: Rechnungswesen 1
Dozent(en): Stefan Christoph Weber
Hörtermin: 1
Häufigkeit: jährlich
Art: 1
Lehrform: Vorlesung mit integrierter Übung/Workshop/Assigm.
Semesterwochenstunden: 6
ECTS: 5.0
Prüfungsform: Klausur
Sprache: deutsch
Lehr- und Medienform(en): Tutorien

Lernziele

Lernziele der Veranstaltung sind:

- Ableiten des Begriffsinhalts, der Bedeutung, der Funktion und der Teilgebiete des Rechnungswesens.
- Erarbeiten eines systematischen Verständnisses für die gesetzliche Verankerung und Technik der Finanzbuchhaltung.
- Erläutern der Begriffsinhalte und des Instrumentariums der Kostenrechnung.
- Erarbeiten eines systematischen Verständnisses für den Zusammenhang zwischen Finanzbuchhaltung und Kostenrechnung (Abgrenzungsrechnung).
- Klassifizieren von Systemen der Kostenrechnung.
- Erarbeiten eines Grundverständnisses für die Teilkosten- und Deckungsbeitragsrechnung als unternehmerische Entscheidungshilfe.

Inhalt

Erster Teil: Einführung in das Betriebliche Rechnungswesen (ReWe)

- Definition und Funktionen des ReWe
- Teilgebiete des ReWe (Überblick)
- Zusammenhänge zwischen Finanz- und Rechnungswesen

Zweiter Teil: Finanzbuchhaltung (FiBu) und Jahresabschluss

- Grundlagen und gesetzliche Rahmenbedingungen
 - Begriffsabgrenzungen
 - Gesetzliche Verankerung der FiBu
FiBu in Form der doppelten Buchführung

- Buchhalterische Erfassung ausgewählter Geschäftsvorfälle
 - Warenverkehr
 - Zahlungsverkehr
 - Lohn- und Gehaltsverkehr
 - Steuern, Gebühren und Beiträge

Dritter Teil: Kostenrechnung

- Einführung, Begriffserklärungen, Kostentheorie
 - Kosten und Betriebswirtschaftslehre
 - Kosten- und Leistungsbegriff
 - Grundbegriffe der Kostentheorie

- Instrumentarium der Kostenrechnung
 - Aufgaben der Kostenrechnung
 - Kostenrechnung und FiBu
 - Teilbereiche der Kostenrechnung

- Systeme der Kostenrechnung
 - Gliederung und Charakteristika der wichtigsten Systeme
 - Systeme auf der Basis von Vollkosten
 - Teilkosten- und Deckungsbeitragsrechnungen

Literatur

I.1.6 Einführung in die VWL

B017 Einführung in die VWL

Studiengang: Bachelor-Studiengang IT-Management, -Consulting & -Auditing

Kürzel: B017

Bezeichnung: Einführung in die VWL

Lehrveranstaltung(en): B017a Einführung in die VWL

Verantwortliche(r): Prof. Dr. Thorsten Giersch

Zuordnung zum Curriculum:
- Betriebswirtschaftslehre (Bachelor)
- Data Science (Bachelor Studiengang)
- E-Commerce (Bachelor)
- IT-Management, -Consulting & -Auditing (Bachelor)
- Wirtschaftsinformatik (Bachelor)
- Wirtschaftsingenieurwesen (Bachelor)

Verwendbarkeit: Das Modul “Einführung in die VWL” ist ein Einführungsmodul. Die erworbenen Kompetenzen ergänzen und vertiefen die betriebswirtschaftlichen Grundlagen der jeweiligen Studiengänge in Hinblick auf die grundlegenden mikro- und makroökonomischen Zusammenhänge, sowie damit verbundener wirtschaftspolitischer Fragestellungen.

Semesterwochenstunden: 4

ECTS: 5.0

Voraussetzungen: Keine

Dauer: 1

Lernziele:
1.1.6.1 Einführung in die VWL

Lehrveranstaltung: Einführung in die VWL
Dozent(en): Thorsten Giersch
Hörtermin: 3
Häufigkeit: jährlich
Art: 3
Lehrform: Vorlesung mit integrierter Übung/Workshop/Assigm.
Semesterwochenstunden: 4
ECTS: 5.0
Prüfungsform: Klausur + ggf. Bonus
Sprache: deutsch
Lehr- und Medienform(en): Handout, Tutorien

Lernziele
Die Vermittlung grundlegender ökonomische Kompetenzen ist Ziel der Veranstaltung. Die Studierenden erleben die VWL als einen übergreifenden Zugang zum Verständnis von sich und ihrer Umwelt, der sowohl in privater wie beruflicher Hinsicht von Bedeutung ist. Nach der aktiven Teilnahme an der Veranstaltung können sie …

- die Funktionsweise von Märkten aus mikro- und makroökonomischer Perspektive beschreiben und erklären.
- die ökonomische Denkweise im Rahmen einfacher Modelle darlegen und interpretieren.
- zentrale Begriffe der VWL erläutern und können Ansätze der VWL wichtigen ökonomischen Denkern zuordnen.
- ausgewählte ökonomische Daten eigenständig suchen und interpretieren.
- die Begrenztheit des ökonomischen Wissens erläutern!
- zu wirtschaftspolitischen Diskussionen Stellung nehmen und diese mit grundlegenden Konzepten und Modellen der VWL verbinden.

Inhalt
- Einführung in die Volkswirtschaftslehre (Gegenstand und Methoden der VWL)
- Grundlagen der Marktwirtschaft
 - Marktgleichgewichte in Abhängigkeit von der Marktform
 - Staatliche Eingriffe (Steuern, Auflagen, Umweltpolitik etc.) und Ihre Wechselwirkung mit dem Marktgeschehen
- Grundlagen der normativen Ökonomik
- Elemente der Makroökonomie
 - Volkswirtschaftliche Gesamtrechnung und Wohlfahrtsmessung
 - Rolle des Geldes

32
– Makroökonomische Modellbildung
– Anwendungen auf die Fiskalpolitik
– Wirtschaftspolitische Kontroversen

Literatur

I.1.7 Grundlagen der Mathematik 2

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B019</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Grundlagen der Mathematik 2</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B019a Grundlagen der Linearen Algebra</td>
</tr>
<tr>
<td></td>
<td>B019a Grundlagen der Statistik</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Prof. Dr. Ioana Serban</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Betriebswirtschaftslehre (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Computer Games Technology (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Data Science (Bachelor Studiengang)</td>
</tr>
<tr>
<td></td>
<td>E-Commerce (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Ingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Medieninformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Smart Technology (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Technische Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsinformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Vorausgesetzt wird ein solides Schulwissen der Mathematik und mindestens durchschnittliche mathematische Begabung.</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>

Lernziele

In diesem Modul werden grundlegende mathematische Kenntnisse aus den Bereichen lineare Algebra und Statistik, wie sie als Grundlage für ein quantitativ ausgerichtetes Studium unerlässlich sind, vermittelt. Der Fokus liegt auf der Vektor- und Matrizenrechnung, linearen
Gleichungssystemen, statistischer Datenanalyse, Hypothesentests und wissenschaftlicher Versuchsauswertung.

Die Lernenden sind in der Lage ausgewählte Problemstellungen aus den Bereichen Technik, Naturwissenschaft, Ökonomie und Informatik, mittels der im Modul vermittelten mathematischen Methoden zu modellieren und analysieren. Die Lernenden können für die vermittelten Inhalte praxisrelevante Anwendungsbeispiele benennen. Die Lernenden können eigenständig Lösungsmethoden für ausgewählte Problemstellungen auswählen, die Lösungsmethodik bis zum Ergebnis durchführen und die erhaltenen Ergebnisse kritisch bewerten.
1.1.7.1 Grundlagen der Linearen Algebra

Lehrveranstaltung: Grundlagen der Linearen Algebra
Dozent(en): Ioana Serban
Hörtermin: 2
Häufigkeit: jährlich
Art: 2
Lehrform: Vorlesung
Semesterwochenstunden: 2
ECTS: 2.5
Prüfungsform: Klausur
Sprache: deutsch
Lehr- und Medienform(en): Handout, Overheadfolien, Tafel

Lernziele

Nach dem erfolgreichen Besuch der Vorlesung sind die Lernenden in der Lage ...

- lineare algebraische Gleichungssysteme mittels des Gauß-Algorithmus in die Lösbarkeitskategorien (eindeutig lösbar, unendlich viele Lösungen, unlösbar) einzuteilen und ggfs. die Lösung anzugeben.
- die Techniken und Methoden der Vektorrechnung anzuwenden.
- die Techniken und Methoden der Matrixrechnung anzuwenden.
- die Determinante einer niedrigdimensionalen Matrix zu berechnen und den Zusammenhang der Determinante zur Lösungstheorie linearer Gleichungssysteme herzustellen
- Einfache technische oder ökonomische Systeme mittels der Techniken und Methoden der linearen Algebra zu modellieren und aus der ermittelten Lösung der mathematischen Formulierung das System quantitativ zu beurteilen.

Inhalt

- Lineare algebraische Gleichungssysteme
 - Gauß-Algorithmus
 - Systematisierung des Lösungsverhaltens
 - Unterbestimmte Systeme
- Matrixrechnung
 - Matrizenrechnung
 - Inverse Matrix
 - Matrixgleichungen
 - Zusammenhang mit linearen Gleichungssystemen
- Determinanten
Definition
- Zusammenhang mit linearen Gleichungssystemen

- Vektorrechnung
 - Geometrische Vektoren
 - Rechenregeln
 - Lineare (Un-)Abhängigkeit
 - Rang einer Matrix
 - Nochmal Gleichungssysteme, Rangkriterium

Literatur

- PAPULA, Lothar:
 Mathematik für Ingenieure und Naturwissenschaftler,

- HELM, Werner; PFEIFER, Andreas; OHSER, Joachim:
 Mathematik für Wirtschaftswissenschaftler.

- GRAMLICH, Günter:
 Lineare Algebra: Eine Einführung.

- TESCHL, Gerald; TESCHL, Susanne:
 Mathematik für Informatiker,
 Band 1: Diskrete Mathematik und lineare Algebra.
 3. Aufl. Heidelberg: Springer Verlag 2008

- FISCHER, Gerd:
 Lineare Algebra: Eine Einführung für Studienanfänger.
 18. aktualisierte Aufl. Wiesbaden: Springer Verlag 2014
I.1.7.2 Grundlagen der Statistik

Lehrveranstaltung: Grundlagen der Statistik
Dozent(en): Michael Anders
Hörtermin: 2
Häufigkeit: jährlich
Art: 2
Lehrform: Vorlesung
Semesterwochenstunden: 2
ECTS: 2.5
Prüfungsform: Klausur
Sprache: deutsch
Lehr- und Medienform(en): E-Learning, Online-Aufbereitung

Lernziele
Nach der Lehrveranstaltung können die Studierenden ...

- Statistische Daten verdichten und graphisch aussagekräftig darstellen.
- Mit diskreten und kontinuierlichen Verteilungen umgehen, mit bedingten Wahrscheinlichkeiten korrekt umgehen und diese verstehen.
- den Zentralen Grenzwertsatz verstehen und anwenden.
- Konfidenzintervalle berechnen und Hypothesen testen.
- Herleitung der Formeln für lineare Regression nachvollziehen und lineare Regression verstehen.

Inhalt
- Beschreibende Statistik
- Wahrscheinlichkeitsrechnung
diskrete und stetige Verteilungen
zentraler Grenzwertsatz
Konfidenzintervalle
Testen von Hypothesen
Chiquadrat Anpassungstest
Regression und Korrelation

Literatur
- Fahrmeir, Ludwig; Künstler, Rita; Pigeot, Iris; Tutz, Gerhard: Statistik.
I.1.8 Programmstrukturen 2

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B020</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Programmstrukturen 2</td>
</tr>
</tbody>
</table>
| **Lehrveranstaltung(en)** | B020a Programmstrukturen 2
 | B020b Üb. Programmstrukturen 2 |
| **Verantwortliche(r)** | Prof. Dr. Andreas Häuslein |

Zuordnung zum Curriculum
- Computer Games Technology (Bachelor)
- Data Science (Bachelor Stuendiengang)
- E-Commerce (Bachelor)
- IT-Ingenieurwesen (Bachelor)
- IT-Management, -Consulting & -Auditing (Bachelor)
- Informatik (Bachelor)
- Medieninformatik (Bachelor)
- Smart Technology (Bachelor)
- Technische Informatik (Bachelor)
- Wirtschaftsinformatik (Bachelor)

Verwendbarkeit
Das Modul basiert auf den im Modul “Programmstrukturen 1” erworbenen Kompetenzen. Es schafft die Grundlagen für Module der fortgeschrittenen Programmierung in Informatik-Studiengängen, zum Beispiel die Module “Algorithmen und Datenstrukturen”, “Fortgeschrittene Objektorientierte Programmierung” und “Web-Anwendungen”.

Semesterwochenstunden
6

ECTS
5.0

Voraussetzungen

Dauer
1
Lernziele

Die Studierenden besitzen die Fähigkeit, eine moderne Entwicklungsumgebung zur Software-Erstellung zu nutzen. Sie können mit den Mitteln der objektorientierten Sprache Java einfache rekursive Datenstrukturen (Listen) aufbauen, kennen grundlegende Algorithmen für diese Datenstrukturen und können Variationen dieser Algorithmen eigenständig entwickeln.

Die Studierenden sind in der Lage die Modularisierungskonzepte der Sprache Java, soweit sie Gegenstand der Vorlesung sind, zu einer problemadäquaten Strukturierung eines Programms mittleren Umfangs und begrenzter Funktionalität einzusetzen.

Sie kennen bezogen auf die Gestaltung einer grafischen Benutzungsoberfläche die wesentlichen Regeln und Richtlinien und sind in der Lage diese für die Gestaltung konkreter Oberflächen einzusetzen. Sie besitzen die Kenntnis hinsichtlich einer konkreten technischen Umsetzung von grafischen Oberflächen und können diese zur Implementation solcher Oberflächen nutzen.

Sie verfügen über Basiskenntnisse hinsichtlich der Qualitätssicherung von Software in Form einfacher Testverfahren und können diese einsetzen, um die funktionale Korrektheit und ein ausreichendes Maß an Zuverlässigkeit der Software zu gewährleisten.
I.1.8.1 Programmstrukturen 2

Lehrveranstaltung
Dozent(en)
Hörtermine
Häufigkeit
Art
Lehrform
Semesterwochenstunden
ECTS
Prüfungsform
Sprache
Lehr- und Medienform(en)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Programmstrukturen 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(en)</td>
<td>Andreas Häuslein</td>
</tr>
<tr>
<td>Hörtermin</td>
<td>2</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Art</td>
<td>2</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>3.0</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>Klausur</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehr- und Medienform(en)</td>
<td>Beamerpräsentation, Handout, Softwar...</td>
</tr>
</tbody>
</table>

Lernziele

Die Studierenden …

- identifizieren die Basiskonzepte der Objektorientierten Programmierung und stellen diese den Konzepten der prozeduralen Programmierung gegenüber.
- entwickeln Software auf der Grundlage der Kernkonzepte der Objektorientierten Programmierung.
- stellen die grundlegenden Sprachelemente (Datentypen, Anweisungen, Realisierung von objektorientierten Konzepten) von Java zusammen und wählen daraus aus, um Java-Programme mittlerer Komplexität zu entwickeln.
- vergleichen die Programmiersprachen Pascal und Java und stellen ihre Gemeinsamkeiten und Unterschiede hera.
- setzen eine moderne Entwicklungsumgebung zur Unterstützung der Softwareentwicklung ein und stellen die damit verbundenen Funktionalitäten und Vorgehensweisen dar.
- entwerfen einfache dynamische Datenstrukturen im Kontext einer objektorientierten Programmiersprache.
- erläutern grundlegende Algorithmen, die auf den vermittelten Datenstrukturen arbeiten.
- entwerfen für Programme mittlerer Komplexität durch Einsatz geeigneter Elemente der Programmiersprache Java eine angemessene Modularisierung und legen entsprechende Schnittstellen zwischen den Modulen fest.
- benennen die Grundregeln der benutzungsgerechten Gestaltung von Programmen und nutzen diese, um Benutzungsoberflächen von Programmen begrenzter Funktionalität sowohl strukturell als auch funktional angemessen zu gestalten.
- kennen die grundlegenden Klassen und ihre Operationen, mit denen dateibezogene Operationen implementiert werden können.
Inhalt

- Grundkonzept der Programmersprache Java
 - Grundlegende Eigenschaften der Sprache
 - Grundlegender Aufbau von Java-Programmen
 - Ausführung von Java-Programmen
- Vorstellung der eingesetzten Entwicklungsumgebung (NetBeans)
- Grundlegende Programmelemente
 - Primitive Datentypen in Java
 - Variablen, Zuweisung, Gültigkeitsbereiche
 - Operatoren und Ausdrücke
 - Anweisungen
- Referenzdatentypen
 - Arrays
 - Klassen
- Statische Methoden
- Grundlegende Klassen
 - String
 - StringBuilder
 - Wrapper-Klassen für primitive Datentypen
 - Enum
- Grundkonzepte der Objektorientierung
 - Klassen und Instanzen mit Attributen und Methoden
 - Sichtbarkeit, Packages
 - Konstruktoren
 - Vererbung und Überschreiben
 - Dynamisches Binden, Polymorphie
 - Objektorientierte Realisierung rekursiver dynamischer Datenstrukturen (Listen)
 - Generische Typen
 - Abstrakte Klassen und Interfaces - Deklaration und Nutzung
 - Realisierung grafischer Benutzungsoberflächen
 - Behandlung von Laufzeitfehlern
 - Klassen zur Realisierung von Dateioperationen
Literatur

- HABELITZ, Hans-Peter:
 Programmieren lernen mit Java. 5. Auflage, Rheinwerk Computing, 2017

- RATZ, Dietmar:
 Grundkurs Programmieren in Java. 7. Auflage,
 Hanser Verlag, 2014

- ULLENBOOM, Christian:

- ABTS, Dietmar:

- STEYER, Ralph:
 Einführung in JavaFX: Moderne GUIs für RIAs und Java-Applikationen.
 Springer-Vieweg, 2014

- EPPLE, Anton: JavaFX 8: Grundlagen und fortgeschrittene Techniken. dpunkt.verlag, 2015

- SALTER, David; DANTAS, Rhawi:
I.1.8.2 Üb. Programmstrukturen 2

Lehrveranstaltung: Üb. Programmstrukturen 2
Dozent(en): Gerit Kaleck
Hörtermin: 2
Häufigkeit: jedes Semester
Art: 2
Lehrform: Übung/Praktikum/Planspiel
Semesterwochenstunden: 2
ECTS: 2.0
Prüfungsform: Abnahme
Sprache: deutsch
Lehr- und Medienform(en): studentische Arbeit am Rechner

Lernziele
Die Studierenden erwerben in der Übung die ...
- Fähigkeit zum praktischen Einsatz der Basiskonzepte objektorientierter Programmiersprachen sowie ihrer Umsetzung in Java.
- Fähigkeit zum Aufbau einfacher dynamischer Datenstrukturen im Kontext einer objektorientierten Programmiersprache und Fähigkeit der Anwendung grundlegender Algorithmen auf diesen Datenstrukturen.
- Fähigkeit zur Nutzung einer aktuellen, verbreiteten Entwicklungsumgebung.
- Fähigkeit zur Realisierung von vollständigen Software-Systemen kleineren Umfangs ausgehend von einer verbalen Aufgabenstellung.
- Fähigkeit zur Software-Entwicklung im kleinen Team.
- Fähigkeit zur Ermittlung geeigneter Testfälle zur Qualitätssicherung.
- Kenntnis der Grundregeln zur Gestaltung benutzeroberflächen und bedienfreundlicher Software.

Inhalt
- Einführung in die Programmierung mit Java und die Entwicklungsumgebung.
- Anwendung der in der Vorlesung vorgestellten Grundkonzepte der objektorientierten Programmierung durch das Lösen verbal formulierter Aufgabenstellungen in kleinen Teams.
- Testen und Präsentieren der sauber strukturierten Lösung.

Literatur
I.1.9 Rechnungswesen 2

B024 Rechnungswesen 2

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B024</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Rechnungswesen 2</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B024a Rechnungswesen 2</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Prof. Dr. StB. Stefan Christoph Weber</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Betriebswirtschaftslehre (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>6</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Keine</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>

Lernziele

Nach Abschluss des Moduls sind die Studierenden zum einen in der Lage, die Handels- und Steuerbilanz eines Unternehmens unter Beachtung der jeweiligen rechnungslegungspolitischen Zielsetzungen erstellen sowie zielorientiert beurteilen zu können. Die Studierenden erlangen zum anderen Kenntnisse und Fähigkeiten, die Techniken des innerbetrieblichen Rechnungswesens als Entscheidungsrechnung (optimales Fertigungsprogramm, Preisober- und untergrenzen, Eigenfertigung versus Fremdbezug), die Prozesskostenrechnung sowie ausgewählte Instrumente des Kostenmanagements (insbesondere Target Costing) anzuwenden und zu beurteilen.
I.1.9.1 Rechnungswesen 2

Lehrveranstaltung: Rechnungswesen 2
Dozent(en): Stefan Christoph Weber
Hörtermin: 2
Häufigkeit: jährlich
Art: 2
Lehrform: Vorlesung mit integrierter Übung/Workshop/Assigm.
Semesterwochenstunden: 6
ECTS: 5.0
Prüfungsform: Klausur
Sprache: deutsch
Lehr- und Medienform(en): Tutorien

Lernziele

Lernziele der Veranstaltung sind:

- Erklären der theoretischen und normativen Grundlagen des (handelsrechtlichen) Jahresabschlusses (Theorien, Zwecke, GoB).
- Erarbeiten eines systematischen Verständnisses für die Ansatz-, Bewertungs- und Erfolgserfassungskonzeptionen nach Handels- und Steuerrecht.
- Anwenden der handel- und steuerrechtlichen konzeptionellen Grundlagen auf ausgewählte Bilanzposten.
- Skizzieren der Aufstellungs-, Prüfungs- und Offenlegungspflichten des Jahresabschlusses und des Lageberichts.
- Erarbeiten methodischer Kenntnisse der Kostenplanung.
- Anwenden und Beurteilen der Techniken des innerbetrieblichen Rechnungswesens als Entscheidungsrechnung (optimales Fertigungsprogramm, Preisobergrenzen und -untergrenzen, Eigenfertigung versus Fremdbezug).
- Anwenden und Beurteilen von Weiterentwicklungen der Kostenrechnung und des Kostenmanagements (insbesondere Prozesskostenrechnung, Target Costing).

Inhalt

Erster Teil: Jahresabschluss und Lagebericht

- Theoretische und normative Grundlagen
 - Theorien des Jahresabschlusses
 - Zwecke des handelsrechtlichen Jahresabschlusses
 - Grundsätze ordnungsmäßiger Buchführung (GoB)
- Ansatzkonzeption nach Handels- und Steuerrecht
 - Aktivierungsfähigkeit
– Passivierungsfähigkeit

• Bewertungskonzeption nach Handels- und Steuerrecht
 – Bewertungsmaßstäbe - Überblick
 – Zugangsbewertung
 – Folgebewertung

• Erfolgserfassungskonzeption nach Handels- und Steuerrecht

• Ansatz und Bewertung ausgewählter Bilanzposten
 – Immaterielle Vermögensgegenstände des Anlagevermögens
 – Vorräte
 – Forderungen
 – Rechnungsabgrenzungsposten
 – Rückstellungen
 – Verbindlichkeiten

• Überblick über die Aufstellungs-, Prüfungs- und Offenlegungspflichten des Jahresabschlusses und des Lageberichts
 – Grundlegendes
 – Varianten der Bilanzgliederung
 – Gliederungsalternativen der Gewinn- und Verlustrechnung (GuV)
 – Anhang und Lagebericht

Zweiter Teil: Kostenrechnung und Kostenmanagement

• Kostenplanung
 – Grundlegendes
 – Methoden der Kostenplanung

• Innerbetriebliches Rechnungswesen als Entscheidungsrechnung
 – Einführung
 – Produktionsbereich
 – Absatzbereich
 – Beschaffungsbereich

• Weiterentwicklungen der Kostenrechnung und des Kostenmanagements
 – Prozesskostenrechnung
 – Target Costing und Kostenmanagement
Literatur

I.1.10 Programmierpraktikum

B036 Programmierpraktikum

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B036</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Programmierpraktikum</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B036a Programmierpraktikum</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Prof. Dr. Andreas Häuslein</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Computer Games Technology (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Data Science (Bachelor Studiengang)</td>
</tr>
<tr>
<td></td>
<td>E-Commerce (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Medieninformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Technische Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsinformatik (Bachelor)</td>
</tr>
<tr>
<td>Verwendbarkeit</td>
<td>Das Modul baut auf die im Modul “Programmstrukturen 2” erworbenen Programmierkompetenzen auf. Es bildet die Grundlage für Module von Informatik-Studiengängen, in denen Programmierung von Softwareeinheiten größeren Umfangs und softwaretechnische Aspekte eine Rolle spielen, zum Beispiel die Module “Software-Design”, “Software-Projekt” und “Software-Qualität”.</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>0</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Kenntnis der zentralen Konzepte der Objektorientierten Programmierung und der Programmersprache Java, Grundkenntnisse in der Benutzung einer Entwicklungsumgebung.</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>

Lernziele

Die Studierenden verfügen nach Abschluss des Moduls über die Fähigkeit, aus einer textuellen, problemorientiert formulierten Aufgabenstellung die wesentlichen funktionalen Anforderungen an eine zu entwickelnde Software abzuleiten und in Form eines Pflichtenheftes zu dokumentieren. Sie sind zur Konzeption, insbesondere zur angemessenen Modularisierung von Softwaresystemen mittleren Umfangs in der Lage. Sie können die objektorientierte
Programmiersprache Java einsetzen, um ein solches Softwaresystem eigenständig objektorientiert zu implementieren. Sie sind fähig, dabei eine moderne Entwicklungsumgebung zu nutzen.

Sie verfügen über Basiskenntnisse hinsichtlich der Qualitätssicherung von Software in Form einfacher Teststrategien und können diese einsetzen, um die funktionale Korrektheit und ein ausreichendes Maß an Zuverlässigkeit der Software zu gewährleisten.

Die Studierenden besitzen die Fähigkeit, die Entwicklung einer Software und die Software selbst in einer geeigneten Form zu dokumentieren und zu präsentieren.
I.1.10.1 Programmierpraktikum

Lehrveranstaltung Programmierpraktikum
Dozent(en) Gerit Kaleck
Hörtermin 5
Häufigkeit jedes Semester
Art 5
Lehrform Übung/Praktikum/Planspiel
Semesterwochenstunden 0
ECTS 5.0
Prüfungsform Praktikumsbericht / Protokoll
Sprache deutsch
Lehr- und Medienform(en) studentische Arbeit am Rechner

Lernziele

Die Studierenden erwerben mit diesem Praktikum die …
- Fähigkeit zum praktischen Einsatz der Basiskonzepte objektorientierter Programmiersprachen sowie ihrer Umsetzung in Java in einem Softwareprojekt mittleren Umfangs.
- Fähigkeit zur Nutzung einer aktuellen, verbreiteten Entwicklungsumgebung.
- Fähigkeit zur eigenständigen Strukturierung und Realisierung von vollständigen Softwaresystemen mittleren Umfangs ausgehend von einer problemorientierten Aufgabenstellung.
- Fähigkeit zur Softwareentwicklung und -dokumentation.
- Fähigkeit zur Anwendung der Grundregeln benutzungsgerechter Oberflächengestaltung.

Inhalt

- Entwicklung eines vollständigen Softwaresystems mittleren Umfangs in Java ausgehend von einer problemorientierten Aufgabenstellung.
- Strukturierung und Modularisierung des Projektes.
- Eigenständiger Entwurf passender Datenmodelle.
- Benutzungsgerechte Gestaltung der Oberfläche.
- Testen der entstandenen Software und Dokumentation der Tests.
- Erstellen eines Pflichtenhefts, Dokumentation des Programms und Erstellen eines Benutzerhandbuchs.
Literatur

- ULLENBOOM, Christian:
 Java ist auch eine Insel: Insel 1: Das umfassende Handbuch
 Galileo Computing, 2014 (11. Auflage)

- EPPLE, Anton:
 JavaFX 8: Grundlagen und fortgeschrittene Techniken
 dpunkt Verlag, 2015

- ZÖRNER, Stefan:
 Softwarearchitekturen dokumentieren und kommunizieren: Entwürfe, Entscheidungen
 und Lösungen nachvollziehbar und wirkungsvoll festhalten
 Carl Hanser Verlag, 2012

- PRESSMAN, Roger S.; MAXIM, Bruce:
 Software Engineering: A Practitioners Approach
 Mcgraw Hill Book Co, 2014
I.1.11 Rechnernetze

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B037</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Rechnernetze</td>
</tr>
</tbody>
</table>
| Lehrveranstaltung(en) | B037a Rechnernetze
 B037b Prakt. Rechnernetze |
| Verantwortliche(r) | Dipl.-Ing. (FH) Ilja Kaleck |
| Zuordnung zum Curriculum | Computer Games Technology (Bachelor)
 IT-Ingenieurwesen (Bachelor)
 IT-Management, -Consulting & -Auditing (Bachelor)
 Informatik (Bachelor)
 Medieninformatik (Bachelor)
 Smart Technology (Bachelor)
 Technische Informatik (Bachelor)
 Wirtschaftsinformatik (Bachelor) |
| Verwendbarkeit | Das Modul ist sinnvoll mit den Inhalten der Grundlagenmodule "Informationstechnik" und "Programmstrukturen 1 und 2" zu kombinieren. |
| Semesterwochenstunden | 6 |
| ECTS | 5.0 |
| Voraussetzungen | Grundlegende Kenntnisse im Bereich der allgemeinen Informationstechnik; grundlegende Programmierkenntnisse in C, Objekt-Pascal (Delphi) oder Java erleichtern das Verständnis für Interprozesskommunikation im Rahmen gezeigter Beispielprogramme; Kenntnisse im Umgang mit aktuellen Desktop-Betriebssystemen (Windows, optional MacOS-X bzw. Linux) sind zur eigenständigen Durchführung praktischer Übungsanteile hilfreich. |
| Dauer | 1 |

Lernziele

Nach Beendigung dieses Moduls verfügen die Studierenden über fundiertes Wissen über den Aufbau, den Betrieb und die Arbeitsweise moderner Rechnernetze (Computer Networks); dieses sowohl in technischer Hinsicht als auch in Bezug auf den Ablauf der Kommunikation zwischen Prozessen in Unternehmensnetzen bzw. dem Internet. Die Studierenden beherrschen
allgemeine Grundlagen der Datenkommunikation und kennen den Aufbau eines universellen Kommunikationsmodells, erlernt am Beispiel des OSI-Referenzmodells.

Vertiefendes Wissen haben sie bezüglich des Aufbaus und die Kommunikation in der Internet-Architektur (IPv4, IPv6). Hierbei verfügen sie über Kenntnisse hinsichtlich der Eigenschaften der verfügbaren Transportprotokolle und haben das grundlegende Verständnis zur Realisierung einfacher Interprozesskommunikation.

Sie kennen die für den Betrieb eines IP-basierten Netzes essentiell notwendigen Anwendungsprotokolle und können dieses Wissen auch als Basis für die Gestaltung eigener Anwendungen sinnvoll nutzen. Ferner verfügen sie über Kenntnisse hinsichtlich der Theorie und den praktischen Einsatz von Verzeichnisdiensten zur Verwaltung größerer Netze.

Darüber hinaus haben sie ein hinreichendes Verständnis für den technischen Aufbau und den Betrieb moderner Unternehmensnetze. Hierzu gehören fundierte Kenntnisse über die Eigenschaften aktueller Netztechnologien im Bereich Lokaler Netze (LANs) als auch drahtloser Netze (WLANs).

Sie kennen auch die Arbeitsweise der dabei eingesetzten Koppelelemente und deren Vermittlungsstrategien zum Aufbau größerer Netzstrukturen bzw. des Internets.

Durch den praktischen Anteil des Moduls verfügen die Studierenden über ein vertieftes und punktuell auch signifikant ergänztes Wissen zuvor behandelter Lehrinhalte, eigenständig erlernt am eigenen PC-System (Server) im zugehörigen Schulungslabor. Sie verfügen auch über ein praxisnahes Verständnis über den realen Datenfluss in Netzen und können so typische Fehlersituationen im Rahmen der Kommunikation zwischen Anwendungen analysieren und eigenständig beheben. Diese Fähigkeit bildet eine wesentliche Grundlage für eine effiziente Entwicklung vertreiter Anwendungen im Rahmen komplexer Softwareprojekte.
I.1.11.1 Rechnernetze

Lehrveranstaltung: Rechnernetze
Dozent(en): Ilja Kaleck
Hörtermin: 3
Häufigkeit: jedes Semester
Art: 3
Lehrform: Vorlesung
Semesterwochenstunden: 4
ECTS: 3.0
Prüfungsform: Klausur
Sprache: deutsch
Lehr- und Medienform(en): E-Learning, Online-Aufbereitung, Softwaredemonstration

Lernziele

Die Studierenden erlangen ...

- ein grundlegendes Verständnis für den Aufbau einer herstellerneutralen Kommunikationsarchitektur (OSI).
- Kenntnisse über den Aufbau und die Funktion des Internet-Architekturmodells.
 - Kenntnis über IPv4-Adress- und Netzstrukturen.
 - Verständnis über die Arbeitsweise essentieller Anwendungsprotokolle.
 - Fähigkeit zum Verständnis des Ablaufs einfacher Interprozesskommunikation, u. a. als Basis für die Realisierung komplexerer verteilter Anwendungen.
 - die Arbeitsweise spezifischer Maßnahmen gegen den IPv4-Adressmangel im IPv4 (NAT, Proxyserver-Dienste) kennen.
 - Wissen über die Eigenschaften des neuen Internet-Protokolls Version 6 (IPv6) und Änderungen an bestehenden Internet-Protokollen (u. a. DNS, ICMP).
- Verständnis über den technischen Aufbau und den Betrieb Lokaler Netze (LANs).
 - Verständnis hinsichtlich des generellen Ablaufs der IP-Kommunikation in LANs.
 - Wissen um die Eigenschaften aktueller Netztechnologien (Schwerpunkt: Ethernet-Technik).
 - Kenntnisse zum Aufbau und Betrieb drahtloser Netze (IEEE 802.11 WLANs).
- Wissen um den technischen Aufbau von Netzstrukturen bzw. des Internets.
 - Wissen um die Aufgabe Funktionsweise der klassischen von Koppelelemente in Netzen.
 - elementares Wissen um die Arbeitsweise praxisrelevanter Routingverfahren für kleinere und größere Netze (u. a. einfaches IP-Routing; hierarchisches Routing).
- Grundkenntnisse über den Aufbau und die Funktionsweise von Verzeichnisdiensten.
Inhalt

- Allgemeine Grundlagen und Begriffe
 - Allgemeine Strukturen in der Datenkommunikation
 - Protokolle und Protokollabläufe
 - Netztopologien und Klassifizierung von Übertragungsnetzen

- Das ISO-OSI Referenzmodell
 - Prinzip der Schichtenbildung und Schichtenfunktionen im Überblick
 - Datenfluss im Modell
 - Aktuelle Koppelelemente zum Netzaufbau im Kontext der OSI-Modells

- Die Internet-Architektur
 - Historie, Architekturübersicht, Standardisierungen
 - IPv4-Adressstrukturen und Netzaufbau, Subnetting
 - UDP-/TCP-Kommunikation, Sockets bzw. Socket-Kommunikation
 - Betrachtung ausgewählter Anwendungsprotokolle (DNS, TELNET / SSH, SMTP, HTTP, …)
 - Network Address Translation (NAT) und der Einsatz von Proxy-Servern
 - Einführung in das neue Internet Protocol Version 6 (IPv6)
 * Adress- und Netzstruktur, Migrationshinweise
 * Änderungen an höheren Protokollen in Bezug auf das IPv6

- Technik Lokaler Netze (LANs)
 - Ablauf der Kommunikation in IEEE 802 LANs (Layer-2, IP, inkl. DHCP)
 - Schwerpunktbetrachtung: Ethernet-Technik, Zugriffsverfahren und
 - Technische Umsetzungen (10Mbps / 100FE / 1GbE / 10GbE)
 - Überblick über andere LAN-Technologien

- Koppelelemente und Vermittlungstechniken
 - Repeater, Brücken- bzw. Layer-2 Switching-Technologie
 - Virtuelle LANs (VLANs), Class-of-Services im LAN
 - Router bzw. IP-Routing, Link-State und Distanzvektor-Verfahren,
 - Hierarchisches Routing und IP-Multicasting
 - Drahtlose Netze nach IEEE 802.11,
 * Struktur, Aufbau, Übertragungskonzepte, Sicherheitsbetrachtungen

- Verzeichnisdienste
 - Einführung und grundlegendes Konzept des X.500
– Herstellerspezifische Lösungen (Active Directory)
– Lightweight Directory Access Protocol (LDAP)

Literatur

• TANNENBAUM, Andrew S.:
 Computer Netzwerke.

• KUROSE, James F.; ROSS, Keith W.:
 Computer Netzwerke. Der Top-Down Ansatz.

• HALSALL, Fred:
 Computer Networking and the Internet.

• RECH, Jörg:
 Ethernet. Technologien und Protokolle für die Computervernetzung.

• RECH, Jörg:
 Wireless LANs. 802.11-WLAN-Technologie und praktische Umsetzung im Detail.

• BADACH, Anatol; HOFFMANN, Erwin:
 Technik der IP-Netze. Funktionsweise, Protokolle und Dienste.

• DAVIES, Joseph:

• SCHÄFER, Günther:
 Netzwerksicherheit. Algorithmische Grundlagen und Protokolle.

• SPERZEL Christian:
 Netzwerksicherheit. Schützen Sie Ihr Netzwerk vor dem Zugriff anderer
 Online-Videotrainig, Video2brain GmbH, 2014

• BUEROSSE, Jörg:
 Sichere E-Mails. Verschlüsselung und digitale Signatur unter Windows, Linux, OS X,
 iOS und Android.
 Online-Videotrainig, Video2brain GmbH, 2014

• FRISCH; HÖLZEL; LINTERMANN; SCHAAFER:
 Vernetzte IT-Systeme.

• GRABA, Jan:
 An Introduction to Network Programming with Java, Java 7 Compatible
- CIUBOTARU, Bogdan ; MUNTEAN, Gabriel-Miro:
 Advanced Network Programming - Principles and Techniques. Network Application
 Programming with Java.

- HAROLD, Elliotte Rusty:

- KLÜNTER, Dieter; LASER, Jochen:
 LDAP verstehen, OpenLDAP einsetzen. Grundlagen und Praxiseinsatz.
I.1.11.2 Prakt. Rechnernetze

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Prakt. Rechnernetze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(en)</td>
<td>Ilja Kaleck</td>
</tr>
<tr>
<td>Hörtermin</td>
<td>3</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Art</td>
<td>3</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Übung/Praktikum/Planspiel</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>2</td>
</tr>
<tr>
<td>ECTS</td>
<td>2.0</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>Abnahme</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehr- und Medienform(en)</td>
<td>E-Learning, Online-Aufbereitung, Softwaredemonstration, studentische Arbeit am Rechner</td>
</tr>
</tbody>
</table>

Lernziele

Die Studierenden erlangen …

- die Fähigkeit zum praktischen Umgang mit der Internet-Technologie am eigenen PC.
 - die Fähigkeit zum Anschluss von Systemen an ein Unternehmensnetz.
 - die Fähigkeit zur grundlegenden Konfiguration des Internet-Protokolls (IPv4, IPv6).
 - das Verständnis für Sicherheitsrichtlinien auf Multi-User Systemen (Windows, Linux).
 - die Fähigkeit zur Analyse und Behebung typischer Fehlersituationen im Rahmen der Kommunikation von Anwendungen und Systemen im Netz.
 - die Fähigkeit zur Konfiguration grundlegender Internet-Dienste (u. a. DNS, HTTP, FTP).

- das Verständnis für Lösungsansätze aktueller Techniken zur Unix-/Windows Integration in heterogenen Unternehmensnetzen (NFS, SAMBA, X-Windows).

- das Verständnis über aktuelle Konzepte zur Benutzer- und Rechteverwaltung in Netzen.
 - die Fähigkeit zur Benutzerverwaltung mittels eines Domänenkonzeptes (Windows).
 - die Fähigkeit zum Einrichtung von Verzeichnisdiensten (LDAP, Active Directory).

- die Grundkenntnisse zum praktischen Einsatz von Virtualisierungstechniken auf dem Desktop.
 - die Fähigkeit zur Einrichtung einfacher IP-Routingfunktionen auf einem System.

- das Verständnis über den praktischen Aufbau und Betrieb eines WLANs und dessen interne Kommunikationsabläufe (inkl. Sicherheitsbetrachtungen).

- die Fähigkeit zum Einsatz eines LAN-Analyzers zur Analyse von Kommunikationsabläufen zwischen Anwendungen sowie zur Fehleranalyse in LANs und WLANs.
• grundlegende Kenntnisse digitaler Sprachübertragung in Netzen mittels der Voice-over-IP (VoIP) Technik (Wahlthema).
• grundlegende Kenntnisse zu Streaming-Media Technik und den Real-Time Protokollen zur Übertragung multimedialer Inhalte in Netzen (Wahlthema).

Inhalt
Durchführung eines Laborpraktikums durchgängig individuell am eigenen PC-System unter Einsatz dedizierter Wechselseitplatten (Teilnehmer; Arbeitsgruppe)

• Einrichtung eines Server-Betriebssystems und Konfiguration der grundlegenden Kommunikationsprotokolle (IPv4, IPv6).
 – Nutzung typischer Internetdienstprogramme und Betrachtung der dabei verwendeten Protokolle.
• Einsatz von Techniken zur Unix/Windows-Integration (NFS, SAMBA, X-Windows, Unix mit Posix-ACLs)
• Nutzung einfacher Benutzer- und Rechteverwaltung im Netz (Domänenkonzept).
• Einsatz von Virtualisierungstechniken auf dem Desktop
 – Aufbau einer lokalen Netzinfrastuktur und Einrichtung des lokalen IP-Routings (inkl. NAT)
 – Grundlegende Firewall-Konfiguration
• Einrichten und Arbeiten mit aktuellen Verzeichnisdiensten
 – Aufbau einer eigenen Verzeichnisstruktur (Directory)
 – Formulierung von Suchanfragen an Verzeichnisdienste (Active Directory, LDAP-Server)
• Konfiguration grundlegender Internet-Serverdienste (DNS, FTP, HTTP, Proxy-Server, TELNET / SSH)
 – Nutzung der SSH Port-Forwarding Funktion
• Protokollanalyse und Fehlersuche im LAN mit einem LAN-Analyser
 – Nutzung einer Remote-Probes zur verteilten LAN-Analyse im Netz.
 – Einfache LAN-Performance Messungen
• Konfiguration einer Arbeitsstation in einem Wireless-LAN (Adhoc und Infrastrukturnetz)
 – Analyse des drahtlosen Daten- und Kontrollverkehrs mit einem WLAN-Analyser
• Einrichtung eines Voice-over-IP (VoIP) Clients (Wahlaufgabe)
 – Betrachtung dabei genutzter VoIP-Technologien und Übertragungsprotokolle
 – Einsatz eines LAN-Analyzers zur VoIP-Übertragungsanalyse
• Einführung in die Multi-Media Übertragung in Netzen (Wahlaufgabe)
 – Einrichtung eines eines aktuellen Streaming-Servers
– Betrachtung der beteiligten Realtime-Übertragungsprotokolle

- Weitere Wahlthemen nach Aktualität.

Literatur

I.1.12 Algorithmen und Datenstrukturen

B040 Algorithmen und Datenstrukturen

Studiengang Bachelor-Studiengang IT-Management, -Consulting & -Auditing
Kürzel B040
Bezeichnung Algorithmen und Datenstrukturen
Lehrveranstaltung(en) B040a Algorithmen und Datenstrukturen
B040b Übg. Algorithmen & Datenstrukturen
Verantwortliche(r) M.Sc. Christian Uhlig
Zuordnung zum Curriculum Computer Games Technology (Bachelor)
Data Science (Bachelor Studiengang)
E-Commerce (Bachelor)
IT-Ingenieurwesen (Bachelor)
IT-Management, -Consulting & -Auditing (Bachelor)
Informatik (Bachelor)
Medieninformatik (Bachelor)
Smart Technology (Bachelor)
Technische Informatik (Bachelor)
Wirtschaftsinformatik (Bachelor)
Verwendbarkeit Das Modul ist sinnvoll zu kombinieren mit Modulen über “Software-Design” und objektorientierte Programmierung.
Semesterwochenstunden 5
ECTS 5.0
Voraussetzungen Voaussetzungen für das Verständnis sind grundlegende Kenntnisse über strukturiertes und objektorientiertes Programmieren und Grundkenntnisse der Programmiersprache Java.
Dauer 1

Lernziele
Ferner können die Studierenden sicher mit dynamischen Datenstrukturen, mit Referenzen und der dynamischen Speicherverwaltung umgehen. Sie verfügen über grundlegende Kenntnisse von Algorithmen für Felder, Matrizen, für Such- und Sortieralgorithmen und für Algorithmen zur Implementierung von Mengen, Verzeichnissen und hierarchischen Strukturen.

Nach Abschluss des Moduls sind die Studierenden in der Lage, mit der Komplexitätstheorie mit qualitativer Abschätzung der Laufzeit- und Speicherplatzeffizienz der verschiedenen Algorithmen zu arbeiten und diese anzuwenden.
I.1.12.1 Algorithmen und Datenstrukturen

Lehrveranstaltung
Dozent(en) Christian Uhlig
Hörtermin 3
Häufigkeit jährlich
Art 3
Lehrform Vorlesung
Semesterwochenstunden 3
ECTS 3.0
Prüfungsform Klausur
Sprache deutsch
Lehr- und Medienform(en) Softwaredemonstration

Lernziele

Die Studierenden ...

- lernen die Abläufe und deren Kosten (Zeit / Speicher) bei der Ausführung von Programmen in höheren Programmiersprachen auf den von Neumann-Rechnern kennen.
- erlangen einen sicheren Umgang mit dynamischen Datenstrukturen und Referenzen.
- erlangen grundlegende Kenntnisse über Algorithmen für Such- und Sortieralgorithmen und zur Implementierung von Mengen und Verzeichnissen.
- können die Komplexitätstheorie mit qualitiver Abschätzung der Laufzeit- und Speicherplatzeffizienz der vorgestellten Algorithmen praktisch anwenden.

Inhalt

- Dynamische Datenstrukturen
 - Verkettete Listen
 - Binäre Suchbäume
 - Vorrang-Warteschlangen
 - Hash-Tabellen
 - destruktive und persistente Datenstrukturen
- Such- und Sortialgorithmen
 - Speicherplatz und Zeitabschätzungen
- Methoden als Daten
 - Verarbeitung aller Elemente eines Containers

Literatur
Üb. Algorithmen & Datenstrukturen

Lehrveranstaltung Üb. Algorithmen & Datenstrukturen
Dozent(en) Malte Heins
Hörtermin 3
Häufigkeit jährlich
Art 3
Lehrform Übung/Praktikum/Planspiel
Semesterwochenstunden 2
ECTS 2.0
Prüfungsform Abnahme
Sprache deutsch
Lehr- und Medienform(en) Beamerpräsentation, studentische Arbeit am Rechner, Tutorien

Lernziele

Die Studierenden …

• wenden praktisch die Inhalte aus der Vorlesung an.

• vertiefen die Beherrschung der Programmiersprache Java und der objektorientierten Programmierung.

• erlangen die Fähigkeit zur Erstellung algorithmenorientierter Programme in Java.

Inhalt

Literatur

• Unterlagen zur Übung im Web
I.1.13 Statistik

<table>
<thead>
<tr>
<th>B041 Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiengang</td>
</tr>
<tr>
<td>Kürzel</td>
</tr>
<tr>
<td>Bezeichnung</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
</tr>
</tbody>
</table>
| **Zuordnung zum Curriculum** | Betriebswirtschaftslehre (Bachelor)
Data Science (Bachelor Studiengang)
E-Commerce (Bachelor)
IT-Management, -Consulting & -Auditing (Bachelor)
Smart Technology (Bachelor)
Wirtschaftsinformatik (Bachelor)
Wirtschaftsingenieurwesen (Bachelor) |
| **Verwendbarkeit** | Dieses Modul setzt Grundkenntnisse der Statistik, wie sie zum Beispiel in der Veranstaltung “Grundlagen der Statistik” im Modul “Grundlagen der Mathematik 2” erworben werden, voraus. Die Kenntnisse aus dem Modul versetzen die Studierenden in die Lage quantitative Auswertung, wie sie zum Beispiel in empirischen Studien erforderlich sind, vorzunehmen. |
| **Semesterwochenstunden** | 4 |
| **ECTS** | 5.0 |
| **Voraussetzungen** | Die Studierenden besitzen Grundkenntnisse der deskriptiven und induktiven Statistik, wie sie in der Veranstaltung “Grundlagen der Statistik” vermittelt werden. |
| **Dauer** | 1 |

Lernziele

Das Modul baut auf der Vorlesung “Grundlagen der Statistik” auf. Nach Abschluss des Moduls sind die Studierenden befähigt, weiterführende statistische Methoden zur Lösung komplexer Problemstellungen nutzen und die erzielten Ergebnisse korrekt interpretieren zu können.

Die Studierenden erwerben weiterführende Kenntnisse in den Methoden der beschreibenden und schließenden Statistik. Sie sind in der Lage komplexe, statistische Untersuchungen - von
der Datenerhebung bis zur Auswertung und Interpretation - auch unter Zuhilfenahme geeigneter Computerprogramme eigenständig vorzunehmen und zu bewerten.

Sie kennen die grundlegenden Methoden der statistischen Qualitätskontrolle und wissen, wie Testverfahren im Rahmen der statistischen Qualitätskontrolle genutzt werden können.

Die Studenten sind in der Lage, Zeitreihen zu analysieren und unter Anwendung statistischer Verfahren Prognosen zu erstellen.
I.1.13.1 Statistik x

Lehrveranstaltung: Statistik x
Dozent(en): Franziska Bönte
Hörtermin: 5
Häufigkeit: jährlich
Art: 5
Lehrform: Vorlesung
Semesterwochenstunden: 4
ECTS: 5.0
Prüfungsform: Klausur
Sprache: deutsch
Lehr- und Medienform(en): Beamerpräsentation, Handout, studentische Arbeit am Rechner, Tafel

Lernziele
Die Studierenden sind befähigt, weiterführende statistische Methoden zur Lösung komplexer Problemstellungen nutzen und die erzielten Ergebnisse korrekt zu interpretieren.

Die Studierenden erlangen ...

- die Fähigkeit, Schätzwerte für die Parameter einer Grundgesamtheit zu bestimmen.
- die Fähigkeit, selbständig statistische Tests im Rahmen betrieblicher Aufgabenstellungen zu planen und durchzuführen und die Ergebnisse korrekt anzugeben.
- die Fähigkeit, Intervallwahrscheinlichkeiten unter Verwendung der wichtigsten diskreten und stetigen Dichte- und Verteilungsfunktionen zu berechnen.
- die Fähigkeit, Werte einer Grundgesamtheit zu schätzen und Hypothesen über die Werte einer Grundgesamtheit zu testen.
- die Fähigkeit, mittels geeigneter Computerprogramme statistische Untersuchungen großer Datenmengen vorzunehmen.
- Kenntnisse hinsichtlich des Einsatzes von Testverfahren im Rahmen der statistischen Qualitätskontrolle anhand von Problemstellungen aus der Wirtschaft.
- die Fähigkeit, sowohl eine Zeitreihe zu analysieren und die Komponenten einer Zeitreihe zu berechnen als auch kurz- und langfristige Prognosen durchzuführen.
- die Fähigkeit, die Genauigkeit von Prognosen kritisch zu bewerten.

Inhalt
- Verfahren der Stichprobenerhebung
- Verteilungen von Stichprobenwerten (Mittelwerte, Varianzen)
- Approximation von Verteilungen
- Punkt- und Intervallschätzung
- Testtheorie (parametrisch und nicht parametrisch)
- (deskriptive) Zeitreihenanalyse
Literatur

- Bleymüller, Josef: Statistik für Wirtschaftswissenschaftler; 16. Aufl.; s.l.; Verlag Franz Vahlen; 2012
- Griffiths, William E.; Hill, R. Carter; Judge, George G.: Learning and practicing econometrics; ; New York; John Wiley; 1993
- Hansen, Gerd: Methodenlehre der Statistik; ; München; Vahlen; 1974
- Hansmann, Karl-Werner: Kurzlehrbuch Prognoseverfahren; ; Wiesbaden; s.l.; Gabler Verlag; 1983
- Lippe, Peter Michael von der: Wirtschaftsstatistik; 3., neubearb. u. erw. Aufl.; Stuttgart; Fischer; 1985
- Rüger, Bernhard: Induktive Statistik; 2., überarb. Aufl., 2. Nachdr.; München; Oldenbourg; 1995
- Schlittgen, Rainer; Streitberg, Bernd H. J.: Zeitreihenanalyse; 3. Aufl., durchges. u. verb; München; R. Oldenbourg; 1989
- Zuckarelli, Joachim: Statistik mit R; ; Heidelberg; O’Reilly; 2017
I.1.14 Datenschutz und Wirtschaftsprivatrecht

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B042</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Datenschutz und Wirtschaftsprivatrecht</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B042a Datenschutz</td>
</tr>
<tr>
<td></td>
<td>B042a Wirtschaftsprivatrecht</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Prof. Dr. Gerd Beuster</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Betriebswirtschaftslehre (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Data Science (Bachelor Studiengang)</td>
</tr>
<tr>
<td></td>
<td>IT-Ingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsinformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td>Verwendbarkeit</td>
<td>Keine.</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>6</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Das Modul setzt ein grundlegendes Verständnis des deutschen Rechtssystem und seiner Begrifflichkeiten sowie elementare Kenntnisse über die Grundprinzipien deutscher Gesetzgebung voraus.</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>

Lernziele

I.1.14.1 Datenschutz

Lehrveranstaltung: Datenschutz
Dozent(en): Steffen Weiß
Hörtermin: 2
Häufigkeit: jährlich
Art: Vorlesung
Semesterwochenstunden: 2
ECTS: 2.0
Prüfungsform: Klausur
Sprache: deutsch

Lehr- und Medienform(en)

Lernziele
Die Studierenden sind fähig, in ihrem späteren Wirkungskreis datenschutzrechtliche Fragestellungen einzuordnen, um bei Bedarf auf Spezialistenunterstützung gezielt zurückgreifen zu können.

Inhalt
- Gesetzliche Grundlagen des Datenschutzes
 - Anwendung und praktische Umsetzung des Bundesdatenschutzgesetzes (BDSG)
 - Wesentliche Grundlagen aus ausgewählten bereichsspezifischen und bereichsübergreifenden Datenschutzgesetzen
 - Rechte, Pflichten und Aufgaben des betrieblichen Datenschutzbeauftragten zur Einrichtung des Datenschutzmanagements
 - Datenschutz in der Werbepraxis
- Technisch-organisatorischer Datenschutz
 - Grundanforderungen und Grundfunktionen der IT-Sicherheit in Bezug auf die Anforderungen der Datenschutzgesetze
 - Risikomanagement und Schlüsseltechnologien zur Realisierung des technisch-organisatorischen Datenschutzes
 - Kosten-/Nutzen des Datenschutzes
 - Verfahren zur Umsetzung des gesetzlichen Anforderungen des technisch-organisatorischen Datenschutzes
 - Auswahlverfahren zu geeigneten und angemessenen IT-Sicherheitsmechanismen

Literatur
- Bundesdatenschutzgesetz (BDSG) vom Januar 2003, novelliert im Juli 2009
- Koch (Hrsg.): Handbuch des betrieblichen Datenschutzbeauftragten. 4. Aufl. Frechen: Datakontext
I.1.14.2 Wirtschaftsprivatrecht

Lehrveranstaltung: Wirtschaftsprivatrecht
Dozent(en): Felix Reiche
Hörtermin: 2
Häufigkeit: jährlich
Art: 2
Lehrform: Vorlesung
Semesterwochenstunden: 4
ECTS: 3.0
Prüfungsform: Klausur
Sprache: deutsch
Lehr- und Medienform(en):

Lernziele
Die Studierenden können einfache Sachverhalte des Zivilrechts rechtlich zutreffend einordnen und unter Heranziehung einschlägiger Gesetzestexte würdigen.

Inhalt
- Zivilrecht
- BGB
 - Allgemeiner Teil
 - Recht der Schuldverhältnisse
 - Sachenrecht
- HBG
 - Handelsstand
 - Handelsgeschäfte
- Gesellschaftsrecht
 - Personenhandelsgesellschaften
 - Juristische Personen
- WettbewerbsRecht / ArbeitsRecht / ProzeßRecht werden fragmentarisch mit bearbeitet

Literatur
- Bürgerliches Gesetzbuch.
- Handelsgesetzbuch.
I.1.15 Datenbanken 1

B052 Datenbanken 1

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B052</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Datenbanken 1</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B052a Einführung in Datenbanken x</td>
</tr>
<tr>
<td></td>
<td>B052b Übg. Einführung in Datenbanken x</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Dr. Michael Predeschly</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Betriebswirtschaftslehre (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Computer Games Technology (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Data Science (Bachelor Studiengang)</td>
</tr>
<tr>
<td></td>
<td>E-Commerce (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Ingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Medieninformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Technische Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsinformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsingenieurwesen (Bachelor)</td>
</tr>
</tbody>
</table>

Verwendbarkeit	Das Modul komplementiert Einführungen in die Programmierung ("Einführung in die Programmierung", "Programmstrukturen 1") in allen Studiengängen. Es ist mit den fortgeschrittenen Modulen "Datenbanken 2" (Bachelor) und "Datenbanken 3" (Master) kombinierbar. Das Modul sollte in allen Studiengängen verwendet werden, in denen Datenhaltung wesentlich ist.
Semesterwochenstunden	3
ECTS	5.0
Voraussetzungen	Vorausgesetzt werden Grundkenntnisse in Programmierung und die Fähigkeit, abstrakt zu denken.
Dauer	1

Lernziele

Nachdem Studierende die Veranstaltungen des Moduls besucht haben, haben sie die Fähigkeit, eine relationale Datenbank unter Nutzung von SQL abzufragen, einzurichten und die betriebliche Informationsverarbeitung mittels relationaler Datenbanksysteme unter
Nutzung von SQL zu planen und durchzuführen. Zudem haben sie die Fähigkeit, selbständig einen Datenbankentwurfsprozess unter Verwendung des Entity-Relationship-Datenmodells und des relationalen Datenmodells durchzuführen.
I.1.15.1 Einführung in Datenbanken x

Lehrveranstaltung: Einführung in Datenbanken x
Dozent(en): Michael Predeschly
Hörtermin: 3
Häufigkeit: jährlich
Art: 3
Lehrform: Vorlesung
Semesterwochenstunden: 2
ECTS: 3.0
Prüfungsform: Klausur
Sprache: deutsch
Lehr- und Medienform(en): Beamerpräsentation, E-Learning, Online-Aufbereitung, Tafel

Lernziele
Die Studierenden ...

- beherrschen die Grundlagen der relationalen Datenbanktechnologie;
- erlangen die Fähigkeit, selbstständig einen Datenbankentwurfsprozess zu planen, eine relationale Datenbank unter Nutzung von SQL einzurichten und die Informationsverarbeitung mittels relationaler Datenbanksysteme unter Nutzung von SQL durchzuführen;
- erlangen die Fähigkeit, mit einem Entwurfstool einen Datenbankentwurfsprozess durchzuführen und mittels SQL selbständig Anfragen an ein Datenbanksystem zu stellen.

Inhalt

- Einführung in die Datenbanktechnologie
- Datenbanksprache SQL - Einführung
- Datenbank-Abfrage mit SQL
- Datenbanksprache SQL - Einrichten der Datenbank
- Das Entity-Relationship-Datenmodell
- Das Relationale Datenmodell
 – Relationenschemata und Datenabhängigkeiten
 – Relationale Datenbanken
 – Normalformen
- Datenbank - Lebenszyklus
Literatur

I.1.15.2 Üb. Einführung in Datenbanken

Lehrveranstaltung: Üb. Einführung in Datenbanken
Dozent(en): Marco Pawlowski
Hörtermin: 3
Häufigkeit: jährlich
Art: Übung/Praktikum/Planspiel
Semesterwochenstunden: 1
ECTS: 2.0
Prüfungsform: Abnahme
Sprache: deutsch
Lehr- und Medienform(en): Softwaredemonstration, studentische Arbeit am Rechner

Lernziele

Die Studierenden …

- besitzen die Fähigkeit, ein Datenbanksystem mit SQL zu befragen und in nicht-triviale textuelle Anfrageanforderungen in SQL zu überführen.
- haben grundlegende Kenntnisse über die Ausführung der von ihnen gestellten Anfragen.
- haben die Kompetenz, ein Datenbankentwurfswerkzeug grundlegend zu bedienen.

Inhalt

Vorlesungsbegleitende praktische Übungen in SQL und zum Datenbankentwurf

Literatur

Vorlesungsunterlagen
I.1.16 Fortgeschrittene Objektorientierte Programmierung

B057 Fortgeschrittene Objektorientierte Programmierung

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B057</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Fortgeschrittene Objektorientierte Programmierung</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B057a Fortgeschrittene Objektorientierte Programmierung</td>
</tr>
<tr>
<td></td>
<td>B057b Übg. Fortgeschrittene Objektorientierte Programmierung</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>M.Sc. Christian Uhlig</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Medieninformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Smart Technology (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Technische Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsinformatik (Bachelor)</td>
</tr>
<tr>
<td>Verwendbarkeit</td>
<td>Das Modul setzt unmittelbar auf den Inhalten des Moduls “Programmstrukturen 2” auf und eignet sich damit als unmittelbare Weiterqualifikation im Anschluss an “Programmstrukturen 2” und das Programmierpraktikum. Es kann ergänzend insbesondere mit dem Modul “Software-Design” kombiniert werden.</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Voraussetzungen für das Verständnis sind grundlegende Kenntnisse über strukturiertes und objektorientiertes Programmieren und Grundkenntnisse der Programmiersprache Java.</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>
| Lernziele | Nach Abschluss des Moduls beherrschen die Studierenden den methodisch fundierten praktischen Umgang mit fortgeschrittenen objektorientierten Sprachkonzepten am Beispiel von Java. Sie sind in der Lage, vorgegebene generische Typen zu nutzen und eigene generische Typen zu deklarieren sowie in problemadäquater Weise Funktionswerte und Prinzipien funktionaler Programmierung in objekt-orientierten Sprachen anzuwenden. Die Teilnehmer erkennen Nutzen und Probleme nebenläufiger Programmierung und werden in die Lage
versetzt, Threads und Konzepte zur Thread-Synchronisation anzuwenden. Ergänzend erlernen die Studierenden die Grundzüge der Programmierung mit Reflexion und können die Java Reflection API in ihren fundamentalen Einrichtungen nebst Java-Annotationstypen praktisch anwenden.
1.1.16.1 Fortgeschrittene Objektorientierte Programmierung

Lehrveranstaltung: Fortgeschrittene Objektorientierte Programmierung
Dozent(en): Christian Uhlig
Hörtermin: 4
Häufigkeit: jährlich
Art: 4
Lehrform: Vorlesung
Semesterwochenstunden: 2
ECTS: 2.0
Prüfungsform: Klausur
Sprache: deutsch
Lehr- und Medienform(en): Handout, interaktive Entwicklung und Diskussion von Modellen, Softwaredemonstration

Lernziele
Die Studierenden ...

- nennen und erläutern die methodischen Grundlagen von objektorientierten Programmiersprachen am Beispiel von Java.
- wenden fortgeschrittene Konzepte objektorientierter Programmiersprachen wie parametrische Polymorphie, Mehrfachvererbung und Funktionswerte zur Konstruktion wiederverwendbarer Softwarekomponenten an.
- nennen und erläutern die Grundlagen generischer abstrakter Datentypen und ihre Korrespondenz mit Konzepten objektorientierter Sprachen (Schnittstellen, abstrakte Klassen, konkrete Klassen, Polymorphie, Verträge).
- entwerfen und implementieren generische abstrakte Datentypen.
- nutzen vorgefertigte Containerstrukturen wie das Java Collections Framework und wählen dabei problemadäquat abstrakte Datentypen und Implementierungen aus.
- definieren Funktionswerte per anonymer Klassen, Lambda-Ausdrücke und Methodenreferenzen.
- wenden Prinzipien funktionaler Programmierung in objektorientierten Sprachen am Beispiel von Java Streams an.
- nennen und erläutern Motivation, Grundlagen und Probleme nebenläufiger Programmierung.
- wenden Primitiven nebenläufiger Programmierung in Java an (Erzeugen von Threads, Thread-Kommunikation / Synchronisation, usw.).
- nennen und erläutern die Vorzüge funktionaler Programmierung für die parallele Auswertung von Berechnungen am Beispiel von Java Streams.
- definieren Stream-Pipelines unter Berücksichtigung der Anforderungen und Konsequenzen einer nebenläufigen Auswertungsstrategie.
- nennen und erläutern die Grundzüge von Reflection in Programmiersprachen am Beispiel von Java.
- wenden die Java Reflection API i.V.m. Annotationstypen an.
Inhalt

- Generizität / Java Generics
- Abstrakte Datentypen / Container / Java Collections
- Verschachtelte Typen
- Funktionswerte in OO-Sprachen (Funktionale Interfaces, Lambda-Ausdrücke, Methodenreferenzen)
- Funktionale Programmierung mit Java Streams
- Nebenläufigkeit (Threads, Racing Conditions, Synchronisation, Waitsets, volatile Variablen, nebendläufige Auswertung von Streams)
- Reflection, Annotationstypen

Literatur

- Meyer, Bertrand: Objektorientierte Softwareentwicklung, Hanser, München, 1990
- Urma, Raoul-Gabriel; Fusco, Mario; Mycroft, Alan: Java 8 in Action: Lambdas, Streams, and Functional-Style Programming, Manning Publications, 2014
I.1.16.2 Übg. Fortgeschrittene Objektorientierte Programmierung

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Üb. Fortgeschrittene Objektorientierte Programmierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(en)</td>
<td>Malte Heins</td>
</tr>
<tr>
<td>Hörtermin</td>
<td>4</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Übung/Praktikum/Planspiel</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>2</td>
</tr>
<tr>
<td>ECTS</td>
<td>3.0</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>Abnahme</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehr- und Medienform(en)</td>
<td>Beamerpräsentation, studentische Arbeit am Rechner, Tutorien</td>
</tr>
</tbody>
</table>

Lernziele

Die Studierenden ...

- wenden praktisch die Inhalte aus der Vorlesung an.

Inhalt

Bearbeitung von Übungsaufgaben parallel zum Stoff der Vorlesung in Zweiergruppen mit Abnahme und Diskussion der Lösungen. Zusätzlich werden praxisrelevante Aspekte der fortgeschrittenen OOP behandelt, die nicht Bestandteil der Vorlesung sind.

Literatur

- Unterlagen zur Übung im Web
- siehe auch Vorlesung Fortgeschrittene Objektorientierte Programmierung
I.1.17 Software-Design

<table>
<thead>
<tr>
<th>B058 Software-Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiengang</td>
</tr>
<tr>
<td>Kürzel</td>
</tr>
<tr>
<td>Bezeichnung</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
</tr>
</tbody>
</table>
| **Zuordnung zum Curriculum** | E-Commerce (Bachelor)
IT-Management, -Consulting & -Auditing (Bachelor)
Informatik (Bachelor)
Medieninformatik (Bachelor)
Technische Informatik (Bachelor)
Wirtschaftsinformatik (Bachelor) |
| **Verwendbarkeit** | Dieses Modul bietet gute Grundlagen für größere Projekte, zum Beispiel für das Modul “Software-Projekt”. |
| **Semesterwochenstunden** | 4 |
| **ECTS** | 5.0 |
| **Voraussetzungen** | Voraussetzungen für dieses Modul sind Kenntnisse in imperativen Programmiersprachen insbesondere Java, und über Datentypen und Typkonstruktoren in höheren Programmiersprachen.
Kenntnisse über die Funktionale Programmierung mit Haskell sind nicht zwingend notwendig aber nützlich. |
| **Dauer** | 1 |

Lernziele

Sie können die Qualität der Modelle durch lauffähige Prototypen überprüfen und demonstrieren. Sie können hierfür die Sprache Haskell als ausführbare Spezifikationssprache einsetzen.
Die Studierenden besitzen sichere Kenntnisse über die gängigen Entwurfsmuster und deren Vor- und Nachteile. Sie sind in der Lage aus den entwickelten Modellen auf systematische Weise Klassen-Strukturen in Java abzuleiten.
I.1.17.1 Software-Design x

Lehrveranstaltung Software-Design x
Dozent(en) Christian Uhlig
Hörtermin 4
Häufigkeit jährlich
Art 4
Lehrform Vorlesung
Semesterwochenstunden 4
ECTS 5.0
Prüfungsform Klausur
Sprache deutscht
Lehr- und Medienform(en) Handout, interaktive Entwicklung und Diskussion von Modellen, Overheadfolien, Softwaredemonstration

Lernziele
Die Studierenden ...

- erkennen und erläutern die Einordnung des Entwurfs in den Softwareentwicklungsprozess.
- erkennen und erläutern die Bedeutung der Modellbildung im Softwaredesign.
- differenzieren informelle und formale Entwurfskonzepte.
- erkennen und erläutern die Bedeutung von Verträgen bei Entwurf und Implementierung abstrakter Datentypen.
- erkennen und erläutern das Entwurfsparadigma Design by Contract am Beispiel der Programmiersprachen Eiffel und Java.
- differenzieren Vererbung und Komposition als zentrale Konzepte des objektorientierten Entwurfs und wählen problemadäquat aus.
- wenden informelle Notationen und Methoden (OMT, UML, ERD, ...) zur Modellierung eines Softwaresystems an.
- wenden formale Notationen (z.B. Haskell) zur Definition der Datenstrukturen und der Schnittstellen eines Softwaresystems an.
- differenzieren Entwurfsmuster auf Grundlage von Struktur, Motivation und Zielsetzung.
- wenden typische objektorientierte Entwurfsmuster zur Lösung von softwartechnischen Problemstellungen an.
- nennen und erläutern sprachabhängige und -unabhängige Implementierungsaspekte bei der Anwendung von Entwurfsmustern.
- erkennen und erläutern die Anwendbarkeit und Kombinierbarkeit einzelner Entwurfsmustern.
- differenzieren Flexibilität und Effizienz bei der problembezogenen Auswahl und Anwendung von Entwurfsmustern.
Inhalt

- Einordnung und Bedeutung des Entwurfs im Softwareentwicklungsprozess
- Methoden, Techniken und Werkzeuge im Software-Entwurf
 - informelle Methoden/Notationen: OMT, UML, ERD
 - formale Methoden/Notationen: abstrakte Syntax / Haskell
- Verträge zwischen Softwarekomponenten, Design by Contract
- Objektorientierte Entwurfsmuster
 - Erzeugungsmuster
 - Strukturmuster
 - Verhaltensmuster
- Fallstudien

Literatur

- Balzert, Helmut; Balzert, Heide; Koschke, Rainer; Lämmel, Uwe; Liggesmeyer, Peter; Quante, Jochen: Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements Engineering, 3. Auflage, Spektrum, 2009
- Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John: Design Patterns: Entwurfsmuster als Elemente wiederverwendbarer objektorientierter Software, mitp, 2014
- Freeman, Eric; Robson, Elisabeth; Bates, Bert; Sierra, Kathy: Head First Design Patterns, OReilly, 2014
- Rumbaugh, James; Blaha, Michael; Premerlani, William; Eddy, Frederick; Lorensen, William: Objektorientiertes Modellieren und Entwerfen, Hanser, 1994
I.1.18 Web-Anwendungen

B059 Web-Anwendungen

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B059</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Web-Anwendungen</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B059a Web-Anwendungen</td>
</tr>
<tr>
<td></td>
<td>B059b Übg. Web-Anwendungen</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Dr. Michael Predeschly</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Computer Games Technology (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Data Science (Bachelor Studiengang)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Medieninformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Smart Technology (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsinformatik (Bachelor)</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>5</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Grundkenntnisse der imperativen Programmierung und der Konzepte imperativer Programmiersprachen und objektorientierter Basiskonzepte.</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>

Lernziele

Die Studierenden kennen die speziellen technischen Randbedingungen und Besonderheiten der Entwicklung von Web-Anwendungen im Vergleich zu lokal laufenden Applikationen. Sie kennen

Sie kennen die wesentlichen Erweiterungen von HTML 5 im Vergleich zu frühere HTML-Versionen und können diese auszugsweise zur Realisierung von Webseiten einsetzen.

Sie können auf Basis dieser Kenntnisse eigenständig Web-Seiten realisieren, die einfache Formen der Dynamik sowohl client-seitig als auch server-seitig enthalten und die kennengelernten Konzepte integrativ nutzen.
I.1.18.1 Web-Anwendungen

Lehrveranstaltung
Web-Anwendungen

Dozent(en)
Michael Predeschly

Hörtermin
4

Häufigkeit
jährlich

Art
4

Lehrform
Vorlesung

Semesterwochenstunden
3

ECTS
3.0

Prüfungsform
Klausur

Sprache
deutsch

Lehr- und Medienform(en)
Beamerpräsentation, E-Learning, Gastreferenten, Online-Aufbereitung, Tafel

Lernziele

Die Studierenden ...

- führen die technischen Randbedingungen des Internet auf und benennen ihre Auswirkungen.

- beschreiben die konzeptionellen Aspekte von Stylesheets und der zentralen Möglichkeiten zur Festlegung der Darstellung in den Cascading Stylesheets und nutzen diese zur Erzeugung angestrebter Darstellungsweisen.

- können responsive Web-Layouts erstellen

- kennen wichtige Konzepte, Sprachen, Frameworks und Architekturen zur Realisierung dynamischer Webseiten auf, wählen zwischen diesen problembezogen aus und nutzen sie zur Erstellung dynamischer Webseiten.

- geben die zusätzliche Konzepte und Sprachelemente von HTML 5 an und entwerfen damit Webseiten.

- nutzen die theoretisch vermittelten Inhalte zur eigenständigen Realisierung von Webanwendungen begrenzter Komplexität.

Inhalt

- Basiskonzepte des WWW
 - Klassische Auszeichnungsmöglichkeiten in HTML
 - HTML-Formulare und ihre Möglichkeiten
 - Style Sheets
 - CSS-Animationen
 - Templating
 - Responsive Design
• Dynamik in Web-Seiten mit Javascript
 – Client-seitige Dynamik
 – Server-seitige Dynamik
• Asynchronous Javascript

Literatur
• WOLF, Jürgen: HTML5 und CSS - Das umfassende Handbuch 2019
• ACKERMANN, Philipp: JavaScript - Das umfassende Handbuch 2019
• GASSTON, Peter: Moderne Webentwicklung: Geräteunabhängige Entwicklung - Techniken und Trends in HTML5, CSS3 und JavaScript, dpunkt.verlag, 2014
I.1.18.2 Übg. Web-Anwendungen

Lehrveranstaltung: Übg. Web-Anwendungen
Dozent(en): Marco Pawlowski
Hörtermin: 4
Häufigkeit: jährlich
Art: 4
Lehrform: Übung/Praktikum/Planspiel
Semesterwochenstunden: 2
ECTS: 2.0
Prüfungsform: Abnahme
Sprache: deutsch
Lehr- und Medienform(en): Softwaredemonstration, studentische Arbeit am Rechner

Lernziele

Die Studierenden ...

- sind in der Lage, die in der Vorlesung vermittelten theoretischen Hintergründe selbst praktisch anzuwenden.
- steigern ihre Teamfähigkeit durch intensive Arbeit in Zweierteams und Kommunikation über auftretende Probleme in der ganzen Gruppe.

Inhalt

Bearbeitung von Übungsaufgaben, die sich am Stoff der Vorlesung orientieren, in Zweiergruppen mit Abnahme der Lösungen. Erstellt wird eine im Verlaufe der einzelnen Übungseinheiten komplexer werdende Web-Anwendung, wobei die einzelnen Schritte aufeinander aufbauen, so dass am Ende eine komplexe Web-Anwendung entsteht, die einen Großteil der in der Vorlesung erlernten Techniken und Konzepte nutzt.

Literatur
I.1.19 Betriebswirtschaftliche Prozesse mit ERP-Systemen

<table>
<thead>
<tr>
<th>B081 Betriebswirtschaftliche Prozesse mit ERP-Systemen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B081</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Betriebswirtschaftliche Prozesse mit ERP-Systemen</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B081b Übg. Betriebswirtschaftliche Prozesse mit ERP-Systemen</td>
</tr>
<tr>
<td></td>
<td>B081a Betriebswirtschaftliche Prozesse mit ERP-Systemen</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Dipl.-Inform. (FH) Birger Wolter</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Betriebswirtschaftslehre (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td>Verwendbarkeit</td>
<td>Das Modul “Betriebswirtschaftliche Prozesse mit ERP-Systemen” baut auf erworbene Kenntnisse und Fähigkeiten aus grundlegenden betriebswirtschaftlichen Modulen wie “Einführung in die Betriebswirtschaft” und “Rechnungswesen 1 und 2” auf und vertieft diese im Hinblick auf eine umfassende Unterstützung von Geschäftsprozessen durch IT-Systeme. Das Modul lässt sich sinnvoll kombinieren mit den Modulen “Implementierung von Geschäftsprozessen in ERP-Systemen” und dem Modul “Systemmodellierung”.</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>6</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>

Lernziele

Durch die selbständige Bearbeitung von Fallstudien am ERP-System kann den Studenten die Bewältigung betriebswirtschaftlicher Vorgänge in einer praxisnahen Systemumgebung vermittelt werden und stellt somit eine gute Vorbereitung auf die berufliche Praxis dar.
Lernziele

Die Studierenden können …

- die erworbenen theoretischen Kenntnisse auf praktische Anwendungsfälle übertragen
- die grundlegende Funktionen von ERP-Systemen verwenden
- betriebswirtschaftliche Aufgabenstellungen und zusammenhängende Geschäftsvorfälle in verschiedenen Anwendungsdomenäen mit Hilfe von ERP-Systemen bearbeiten.

Inhalt

Die in der Vorlesung vermittelten theoretischen Grundlagen werden im Rahmen der Übung durch die Bearbeitung von Fallstudien durch eigene Anwendung gefestigt und erweitert. Die Bearbeitung der durchgängigen und ERP-modulübergreifenden Fallstudien erfolgt direkt am ERP-System am Beispiel des SAP ERP. Hiermit soll den Studierenden insbesondere eine integrierte Betrachtungsweise der betriebswirtschaftlichen Vorgänge und deren informationstechnische Abbildung in einem ERP-System anhand praktischer Übungen näher gebracht werden.

Kurzgliederung:

- Fallstudie zu den Prozessen in der Produktion
- Fallstudie zu den Prozessen im Bereich Materialwirtschaft, Logistik
- Fallstudie zu den Prozessen im Bereich Controlling
- Fallstudie zu den Prozessen im Bereich Rechnungswesen

Literatur

Unterlagen zu den jeweiligen Fallstudien
I.1.19.2 Betriebswirtschaftliche Prozesse mit ERP-Systemen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Betriebswirtschaftliche Prozesse mit ERP-Systemen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(en)</td>
<td>Martin Schultz</td>
</tr>
<tr>
<td>Hörtermin</td>
<td>2</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art</td>
<td>2</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierter Übung/Workshop/Assign.</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>2</td>
</tr>
<tr>
<td>ECTS</td>
<td>2.0</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>Klausur</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehr- und Medienform(en)</td>
<td>Softwaredemonstration</td>
</tr>
</tbody>
</table>

Lernziele

Die Studierenden können ...

- wesentliche Begriffe im Umfeld von ERP-Systemen und Geschäftsprozessen definieren und diese in Beziehung zueinander setzen
- die wesentlichen Eigenschaften von ERP-Systemen und deren Architekturen herausstellen
- können die Vorgehensweise zur Abbildung betriebswirtschaftlicher Prozesse in ERP-Systemen erläutern.

Inhalt

Kurzgliederung:

- Grundlagen und Begriffe
- ERP-System-Architektur
- Integration von Geschäftsprozessen und ERP-Systemen
- Prozesse in der Produktion und deren Abbildung in ERP-Systemen
- Prozesse im Bereich Materialwirtschaft, Logistik und deren Abbildung in ERP-Systemen
- Prozesse im Bereich Controlling und deren Abbildung in ERP-Systemen
- Prozesse im Bereich Rechnungswesen und deren Abbildung in ERP-Systemen
Literatur

I.1.20 Unternehmensführung

B086 Unternehmensführung

Studiengang
Bachelor-Studiengang IT-Management, -Consulting & -Auditing

Kürzel
B086

Bezeichnung
Unternehmensführung

Lehrveranstaltung(en)
B086a Controlling
B086a Unternehmensführung

Verantwortliche(r)
Prof. Dr. Franziska Bönte

Zuordnung zum Curriculum
Betriebswirtschaftslehre (Bachelor)
E-Commerce (Bachelor)
IT-Management, -Consulting & -Auditing (Bachelor)
Wirtschaftsinformatik (Bachelor)
Wirtschaftsingenieurwesen (Bachelor)

Verwendbarkeit

Semesterwochenstunden
4

ECTS
5.0

Voraussetzungen
Kenntnisse der Veranstaltung “Rechnungswesen 1”

Dauer
1

Lernziele
Nach Abschluss des Moduls verfügen die Studierenden über Kenntnisse ausgewählter betriebswirtschaftlicher Aspekte der Unternehmensführung. Die Studierenden erhalten dabei Kenntnisse über die vielschichtigen Anforderungen rationaler Problemlösungsprozesse und erlangen dabei Fähigkeiten zur Problemlösung in Fragen der operativen Unternehmensführung (Planung und Kontrolle, Organisation, Personal) sowie im Rahmen des operativen Controlling als Unterstützungsfunktion der Unternehmensführung.
I.1.20.1 Controlling

Lehrveranstaltung Controlling
Dozent(en) Franziska Bönte
Hörtermin 6
Häufigkeit jährlich
Art 6
Lehrform Vorlesung
Semesterwochenstunden 2
ECTS 2.5
Prüfungsform Klausur
Sprache deutsch
Lehr- und Medienform(en) Beamerpräsentation, Gastreferenten, Handout, Tafel

Lernziele
Die Studierenden...

- sind in der Lage, die Aufgabenfelder und Funktionen des Controllings im Zusammenspiel mit der Unternehmensführung einordnen zu können.
- beherrschen die Methoden und Instrumente zur Problemerkennung und -lösung.
- besitzen die Fähigkeit, Problemlösungen entscheidungsunterstützend zu präsentieren.

Inhalt
In Zeiten gesättigter Märkte führt nationaler und internationaler Wettbewerbsdruck zu Verdrängungswettbewerb, der den Informationsbedarf der Unternehmensführung erhöht. Dabei werden nicht isolierte Einzelinformationen gewünscht, sondern
- zeitnahe,
- Zusammenhänge aufdeckende und
- mit Vergleichsgrößen kombinierte

Informationen nachgefragt, die analytischen und entscheidungsvorbereitenden Charakter miteinander verbinden. In diesem Zusammenhang erhält das Controlling als Disziplin, und der Controller als das kaufmännische Gewissen der Unternehmensführung einen deutlich höheren Stellenwert. Gliederung der Veranstaltung

- Vorbemerkungen
- Grundlagen
- Ausgewählte Controllingfelder
 - Fachkonzeptbestimmte Controllingfelder
 * Der Investitionsplanungsprozess
 * Projektcontrolling
 - IT-getriebene Controllingfelder
Berichtswesen

Hochrechnungstechniken

Abweichungsanalysen

– IT-Controlling (Controlling des Informationsmanagements)

Literatur

• BLOHM, Hans; LÜDER, Klaus, SCHAEFER, Christina: Investition. 10. Aufl., München: Vahlen, 2012.

• BRÜHL, Rolf: Controlling-Grundlagen des Erfolgscontrollings. 3. Aufl. München; Wien: Oldenbourg, 2012

• FIEDLER, Rudolf; GRÄF, Jens: Einführung in das Controlling. 3. Aufl., München: Oldenbourg, 2012

• LACHNIT, Laurenz; MÜLLER, Stefan: Unternehmenscontrolling. 2. Aufl., Wiesbaden: Gabler, 2012

I.1.20.2 Unternehmensführung

Lehrveranstaltung: Unternehmensführung
Dozent(en): Franziska Böne
Hörtermin: 6
Häufigkeit: jährlich
Art: 6
Lehrform: Vorlesung
Semesterwochenstunden: 2
ECTS: 2.5
Prüfungsform: Klausur
Sprache: deutsch
Lehr- und Medienform(en): Beamerpräsentation, Handout, Tafel

Lernziele
Die Studierenden …

- leiten den Begriffsinhalt wesentlicher Theorien und des Systems der Unternehmensführung ab.
- erarbeiten einen systematischen Überblick über den normativen Rahmen der Unternehmensführung (Unternehmensphilosophie, Unternehmensziele, Unternehmenskultur, Corporate Governance, Unternehmensmission).
- erarbeiten ein systematisches Verständnis für die Planung und Kontrolle.
- wenden die Budgetierungs-technik anhand von Case Studies an und beurteilen die jeweiligen Ergebnisse.
- erläutern und beurteilen Risiken der Unternehmensführung und wenden wesentlichen Methoden des Risikomanagements an - insbesondere Indentifikation, Bewertung und Steuerung von Risiken.
- erläutern und beurteilen die Gestaltungsparameter sowie die Idealtypen der Organisation.
- erläutern und beurteilen wesentliche Aspekte des Personalmanagements sowie der Personalführung (Motivationstheorien, Führungstheorien und -stil, Führungsprinzipien).
- erläutern und beurteilen wesentliche Aufgabenbereiche des Informationsmanagements.

Inhalt

- Grundlagen der Unternehmensführung: Begriffsdefinitionen und -abgrenzungen, Theorien der Unternehmensführung, System der Unternehmensführung
- Normativer Rahmen der Unternehmensführung: Elemente der normativen Unternehmensführung wie Unternehmensphilosophie, Unternehmensziele, Unternehmenskultur, Corporate Governance und Unternehmensmission
- Planung und Kontrolle: Funktionen der Planung und Kontrolle, Grundbestandteile eines Plans, Systematisierung der Planung und Kontrolle, Planungs- und Kontrollsystem, Grenzen und Problembereiche in der Praxis, Aktionsplanung und -kontrolle, Budgetierung
• Risikomanagement: Definition, Identifikation, Bewertung und Steuerung von Risiken
• Organisation: Begriffsdefinition, Gestaltungsparameter der Organisation, Idealtypen der Organisation
• Personal: Gegenstand der Personalfunktion, Personalmanagement, Personalführung
• Informationsmanagement: Information und Kommunikation, Aufgabenbereiche des Informationsmanagements

Literatur

• WAIBEL, Roland; KÄPPELI, Michael: Betriebswirtschaft für Führungskräfte. 5. Aufl., Zürich 2015.
• WEBER, Jürgen; BRAMSEMANN, Urs; HEINEKE, Carsten; HIRSCH, Bernhard: Wertorientierte Unternehmensführung. Wiesbaden 2004.
I.1.21 Systemmodellierung

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B087</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Systemmodellierung</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B087a Systemanalyse</td>
</tr>
<tr>
<td></td>
<td>B087b Prozessmodellierung</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Prof. Dr. Andreas Häuslein</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Data Science (Bachelor Studiengang)</td>
</tr>
<tr>
<td></td>
<td>E-Commerce (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsinformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Kenntnisse der grundlegenden Vorgehensweise bei der Software-Entwicklung, Wissen hinsichtlich der Grundkonzepte von Programmiersprachen, Kenntnisse bezogen auf die Grundfunktionen eines Unternehmens und seinen Aufbau, Fähigkeit zur Abstraktion</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>

102
Lernziele

Sie besitzen die Fähigkeit zur Nutzung der Modellierungsmittel zum Aufbau von Analysemodellen für wirtschaftliche Problemstellungen mittlerer Komplexität. Sie können somit an der Ermittlung von fachlichen Anforderungen für eine Systementwicklung mitwirken und sind in der Lage, eine Systemspezifikation als Ausgangspunkt einer solchen Entwicklung zu erstellen. Sie besitzen die Fähigkeit, eine prozessorientierte Sichtweise auf die Abläufe in einem Unternehmen einzunehmen und die Geschäftsprozesse in Form von Modellen abzubilden, auch unter Einsatz geeigneter Modellierungsoftware.
I.1.21.1 Systemanalyse

Lehrveranstaltung: Systemanalyse
Dozent(en): Andreas Häuslein
Hörtermin: 5
Häufigkeit: jährlich
Art: 5
Lehrform: Vorlesung
Semesterwochenstunden: 2
ECTS: 3.0
Prüfungsform: Klausur
Sprache: deutsch
Lehr- und Medienform(en): Beamerpräsentation, Gastreferenten, Handout, interaktive Entwicklung und Diskussion von Modellen, Overheadfolien, Tafel

Lernziele

Die Studierenden ...

- beurteilen die generellen Möglichkeiten und Grenzen von Systemanalysen, insbesondere in Bezug auf die Gestaltung betrieblicher Informationssysteme.
- unterscheiden die wesentlichen Techniken zur Informationsgewinnung in Unternehmen einschließlich ihrer Vor- und Nachteile, bewerten Techniken im Kontext einer konkreten Informationsgewinnung.
- führen eine methodisch fundierte Informationsgewinnung in einem überschaubaren Problemkontext durch.
- erklären wichtige Bestandteile und Schritte der Systemaufnahme als Vorphase zur Systemmodellierung, sie setzen ausgewählte Formalismen zur Dokumentation der Aufnahmergebnisse ein.
- stellen die im Unternehmensumfeld praktisch relevanten methodischen Ansätze zur Systemmodellierung dar und beurteilen diese hinsichtlich ihrer Eignung für bestimmte Erkenntnisziele im Rahmen einer Systemanalyse.
- beschreiben die zu den methodischen Ansätzen gehörenden Modellnotationen und setzen diese angemessen zur Modellierung ein.
- nutzen die Modellierungsmittel zum Aufbau von Analysemmodellen begrenzter Komplexität für betriebswirtschaftlich ausgerichtete Informationssysteme und diesbezügliche Problemstellungen.

Inhalt

- Grundbegriffe der Systemanalyse
 - Gegenstand und Zielsetzung im Unternehmensumfeld
 - Methodische Grundlagen
- Systemaufnahme
 - Rahmenbedingungen und Techniken der Informationsgewinnung
 - Thematische Untersuchungsbereiche
- Systemmodellierung
 - Ereignisgesteuerte Prozessketten zur Modellierung von Geschäftsprozessen
 * Modellelemente schlanker EPK-Modelle und ihre Nutzung
 * Modellelemente erweiterter EPK-Modelle und ihre Nutzung
 - Business Process Model and Notation BPMN
 * Ausgewählte Modellelemente
 * Beispielmodelle
 - Objektorientierte Analyse
 * Statische Modelle
 * Dynamische Modelle
 - Strukturierte Analyse und Essentielle Modellierung
 * Darstellungs- und Modellierungsmittel
 * Ausgewählte Schritte des Vorgehensmodells

Literatur

- RUPP, Chr.: Systemanalyse kompakt, Springer Verlag, 2013
- HÄUSLEIN, A.: Systemanalyse. vde-Verlag, 2004
- KRÜGER, J.; UHLIG, Ch.: Praxis der Geschäftsprozessmodellierung. VDE Verlag, 2009
- FREUND, Jakob; RÜCKER, Bernd: Praxishandbuch BPMN 2.0. 4. aktualisierte Auflage, Carl Hanser Verlag, 2014
- OESTERREICH, B.: Analyse und Design mit UML 2.3: Objektorientierte Softwareentwicklung, Oldenbourg, 2009
I.1.21.2 Prozessmodellierung

Lehrveranstaltung Prozessmodellierung
Dozent(en) Christian Uhlig
Hörtermin 5
Häufigkeit jährlich
Art 5
Lehrform Vorlesung mit integrierter Übung/Workshop/Assigm.
Semesterwochenstunden 2
ECTS 2.0
Prüfungsform Abnahme
Sprache deutsch
Lehr- und Medienform(en) Handout, interaktive Entwicklung und Diskussion von Modellen, Softwaredemonstration, studentische Arbeit am Rechner

Lernziele

Die Studierenden …

- nennen und erläutern die theoretischen Grundlagen des Geschäftsprozessmanagement und seine Begriffswelt.
- nennen und erläutern die Grundlagen der Geschäftsprozessmodellierung sowie ihre Einordnung in das Geschäftsprozessmanagement und andere Themenbereiche wie Softwareengineering, Datenbanken und Systemanalyse.
- stellen die Grundlagen der ARIS-Methode dar.
- nutzen das ARIS-Softwaresystem in seinen wesentlichen Bedienkonzepten und -elementen zur Erstellung von miteinander vernetzten Modellen.
- analysieren komplexe textuelle Fachkonzeptbeschreibungen und unterscheiden dabei Inhalte der verschiedenen ARIS-Modellierungssichten (Organisation, Daten, Leistungen, Funktionen, Steuerung).
- entwerfen und gestalten in ästhetisch ansprechender Weise Modelle zentraler Modelltypen (ER-Modell, EPK, WSK, BPMN Process und Collaboration, Organigramm) zu komplexen Fachkonzeptbeschreibungen.

Inhalt

- Grundlagen des Geschäftsprozessmanagement
 - Motivation
 - Begriffe
 - Einordnung der Geschäftsprozessmodellierung
– Bezüge zur Systemanalyse und zum Software-Engineering

- ARIS-Methode
 - Sichtenkonzept
 - Schichtenkonzept
 - Überblick über Modelltypen und ihre Vernetzung
- ARIS-Softwaresystem
- Modellierung der Aufbauorganisation
- ER-Datenmodellierung
- Funktionsmodellierung
- Prozessmodellierung
 - Wertschöpfungsketten (WSK) und Prozesslandkarten
 - EPK / eEPK
 - Vernetzung mit anderen ARIS-Sichten (Daten, Aufbauorganisation)
 - BPMN (Process und Collaboration Diagrams)

- Praktische Aufgabenstellungen
 - Ausschnittsweise und formfreie Modellierung von Prozessen aus einem beispielhaften Fachkonzept
 - Modellierung des Datenmodells zu einem beispielhaften Fachkonzept (ERD)
 - Ausschnittsweise Modellierung von Prozessen zu einem beispielhaften Fachkonzept (WSK / EPK und BPMN)
 - Ganzheitliche Modellierung von Aufbauorganisation, Datenmodell und Prozessen zu einer Fallstudie (Organigramm, ERD, WSK, BPMN)

Literatur
- Krüger, Jörg; Uhlig, Christian: Praxis der Geschäftsprozessmodellierung - ARIS erfolgreich anwenden, VDE Verlag, 2009
- Software AG: ARIS-Dokumentation (Methodenhandbuch, Bedienhandbücher), jeweils aktuellste Fassung
I.1.22 Software-Qualität

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B093</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Software-Qualität</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B093a Softwarequalität x</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Prof. Dr. Gerd Beuster</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>E-Commerce (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Medieninformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsinformatik (Bachelor)</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Nach Abschluss des Moduls verfügen die Studierenden über Kenntnisse hinsichtlich verschiedener Qualitätsaspekte von Software-Systemen. Die Studierenden kennen Qualitätsmerkmale und -kriterien und die Methoden zur Erreichung entsprechender Qualitätsziele.</td>
</tr>
</tbody>
</table>
Die Studierenden wissen, welche Bedeutung weitere Qualitätsmerkmale von Software haben. Darüber hinaus kennen sie die Gründe für das Zustandekommen von Qualitätsdefizite und die Maßnahmen zur Gewährleistung eines geforderten Qualitätsniveaus.

Die Studierenden haben systematisches Testen als Mittel zur Qualitätssicherung und -kontrolle kennengelernt. Sie können die gängigen Methoden und Verfahren zum White-Box-Testing (Testen unter Kenntnis der Spezifikation und/oder Implementierung) und Black-Box-Testing (Testen ohne Kenntnis der internen Funktionsweise des IT-Systems) theoretisch begründen und praktisch umsetzen.
I.1.22.1 Softwarequalität x

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Softwarequalität x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(en)</td>
<td>Jochen Brunnstein</td>
</tr>
<tr>
<td>Hörtermin</td>
<td>3</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art</td>
<td>3</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierter Übung/Workshop/Assigm.</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>Klausur</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch/englisch</td>
</tr>
</tbody>
</table>

Lernziele

Die Studierenden kennen Qualitätsmerkmale und -kriterien und die Methoden zur Erreichung entsprechender Qualitätsziele. Sie können die gängigen Methoden und Verfahren zur Sicherstellung von Softwarequalität umsetzen.

- Kenntnis der wesentlichen Qualitätsmerkmale von Software und ihrer wechselseitigen Abhängigkeiten.
- Kenntnis der typischen Defizite der Software-Qualität und ihrer Gründe.
- Kenntnis der Aufgabenbereiche des Software-Qualitätsmanagement und Überblick über die wesentlichen Managementkonzepte.
- Kenntnis des Konzepts der Qualitätsmodelle und der relevanten Qualitätsmerkmale und -metriken.
- Überblick über mögliche Maßnahmen der Software-Qualitätssicherung, Kenntnis der wesentlichen konstruktiven und analytischen Maßnahmen der Software-Qualitätssicherung.
- Fähigkeit, ausgewählte Maßnahmen der Qualitätssicherung umzusetzen.
- Erkenntnis der besonderen Bedeutung der Usability als benutzerzentriertes Qualitätsmerkmal.
- Kenntnis der wesentlichen Ansätze, die Usability einer Software zu bewerten und zu gestalten.

Inhalt

- Einführung und Motivation
 - Definition des Begriffs “Software-Qualität”
 - Bedeutung der Software-Qualität
- Merkmale der Software-Qualität
Software-Maße und -Metriken

Modelle der Software-Qualität

Einschränkungen der Software-Qualität und ihre Gründe

Software-Qualitätsmanagement
 – Aufgabenbereiche
 – Grundlegende Prinzipien

Maßnahmen der Software-Qualitätssicherung
 – Konstruktive Maßnahmen
 – Prozessbezogene Maßnahmen
 – Produktbezogene Maßnahmen

Analytische Maßnahmen
 – Statische Prüftechniken
 – Dynamische Prüftechniken

Testen als Maßnahme der Qualitätssicherung

Black-Box- und White-Box-Testing

Verfahren des Black-Box-Testing
 – Graphenbasierte Testfallgenerierung
 – Schnittstellensignaturbasierte Testfallgenerierung
 – Testfallgenerierung nach logischen Kriterien
 – Syntaxbasierte Testfallgenerierung

Testen eingebetteter Systeme

Literatur

I.1.23 Anwendungsentwicklung in ERP-Systemen

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B098</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Anwendungsentwicklung in ERP-Systemen</td>
</tr>
</tbody>
</table>
| **Lehrveranstaltung(en)** | B098b Übg. Anwendungsentwicklung in ERP-Systemen
B098a Anwendungsentwicklung in ERP-Systemen |
| **Verantwortliche(r)** | Dipl.-Inform. (FH) Birger Wolter |
| **Zuordnung zum Curriculum** | IT-Management, -Consulting & -Auditing (Bachelor)
Informatik (Bachelor)
Wirtschaftsinformatik (Bachelor) |
| **Verwendbarkeit** | Das Modul “Anwendungsentwicklung in ERP-Systemen” baut auf die unter anderem in den Modulen “Programmstrukturen 1” und “Datenbanken 1” erworbenen Kenntnisse und Fähigkeiten auf und ergänzt die betriebswirtschaftliche Sichtweise des Moduls “Implementierung von Geschäftsprozessen in ERP-Systemen” um die programmiertechnische Sichtweise. |
| **Semesterwochenstunden** | 6 |
| **ECTS** | 5.0 |
| **Voraussetzungen** | Programmstrukturen und Datenbankgrundlagen. |
| **Dauer** | 1 |

Lernziele

I.1.23.1 Üb. Anwendungsentwicklung in ERP-Systemen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Üb. Anwendungsentwicklung in ERP-Systemen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(en)</td>
<td>Birger Wolter</td>
</tr>
<tr>
<td>Hörtermin</td>
<td>5</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art</td>
<td>5</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Übung/Praktikum/Planspiel</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>3.0</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>Abnahme</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehr- und Medienform(en)</td>
<td>Softwaredemonstration, studentische Arbeit am Rechner</td>
</tr>
</tbody>
</table>

Lernziele

Die Studierenden können - durch Programmierübungen mit den Werkzeugen der Entwicklungsumgebung - die praktische Umsetzung der theoretisch erworbenen Kenntnisse.

Inhalt

- Datenbankzugriffe
- Listenverarbeitung (Reports)
- Gestaltung von Bildschirmelementen (Dynpros)
- Web Dynpro und SAPUI5

Literatur

I.1.23.2 Anwendungsentwicklung in ERP-Systemen

Lehrveranstaltung: Anwendungsentwicklung in ERP-Systemen
Dozent(en): Birger Wolter
Hörtermin: 5
Häufigkeit: jährlich
Art: 5
Lehrform: Vorlesung mit integrierter Übung/Workshop/Assigm.
Semesterwochenstunden: 2
ECTS: 2.0
Prüfungsform: Klausur
Sprache: deutsch
Lehr- und Medienform(en): Softwaredemonstration

Lernziele

Die Studierenden …

- erwerben systematische Kenntnisse der ABAP-Programmiersprache, als bedeutender Träger der betriebswirtschaftlichen Anwendungslogik in SAP-Systemen.
- erlangen die Fähigkeit, SAP-Systeme zu verstehen und einfache Erweiterungen für spezielle Anwendungsaufgaben vorzunehmen.

Inhalt

- Einführung und erste Schritte
- Werkzeuge der Entwicklungsumgebung
- Grundlegende Konzepte
- Datenbankzugriffe
- Listenverarbeitung (Reports)
- Gestaltung von Bildschirmelementen (Dynpros)
- Besonderheiten von Unternehmenssoftware
- Objektorientierte Programmierung mit ABAP Objects
- Webtechnologien: Web Dynpro und SAPUI5

Literatur

I.1.24 Auslandssemester

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B099</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Auslandssemester</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B099a Auslandssemester</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Dipl.-Soz. (FH) Nicole Haß</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Data Science (Bachelor Studiengang)</td>
</tr>
<tr>
<td></td>
<td>E-Commerce (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Ingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Medieninformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Smart Technology (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Technische Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsinformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td>Verwendbarkeit</td>
<td>Studierende sammeln sprachliche Erfahrungen und erweitern ihre sozialen Kompetenzen, die sie in ihr Berufsleben nach Studiumsabschluss einbringen können.</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>15</td>
</tr>
<tr>
<td>ECTS</td>
<td>20.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Für eine Zulassung müssen alle Übergangsleistungen gemäß § 16a der Prüfungsverfahrensordnung und insgesamt mindestens 45 ECTS-Punkte erfolgreich absolviert sein.</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>

Lernziele

Im Bereich soziale Kompetent ist das Ziel das Kennenlernen einer anderen sprachlichen und kulturellen Umgebung un das Arbeiten und Kommunizieren in dieser. Außerdem natürlich das Erlernen und/oder Festigen einer Fremdsprache.
I.1.24.1 Auslandssemester

Lehrveranstaltung: Auslandssemester
Dozent(en): Nicole Haß
Hörtermin: 6
Häufigkeit: jedes Semester
Art: 6
Lehrform: Veranstaltungen an ausländischer Hochschule
Semesterwochenstunden: 25
ECTS: 20.0
Prüfungsform: Ausland
Sprache: deutsch
Lehr- und Medienform(en): Keine

Lernziele

Nach Abschluss des Auslandsemester besitzen die Studierenden …

- fundierte Sprachkompetenzen in englischer, Französischer oder spanischer Sprache.
- erweiterte Kenntnisse über die Kultur des Gastlandes.

Inhalt

Verpflichtendes Auslandssemester:
Für ein verpflichtendes Auslandssemester muss der Umfang der erfolgreich zu erbringenden Leistungen (ohne Englisch-Sprachkurs) mindestens 30 ECTS-Punkte betragen oder einen entsprechenden gleichwertigen Umfang in lokalen Credits aufweisen. An der ausländischen Hochschule sind fachspezifische weiterführende und keine Grundlagenkurse zu belegen. Diese sollen im Zusammenhang mit dem Wedeler Studiengang stehen (hinsichtlich der zu belegenden Fächer gemäß Modulhandbuch).

Freiwilliges Auslandssemester:

Literatur

abhängig von der ausländischen Hochschule
I.1.25 Soft Skills

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B118</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Soft Skills</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B118a Assistenz, B118b Communication Skills</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>jeweiliger Dozent</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Betriebswirtschaftslehre (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Computer Games Technology (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Data Science (Bachelor Studiengang)</td>
</tr>
<tr>
<td></td>
<td>IT-Ingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Medieninformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Technische Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsinformatik (Bachelor)</td>
</tr>
<tr>
<td>Verwendbarkeit</td>
<td>Die Inhalte dieses Moduls können gewinnbringend in Projekten, der Bachelor-Thesis und im täglichen Berufsleben genutzt werden. Das Modul sollte in allen Studiengängen verwendet werden.</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>5</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Fachliche Inhalte der ersten 4 Studiensemester</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>

Lernziele

I.1.25.1 Assistenz

Lehrveranstaltung Assistenz
Dozent(en) verschiedene Dozenten
Hörtermin 6
Häufigkeit jedes Semester
Art 6
Lehrform Assistenz
Semesterwochenstunden 3
ECTS 3.0
Prüfungsform Schriftl. Ausarbeitung (ggf. mit Präsentation)
Sprache deutsch
Lehr- und Medienform(en) Tutorien

Lernziele
Die Studierenden entwickeln unter Anleitung eines Hochschullehrers die Fähigkeiten …
 • fachspezifische Aufgabenstellungen zu analysieren
 • problemspezifische Lösungen zu konzipieren und
 • als Ergebnis begründet zu präsentieren.

Inhalt
Im Rahmen der Assistenz werden die Studierenden von den Hochschullehrern mit konkreten
(Teil-)Projekten betraut. Diese können ein weites Spektrum umfassen. So sind z.B. die
Durchführung kleinerer empirischer Umfragen oder auch die eigenständige Recherche und
Ausarbeitung spezieller Fachinhalte denkbar. Ebenso in Betracht kommen die Durchführung
von Tutorien oder Übungen. Die Assistenz ist selbständig zu bearbeiten und kann die
Abstimmung mit anderen Studierenden erfordern.

Literatur
keine
I.1.25.2 Communication Skills

Lehrveranstaltung: Communication Skills
Dozent(en): Anna-Magdalena Kölzer
Hörtermin: 6
Häufigkeit: jedes Semester
Art: 6
Lehrform: Workshop
Semesterwochenstunden: 2
ECTS: 2.0
Prüfungsform: Schriftl. Ausarbeitung (ggf. mit Präsentation)
Sprache: deutsch
Lehr- und Medienform(en): studentische Arbeit am Rechner

Lernziele
Die Studierenden verfügen nach dem Besuch der Lehrveranstaltung über folgende Kompetenzen:

- Besitz verbesserter persönlicher Soft Skills, wie sie für Studium oder Beruf erforderlich sind
- Sensibilität für menschliche Interaktionen und Betriebsprozesse
- Besitz erweiterter rhetorischer Fähigkeiten im Rahmen von Präsentationen, Vorträgen und Referaten sowie sozialer Kompetenz
- Kenntnis der Bedeutung von verbalen und nonverbalen Signalen für die eigene Kommunikation sowie die Fähigkeit, diese zu erkennen
- Fähigkeit zum angemessenen Verhalten bei Teamarbeit oder Projekten
- Fähigkeit zur Selbstdarstellung bei Bewerbungen, Interviews, Assessment-Centern.

Inhalt
- Anwendung des Kommunikationsmodell von Schulz von Thun
 - Üben situativer und personenbezogener Gesprächsführung
 - Konflikthandhabung und Klärungsgespräche
- Gruppenarbeit und Ergebnispräsentation
 - betriebliche Fallstudienbearbeitung
 - berufliche Meetings / Protokollführung
 - Verhaltenstraining bei Verkaufsgesprächen
- Unternehmerische Entscheidungsfindung
 - praxisbezogene Postkorbübungen
 - Gesprächsführung mit Mitarbeitern / Fördergespräche / Kritikmanagement
 - Hinweise zur interkulturellen Kompetenz / Verhandlungen

120
Literatur

- **ARNOLD, Frank:**
 Management von den besten lernen.
 München: Hans Hauser Verlag, 2010

- **APPELMANN, Björn:**
 Führen mit emotionaler Intelligenz.
 Bielefeld: Bertelsmann Verlag, 2009

- **BIERKENBIEHL, Vera F.:**
 Rhetorik, Redetraining für jeden Anlass. Besser reden, verhandeln, diskutieren.

- **BOLLES, Nelson:**
 Durchstarten zum Traumjob. Das ultimative Handbuch für Ein-, Um- und Aufsteiger.

- **DUDENREDAKTION mit HUTH, Siegfried A.:**
 Reden halten - leicht gemacht. Ein Ratgeber.
 Mannheim/Leipzig: Dudenverlag, 2007

- **GRÜNING; Carolin; MIELKE; Gregor:**
 Präsentieren und Überzeugen. Das Kienbaum Trainingskonzept.
 Freiburg: Haufe-Lexware Verlag, 2004

- **HERTEL, Anita von:**
 Professionelle Konfliktlösung. Führen mit Mediationskompetenz.
 Handelsblatt, Bd., 6, Kompetent managen.
 Frankfurt: Campus Verlag, 2009

- **HESSE, Jürgen; SCHRADER, Hans Christian:**
 Assessment-Center für Hochschulabsolventen.
 5. Auflage, Eichborn: Eichborn Verlag, 2009

- **MENTZEL, Wolfgang; GROTFELD, Svenja; HAUB, Christine:**
 Mitarbeitergespräche.
 Freiburg: Haufe-Lexware Verlag, 2009

- **MORITZ, Andr; RIMBACH, Felix:**
 Soft Skills für Young Professional. Alles was Sie für ihre Karriere wissen müssen.

- **PERTL, Klaus N.:**
 Karrierefaktor Selbstmanagement. So erreichen Sie ihre Ziele.
 Freiburg: Haufe-Verlag, 2005

- **PORTNER, Jutta:**
 Besser verhandeln. Das Trainingsbuch.
 Offenbach: Gabal Verlag, 2010

- **PÜTTJER, Christian; SCHNIEDERDA, Uwe:**
 Assessment-Center. Training für Führungskräfte.
 Frankfurt/New York: Campus Verlag, 2009
• PÜTTJER, Christian; SCHNIERDA, Uwe:
 Das große Bewerbungshandbuch.
 Frankfurt: Campus Verlag, 2010

• SCHULZ VON THUN, Friedemann; RUPPEL, Johannes; STRATMANN, Roswitha:
 Miteinander Reden. Kommunikationspsychologie für Führungskräfte.
 10. Auflage, Reinbek bei Hamburg: rororo, 2003
I.1.26 Entre- und Intrapreneurship

B120 Entre- und Intrapreneurship

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B120</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Entre- und Intrapreneurship</td>
</tr>
</tbody>
</table>
| Lehrveranstaltung(en) | B120b Workshop Entre- und Intrapreneurship
| | B120a Entre- und Intrapreneurship × |
| Verantwortliche(r) | Prof. Dr. Florian Schatz |
| Zuordnung zum Curriculum | Betriebswirtschaftslehre (Bachelor)
| | E-Commerce (Bachelor) |
| | IT-Management, -Consulting & -Auditing (Bachelor) |
| | Smart Technology (Bachelor) |
| Verwendbarkeit | Keine. |
| Semesterwochenstunden | 6 |
| ECTS | 5.0 |
| Voraussetzungen | Tiefes Zusammenhangswissen betriebswirtschaftlicher Grundlagen. |
| Dauer | 1 |

Lernziele

Nach der Vorlesung und den Workshops sind die Studierenden in der Lage, kreative Produktideen in Markterfolge zu überführen. Dafür beherrschen sie alternative methodische Herangehensweisen, die in den Vorlesungen theoretisch erläutert und praktisch in den Workshops angewandt wurden.
I.1.26.1 Workshop Entre- und Intrapreneurship

Lehrveranstaltung: Workshop Entre- und Intrapreneurship
Dozent(en): Florian Schatz
Hörtermin: 6
Häufigkeit: jährlich
Art: 6
Lehrform: Workshop
Semesterwochenstunden: 2
ECTS: 3.0
Prüfungsform: Abnahme
Sprache: deutsch
Lehr- und Medienform(en): Beamerpräsentation, Gastreferenten, interaktive Entwicklung und Diskussion von Modellen, studentische Arbeit am Rechner

Lernziele
Die Studierenden ...

- sind in der Lage, theoretische Modelle des Entrepreneurship zu interpretieren und auf praktische Anwendungsfälle anzuwenden.
- verfügen als Entrepreneur über konzeptionelle Fähigkeiten und Skills, innovative Geschäftsideen in Markterfolge zu überführen.
- verfügen als Intrapreneur über Fähigkeiten, Innovationsprozesse innerhalb traditioneller Unternehmensstrukturen durch- und umzusetzen.

Inhalt
Die in der Vorlesung vermittelten Kenntnisse werden in einer simulierten Start-Up-Situation praktisch angewendet.
Ausgewählte Inhalte Workshop

- Geschäftsmodellentwicklung
- Potentialanalyse
- Stressmanagement
- Verhandlungsführung
- Gründerteams optimal zusammenstellen und zielgerichtet führen
- Ideenworkshop - Strategieentwicklung für die eigene Gründung
- Präsentieren und überzeugen
- Businessplanerstellung
Literatur

I.1.26.2 Entre- und Intrapreneurship x

Lehrveranstaltung: Entre- und Intrapreneurship x
Dozent(en): Florian Schatz
Hörtermin: 6
Häufigkeit: jährlich
Art: 6
Lehrform: Vorlesung
Semesterwochenstunden: 4
ECTS: 2.0
Prüfungsform: Klausur
Sprache: deutsch
Lehr- und Medienform(en): Beamerpräsentation, Gastreferenten, interaktive Entwicklung und Diskussion von Modellen

Lernziele

Die Studierenden …

- sind in der Lage, theoretische Modelle des Entrepreneurship zu interpretieren und auf praktische Anwendungsfälle anzuwenden.
- verfügen als Entrepreneur über konzeptionelle Fähigkeiten und Skills, innovative Geschäftsideen in Markterfolge zu überführen.
- verfügen als Intrapreneur über Fähigkeiten, Innovationsprozesse innerhalb traditioneller Unternehmensstrukturen durch- und umzusetzen.

Inhalt

Globalisierte Märkte, zunehmende Marktsättigung mit Verdrängungswettbewerb, verkürzte Produktlebenszyklen sowie konvergente Märkte für digitale Güter fordern permanente Innovationen, die von bestehenden Unternehmen oder neu gegründeten Unternehmen realisiert werden. Vor diesem Hintergrund umfasst Entrepreneurship nicht nur die klassische Unternehmensgründung. Es schließt Elemente des Unternehmertums wie die Entwicklung innovativer Geschäftsideen, die Konkretisierung in Geschäftsmodellen sowie deren Implementierung unter Gegebenheiten von Unsicherheit mit ein. Im Sinne von Unternehmertum wird diese Haltung von Mitarbeitern innerhalb bestehender Unternehmen als Intrapreneurship bezeichnet.

Literatur

• Brüderl, Josef; Preisendörfer, Peter; Ziegler Rolf: Der Erfolg neugegründeter Betriebe. Duncker & Humblot: Berlin, 1998
• De, Dennis A.: Entrepreneurship: Gründung und Wachstum von kleinen und mittleren Unternehmen. Pearson: München, 2005
• Fuegistaller, Urs; Müller, Christoph; Volery, Thierry: Entrepreneurship. Modelle Umsetzung Perspektiven. Mit Fallbeispielen aus Deutschland, Österreich und der Schweiz. 3. überarb. Aufl. Gabler: Wiesbaden, 2012
• Kußmaul, Heinz: Betriebswirtschaftslehre für Existenzgründer. 6. Aufl. Oldenbourg: München, 2008
• Kubicek, Herbert; Brückner, Steffen: Businesspläne für IT-basierte Geschäftsideen: Betriebswirtschaftliche Grundlagen anhand von Fallstudien. dpunkt.verlag: Heidelberg, 2010
• Nagl, Anna: Der Businessplan. 5. überarb. Aufl. Gabler: Wiesbaden, 2010
• Schefczyk, Michael; Pankotsch, Frank: Betriebswirtschaftslehre Junger Unternehmen. Schäffer-Poeschel: Stuttgart, 2003
I.1.27 IT-Sicherheit

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B122</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>IT-Sicherheit</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B122a IT-Sicherheit</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Prof. Dr. Gerd Beuster</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Data Science (Bachelor Studiengang)</td>
</tr>
<tr>
<td></td>
<td>E-Commerce (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Ingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Medieninformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Smart Technology (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsinformatik (Bachelor)</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Die Studierenden besitzen grundlegende Kenntnisse der Programmierung und des Aufbaus eines Computersystems sowie von Computernetzen.</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>

Lernziele

Die Studierenden erwerben die notwendigen Kenntnisse, um Software-Systeme und ihre betrieblichen Einsatzszenarien in Hinblick auf Ihre Sicherheit einschätzen zu können. Weiterhin sind die Studierenden nach Absolvierung des Moduls in der Lage, bei der Konzeption und Entwicklung von Software-Systemen und in ihrem Unternehmenseinsatz relevante Sicherheitsaspekte zu berücksichtigen. Die Studierenden erwerben Kenntnisse
im Bereich IT-Sicherheit nicht nur bezogen auf einzelne Software-Systeme, sondern auch im Hinblick auf die IT-Infrastruktur. Die Studierenden verfügen über das Wissen der verschiedenen Bedrohungs- und Angriffsarten. Sie kennen die jeweiligen Maßnahmen zur Abwehr der Bedrohungen, insbesondere bei vernetzten Anwendungen.
I.1.27.1 IT-Sicherheit

Lehrveranstaltung: IT-Sicherheit
Dozent(en): Gerd Beuster
Hörtermin: 4
Häufigkeit: jährlich
Art: 4
Lehrform: Vorlesung mit integrierter Übung/Workshop/Assigm.
Semesterwochenstunden: 4
ECTS: 5.0
Prüfungsform: Klausur + ggf. Bonus
Sprache: deutsch/englisch
Lehr- und Medienform(en): E-Learning

Lernziele
Die Studierenden erwerben die notwendigen Kenntnisse, um Softwaresysteme und ihre betrieblichen Einsatzszenarien in Hinblick auf ihre Sicherheit einschätzen zu können. Sie sind in der Lage, bei der Konzeption und Entwicklung von Softwaresystemen und in ihrem Unternehmenseinsatz relevante Sicherheitsaspekte zu berücksichtigen.

- Kenntnis der unterschiedlichen Bedrohungsszenarien und -arten.
- Kenntnis der besonderen Gefahren bei internetbasierten Anwendungen.
- Kenntnis typischer primärer Sicherheitsziele (Vertraulichkeit, Authentifizierung, Verbindlichkeit, u.a.).
- Kenntnis der Verfahren zur Gewährleistung der unterschiedlichen Sicherheitsziele.
- Kenntnis der praxisrelevanten kryptografischen Verfahren und Protokolle.
- Kenntnis der Sicherungsmaßnahmen in Rechnernetzen.
- Fähigkeit, grundlegende Sicherungsmaßnahmen für Web-Anwendungen umzusetzen.
- Kenntnis der Bestandteile einer IT-Sicherheitsinfrastruktur und ihrer zentralen Funktionalitäten.
- Kenntnis der Verfahren zur Risikoabschätzung und Bewertung der Sicherheit von IT-Systemen und die Fähigkeit, diese anzuwenden.

Inhalt

- Gegenstandsbereich der IT-Sicherheit
- Aktuelle Richtlinien, Standards, Normen und Gesetze
- Bedrohungen der IT-Sicherheit und daraus resultierende Risiken
- Primäre Sicherheitsziele
- Überblick über Verfahren zur Erreichung der Ziele
- Kryptografische Verfahren

131
– Verschlüsselungsverfahren
 * Symmetrische Verschlüsselungsverfahren
 * Asymmetrische Verschlüsselungsverfahren
– Hash-Funktionen
– Schlüsselmanagement
– Zertifikate
– Kryptografische Protokolle
 * Digitale Signatur
 * Zeitstempel
 * SSL / TLS-Protokoll

• Authentifizierungsverfahren
• Übertragungssicherheit in Netzen
 – Sichere IP-Kommunikation
 – VPN-Technologien

• Sicherheitsarchitekturen und ihre Komponenten
 – Sicherheitsaspekte von Web-Servern
 – Firewall-Systeme
 – Intrusion Detection-Systeme

• Sicherheit von Web-Anwendungen
• Technisch / organisatorische Maßnahmen zur Erhöhung der IT-Sicherheit
• Risiko- und Sicherheitsmanagement

Literatur

I.1.28 Prozessmodellimplementation

B123 Prozessmodellimplementation

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B123</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Prozessmodellimplementation</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B123a Prozessmodellimplementation</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>M.Sc. Christian Uhlig</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>E-Commerce (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsinformatik (Bachelor)</td>
</tr>
<tr>
<td>Verwendbarkeit</td>
<td>Das Modul baut auf vorgelagerten Modulen zur Softwaretechnik, insbesondere objektorientierter Softwareentwicklung in Java (unter anderem “Programmstrukturen 2” und “Fortgeschrittene Objektorientierte Programmierung”), zu Datenbanken (”Datenbanken 1”), zur Modellierung von Geschäftsprozessen (”Systemmodellierung”) und zu ”Web-Anwendungen” auf. Es vertieft die entsprechenden theoretischen und praktischen Kenntnisse zur Entwicklung eines betrieblichen Anwendungssystems. Es kann sinnvoll mit anderen Modulen zur projektorientierten Softwareentwicklung (zum Beispiel ”Software-Projekt”) kombiniert werden.</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>2</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Dauer

1

Lernziele

Die Studierenden stellen die Charakteristika betrieblicher Anwendungssysteme dar, insbesondere die Unterstützung durch eine zentrale Persistierung von Unternehmensdaten, eine Client-Server-Architektur für den Mehrbenutzerbetrieb und die auf die Pflege von Geschäftsobjekten fokussierte Benutzerführung.

I.1.28.1 Prozessmodellimplementation

Lehrveranstaltung: Prozessmodellimplementation
Dozent(en): Christian Uhlig
Hörtermin: 6
Häufigkeit: jährlich
Art: Vorlesung mit integrierter Übung/Workshop/Assigm.
Semesterwochenstunden: 2
ECTS: 5.0
Prüfungsform: Abnahme
Sprache: deutsch
Lehr- und Medienform(en): Handout, interaktive Entwicklung und Diskussion von Modellen, Software-demonstration, studentische Arbeit am Rechner

Lernziele
Die Studierenden …

- skizzieren die Grundlagen von Softwareprojekten und des Softwareentwicklungszyklus (Spezifikation, Entwurf und Implementierung).
- setzen Geschäftsprozessmodelle (EPK, BPMN) zur Fachkonzeptbeschreibung in Beziehung zum Entwurf und zur Implementierung unterstützender Anwendungssysteme.
- verbinden Geschäftsprozessmodelle (BPMN) mit Modell-Elementen des Softwareentwurfs (z. B. Datenobjekte, Maskendesign, Klassenhierarchie, usw.).
- identifizieren und entwerfen die notwendigen Bedienelemente (insbesondere Bildschirmmasken) zur Unterstützung bestimmter Funktionen eines gegebenen Geschäftsprozesses.
- differenzieren Desktop- und Web-Anwendungen und ihre wesentlichen Merkmale.
- vergleichen kritisch verschiedene Ansätze zur Persistierung und zur Umsetzung von Web-Anwendungen.
- wählen aus und nutzen Konzepte, Programmierschnittstellen und Frameworks der Java-Landschaft zur Erstellung webbasierter Anwendungssysteme mit Datenbankunterstützung (J2EE, JPA, JTA, usw.).
- entwerfen und entwickeln datenbankgestützte Web-Anwendungen zur Unterstützung von Geschäftsprozessen auf Basis der Programmiersprache Java und wichtiger damit verbundener Konzepte und Frameworks.
- setzen eine Modelllandschaft in Bezug zu Einheiten der Softwaretechnik (Klassen zu Business Objects, Klassen zu Masken, usw.) und leiten dabei wesentliche Teile des Systemgerüsts systematisch aus Modellinhalten ab.
- implementieren Geschäftsprozesse als Web Services unter Einsatz von BPEL.
- modellieren ausführbare BPMN-Modelle zu Geschäftsprozessen.
- implementieren Geschäftsprozesse als Web Services unter Einsatz von BPMN-Modellen.
Inhalt

- Architekturen betrieblicher Anwendungssysteme
 - Client-Server-Architekturen mit persistenter Datenhaltung
 - Web-Applikationen und Web-Services

- Objektorientierte Web-Anwendungsentwicklung mit Java
 - Objekt-relationale Abbildung mit der Java Persistence API
 - Architekturen und Frameworks für Web-Anwendungen: Java EE, Google Web Toolkit (GWT)

- Implementierung von Geschäftsprozessen als Web Services
 - Automatisierung von Geschäftsprozessen per SOA
 - WSDL
 - BPEL
 - ausführbare BPMN-Modelle

- Modelltypen der ARIS-Methode zur Verbindung von Software-Engineering mit Geschäftsprozessmodellierung

- Praktische Aufgabenstellungen
 - Prozess- und Datenmodellierung zu einem gegebenen Fachkonzept
 - Modelle zur Spezifikation eines zu implementierenden Anwendungssystems (z. B. Maskendesign, Klassendiagramm, usw.)
 - Entwurf und Implementierung eines Anwendungssystems zu einem Ausschnitt des modellierten Fachkonzeptes
 - Automatisierung eines per Modell vorgegebenen Geschäftsprozesses mittels BPEL
 - Automatisierung eines per Modell vorgegebenen Geschäftsprozesses mittels BPMN

Literatur

- Krüger, Jörg; Uhlig, Christian: Praxis der Geschäftsprozessmodellierung - ARIS erfolgreich anwenden, VDE Verlag, 2009
- Tacy, Adam; Hanson, Robert; Essington, Jason: GWT in Action, 2. Auflage, Manning, 2013
- Müller, Bernd; Wehr, Harald: Java Persistence API 2: Hibernate, EclipseLink, OpenJPA und Erweiterungen, Carl Hanser Verlag, 2012
- van Lessen, Tammo; Lübke, Daniel; Nitzsche, Jörg: Geschäftsprozesse automatisieren mit BPEL, dpunkt, 2011
- Salvanos, Alexander: Professionell entwickeln mit Java EE 7: Das umfassende Handbuch, Galileo Computing, 2014
- DeMichiel, Linda; Shannon, Bill: Java Platform, Enterprise Edition (Java EE) Specification v7, Oracle 2013
- W3C: Web Services Description Language (WSDL) 1.1, 2001
- Software AG: ARIS-Dokumentation (Methodenhandbuch, Bedienhandbücher), jeweils aktuellste Fassung
I.1.29 Bachelor-Thesis

B150 Bachelor-Thesis

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B150</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Bachelor-Thesis</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B150a Bachelor-Thesis</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>jeweiliger Dozent</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Betriebswirtschaftslehre (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Computer Games Technology (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Data Science (Bachelor Studiengang)</td>
</tr>
<tr>
<td></td>
<td>E-Commerce (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Ingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Medieninformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Smart Technology (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Technische Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsinformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td>Verwendbarkeit</td>
<td>Keine.</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>0</td>
</tr>
<tr>
<td>ECTS</td>
<td>12.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Voraussetzung ist das Wissen aus den Veranstaltungen der sechs vorangegangenen Semester, insbesondere der Veranstaltungen, die mit dem Themengebiet der Abschlussarbeit zusammenhängen.</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>

Lernziele

An das Betriebspraktikum schließt sich die Bachelor-Arbeit an, die sehr praxisorientiert fast ausschließlich in Unternehmen angefertigt wird und deren Themenstellung sich in enger Kooperation zwischen FH Wedel und dem jeweiligen Unternehmen in der Regel aus dem betrieblichen Umfeld ergibt.

Die Studierenden sollen mit ihrer Arbeit den Nachweis erbringen, dass sie ihr erlerntes Wissen auf eine anwendungsbezogene Aufgabenstellung aus einem Fachgebiet selbstständig auf
wissenschaftlicher Grundlage im Rahmen des festgelegten Themas anzuwenden. Wesentlich sind strukturierte und argumentierte Inhalte sowie das Einhalten üblicher Formalia.

Dies dient der Vertiefung und des konkreten Einsatzes der fachliche Kompetenzen: Methodisches Arbeiten und praktisches Anwenden der im Studium erlernten Kenntnisse.
I.1.29.1 Bachelor-Thesis

Lehrveranstaltung: Bachelor-Thesis
Dozent(en): jeweiliger Dozent
Hörtermin: 7
Häufigkeit: jedes Semester
Art: 7
Lehrform: Thesis
Semesterwochenstunden: 0
ECTS: 12.0
Prüfungsform: Schriftl. Ausarbeitung (ggf. mit Präsentation)
Sprache: deutsch
Lehr- und Medienform(en)

Lernziele

Die Studierenden ...

- besitzen die Fähigkeit zur Durchführung einer praxisorientierten Arbeit.
- können eine Fragestellung selbständig erarbeiten.
- können die zu erarbeitende Problematik klar strukturieren.
- können die Vorgehensweise und Ergebnisse in einer Ausarbeitung übersichtlich darstellen.
- stärken ihre praktischen Fähigkeiten im Projektmanagement-Bereich und zur Selbstorganisation.

Inhalt

Literatur

themenabhängig
I.1.30 Betriebspraktikum

B159 Betriebspraktikum

Studienang

Bachelor-Studiengang IT-Management, -Consulting & -Auditing

Kürzel

B159

Bezeichnung

Betriebspraktikum

Lehrveranstaltung(en)

B159a Betriebspraktikum

Verantwortliche(r)

jeweiliger Dozent

Zuordnung zum Curriculum

Betriebswirtschaftslehre (Bachelor)
Computer Games Technology (Bachelor)
Data Science (Bachelor-Studiengang)
E-Commerce (Bachelor)
IT-Ingenieurwesen (Bachelor)
IT-Management, -Consulting & -Auditing (Bachelor)
Informatik (Bachelor)
Medieninformatik (Bachelor)
Smart Technology (Bachelor)
Technische Informatik (Bachelor)
Wirtschaftsinformatik (Bachelor)
Wirtschaftsingenieurwesen (Bachelor)

Verwendbarkeit

Studierende erweitern ihre sozialen Kompetenzen und ihre Kontakte zu Unternehmen. Beides können sie nach ihrem Studiumsabschluss gewinnbringend für eine Bewerbung oder das Einleben bei ihrem späteren Arbeitgeber verwenden.

Semesterwochenstunden

0

ECTS

17.0

Voraussetzungen

für diesen Textabschnitt zuständige Mitarbeiter konnte die angeforderten Inhalte leider nicht rechtzeitig liefern.

Dauer

1

Lernziele

Die Studierenden sammeln Erfahrungen für die spätere berufliche Tätigkeit in einem Unternehmen.

I.1.30.1 Betriebspraktikum

Lehrveranstaltung: Betriebspraktikum
Dozent(en): jeweiliger Dozent
Hörtermin: 7
Häufigkeit: jedes Semester
Art: Praktikum
Lehrform: Betriebliches Praktikum
Semesterwochenstunden: 0
ECTS: 17.0
Prüfungsform: Praktikumsbericht / Protokoll
Sprache: deutsch
Lehr- und Medienform(en)

Lernziele

Inhalt

Literatur
themenabhängig
I.1.31 Bachelor-Kolloquium

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B160</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Bachelor-Kolloquium</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B160a Kolloquium</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>jeweiliger Dozent</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Betriebswirtschaftslehre (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Computer Games Technology (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Data Science (Bachelor Studiengang)</td>
</tr>
<tr>
<td></td>
<td>E-Commerce (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Ingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Medieninformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Smart Technology (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Technische Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsinformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td>Verwendbarkeit</td>
<td>Keine.</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>1</td>
</tr>
<tr>
<td>ECTS</td>
<td>1.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Zulassungsvoraussetzung zum Kolloquium ist eine mit mindestens “ausreichend” bewertete Bachelor-Thesis.</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Das Kolloquium ist eine fächerübergreifende mündliche Prüfung, ausgehend vom Themenkreis der Bachelor-Thesis, und ist die letzte Prüfungsleistung, welche das Studium abschließt.</td>
</tr>
<tr>
<td></td>
<td>In der mündlichen Abschlussprüfung halten die Studierenden einen Fachvortrag über das von ihnen bearbeitete Thema und verteidigen ihre Bachelor-Thesis in einer anschließenden Diskussion. Dies stärkt die Fähigkeit, ein intensiv bearbeitetes Themengebiet, zusammenfassend darzustellen und professionell zu vertreten.</td>
</tr>
</tbody>
</table>
I.1.31.1 Kolloquium

Lehrveranstaltung: Kolloquium
Dozent(en): jeweiliger Dozent
Hörtermin: 7
Häufigkeit: jedes Semester
Art: 7
Lehrform: Kolloquium
Semesterwochenstunden: 1
ECTS: 1.0
Prüfungsform: Kolloquium
Sprache: deutsch
Lehr- und Medienform(en):

Lernziele

Die Studierenden ...

- besitzen die Fähigkeit der konzentrierten Darstellung eines intensiv bearbeiteten Fachthemas.
- verfestigen die Kompetenz, eine fachliche Diskussion über eine Problemlösung und deren Qualität zu führen.
- verfügen über ausgeprägte Kommunikations- und Präsentationsfähigkeiten.

Inhalt

- nach Thema der Bachelor-Arbeit unterschiedlich
- Fachvortrag über das Ergebnis der Bachelor-Arbeit
- Diskussion der Qualität der gewählten Lösung
- Fragen und Diskussion zum Thema der Bachelor-Arbeit und verwandten Gebieten

Literatur

themenabhängig
I.1.32 Einführung IT-Management & -Prüfung

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B161</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Einführung IT-Management & -Prüfung</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B161a Einführung IT-Management & -Prüfung</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Dr. Gerrit Remané</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td>Verwendbarkeit</td>
<td>The module “Introduction to IT Management & Testing” is an introductory module. The competences acquired form the basis for advanced modules such as the modules “Lifecycle of IT systems” and “Strategic IT-management”. This module can therefore be sensibly combined with the mentioned modules.</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Keine</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>

Lernziele

Information technologies allow organizations to optimize and redesign their business processes and to develop completely new business models. To manage these changes, they are looking for employees with a solid understanding of information technology and its business implications, which you will learn throughout your academic studies and practical experiences. The purpose of this course is to provide you an overview on technological foundations of information systems, business implications from applying information systems, and central tasks of jobs related to information systems.
I.1.32.1 Einführung IT-Management & -Prüfung

Lehrveranstaltung Einführung IT-Management & -Prüfung
Dozent(en) Gerrit Remané
Hörtermin 1
Häufigkeit jährlich
Art 1
Lehrform Vorlesung mit integrierter Übung/Workshop/Assigm.
Semesterwochenstunden 4
ECTS 5.0
Prüfungsform Klausur
Sprache deutsch
Lehr- und Medienform(en) Beamerpräsentation, Gastreferenten, interaktive Entwicklung und Diskussion von Modellen, Softwaredemonstration, Tutorien

Lernziele
Dieser Abschnitt ist nicht in der gewünschten Sprache verfügbar.

- You will understand the different layers of an information systems including their technological foundation
- You will be able to describe how information systems provide benefits for organizations and you will be able to provide concrete examples for each type of benefit
- You will understand the main tasks of an organization’s IT-management, of an IT consultant, and of an IT auditor
- You will acquire critical soft-skills for studying more successful and make a greater impact in your successive career
- You will get to know your peers better in order to profit from your experiences over the course of your studies

Inhalt
Dieser Abschnitt ist nicht in der gewünschten Sprache verfügbar.

The course is intended to provide students with the conceptual and methodological basics for understanding the application of information systems in business practice. For this purpose the components, benefits, and jobs related to information systems are discussed in detail.

Brief outline

- Foundations: What is an information system (layer model, software, hardware)?
- Why do organizations use information systems (automating processes, improving decision making, building new business models)?
- What jobs targeted by this program are related to information systems (IT project management, IT management, IT auditing, IT consulting)?
- Overarching skills (creating presentations, learning)
Literatur

I.1.33 Lebenszyklus von IT-Systemen

B162 Lebenszyklus von IT-Systemen

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B162</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Lebenszyklus von IT-Systemen</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B162a Lebenszyklus von IT-Systemen</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Dr. Gerrit Remané</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td>Verwendbarkeit</td>
<td>The module builds on the acquired knowledge on the design and implementation of information systems from the IT-related modules and deepens it by means of a business management approach to the use of IT in companies from an IT management and IT revision perspective. The module should therefore be combined with these modules.</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Contents of the introduction to IT management and IT auditing</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>

Lernziele

Over the past decade information systems have significantly transformed our personal lives (e.g., smartphones) as well as various industries (e.g., media). In your future career – independent if you work in IT-management or on the business side – you will need to make important decisions about such information systems. These might include challenges such as: Should we buy an existing software or develop a new one on our own? Which vendor matches our requirements most closely? How should we proceed in developing the new system? The purpose of this course is to provide you with the necessary skill set for making reasonable decisions when being posed with such questions along the whole lifecycle of an information system.
Lehrveranstaltung
Lebenszyklus von IT-Systemen
Dozent(en)
Gerrit Remané
Hörtermin
3
Häufigkeit
jährlich
Art
3
Lehrform
Vorlesung mit integrierter Übung/Workshop/Assigm.
Semesterwochenstunden
4
ECTS
5.0
Prüfungsform
Klausur + ggf. Bonus
Sprache
deutsch
Lehr- und Medienform(en)
Beamerpräsentation, Gastreferenten, interaktive Entwicklung und Diskussion von Modellen, Software-Demonstration, Tutorien

Lernziele
Dieser Abschnitt ist nicht in der gewünschten Sprache verfügbar.

- You will be able to understand and describe the different lifecycle stages of an information system
- You will know important decisions that you need to make during a lifecycle
- You will develop and apply your own set of tools guiding your decision making
- You will practice to work on project teams and improve critical soft skills

Inhalt
The course teaches students the essential concepts, processes, methods, and procedures for the effective and orderly provision of IT systems in companies. It focuses on the phases along the lifecycle as well as particularly important overarching aspects

Brief outline

- Introduction to lifecycle management
- Enterprise architecture and project portfolio management
- Make vs. buy decision
- Project proposal
- IT project management
- System analysis
- System design and development
- Testing, deployment, and operations
- Auditing of IT-systems
- Agile software development with Scrum and DevOps
- Implications of cloud computing
Literatur

I.1.34 Projekt IT-Management, Consulting & Auditing

B164 Projekt IT-Management, Consulting & Auditing

Studiengang Bachelor-Studiengang IT-Management, -Consulting & -Auditing

Kürzel B164

Bezeichnung Projekt IT-Management, Consulting & Auditing

Lehrveranstaltung(en)
- B164b Projekt IT-Management, Consulting & Auditing
- B164a Projektmanagement

Verantwortliche(r) Dr. Gerrit Remané

Zuordnung zum Curriculum IT-Management, -Consulting & -Auditing (Bachelor)

Verwendbarkeit Das Modul „Projekt IT-Management, Consulting & Auditing“ baut auf den erworbenen Kenntnissen und Fähigkeiten aus den grundlegenden IT-Management / IT-Revisions-bezogenen Modulen auf und vertieft diese in praktischer Hinsicht anhand einer konkreten, umfangreicheren praktischen Aufgabenstellung.

Semesterwochenstunden 4

ECTS 10.0

Voraussetzungen Kenntnisse der Informatik-bezogenen, betriebswirtschaftlichen und IT-Management/ IT-Revisionsbezogenen Veranstaltungen der vorherigen Semester

Dauer 1

Lernziele

152
I.1.34.1 Projekt IT-Management, Consulting & Auditing

Lehrveranstaltung: Projekt IT-Management, Consulting & Auditing
Dozent(en): Martin Schultz
Hörtermin: 6
Häufigkeit: jährlich
Art: Projekt
Semesterwochenstunden: 2
ECTS: 8.0
Prüfungsform: Schriftl. Ausarbeitung (ggf. mit Präsentation)
Sprache: deutsch
Lehr- und Medienform(en): Handout

Lernziele
Die Studierenden …
- können im Team komplexe Problemstellungen lösungsorientiert in einer Projektstruktur abbilden,
- sind in der Lage, arbeitsteilig -unter Nutzung eines am Projektmanagement orientierten Leitfadens- Teilprobleme zu lösen,
- können sich eigenständig in interdisziplinären Teams koordinieren und
- können Arbeitsergebnisse vor Entscheidungsträgern in Unternehmen und / oder der Hochschule fundiert präsentieren

Inhalt

Zusammen mit der Vorlesung Projektmanagement wird zudem ein Pfad aufgezeigt, für eine Zertifizierung bei einem der einschlägigen Verbände im Bereich Projektmanagement.

Literatur
Notwendige relevante Literatur wird in Abhängigkeit von den zu bearbeitenden Problemstellungen der Projekte zeitnah durch den veranstaltenden Dozenten bekanntgegeben.
I.1.34.2 Projektmanagement

Lehrveranstaltung Projektmanagement
Dozent(en) Gerrit Remané
Hörtermin 6
Häufigkeit jährlich
Art 6
Lehrform Vorlesung
Semesterwochenstunden 2
ECTS 2.0
Prüfungsform Klausur
Sprache deutsch
Lehr- und Medienform(en)

Lernziele

- You will understand the specific characteristics and challenges of projects (e.g., project vs. process)
- You will be able to apply the most important project management tools along the project phases initiation, planning, execution, and closing (e.g., business case development, work breakdown structure, risk controlling)
- You will be able to apply major concepts and methods for better understanding and solve overarching challenges that span across the individual phases (e.g., motivation, feedback behavior, change management)
- You will be able to select proper project management methodologies depending on the project’s specific requirements (e.g., waterfall vs. agile)

Inhalt

As basically every industry is undergoing a digital transformation, routine tasks are increasingly being automated by machines taking over human processing steps and decision making. In parallel, non-routine tasks – characterized as temporary endeavors to create unique results – are becoming even more important. These non-routine tasks can also be defined as projects. Thus, project management is one of the most important skills for building a successful and satisfying career in the 21st century. Wherever you want to change the status quo to the better, you will need project management skills to make it happen.

Already in the past project management has been very challenging, which can be seen by a significant amount of business and IT projects not being completed on time, on budget, and on scope (the numbers vary, but some studies estimate that the more than 2 out of 3 projects fail to meet their objectives). The particular reasons are many, but they can be grouped in two broad groups. First, fundamental project management skills such as a proper project approach, project planning, and risk controlling. Second, soft skills to manage the various stakeholders, which include team motivation, client communication, and change management.

The purpose of this course is to provide you with a foundation in both: basic project management skills as well as soft skills for successfully working on and leading projects in your studies as well as your career.

Brief outline
• Introduction to project management
• Project phases (initiation, planning, execution, closing)
• Soft skills (motivation, change management, feedback, …)
• Specific approaches / examples (agile project management, large projects, …)

Literatur

I.1.35 Seminar IT-Management, Consulting und Auditing

B174 Seminar IT-Management, Consulting und Auditing

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B174</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Seminar IT-Management, Consulting und Auditing</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B174a Seminar IT-Management, Consulting und Auditing</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Dr. Gerrit Remané</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>2</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Kenntnisse der Informatik-bezogenen, betriebswirtschaftlichen und IT-Management/IT-Revisionsbezogenen Veranstaltungen der vorherigen Semester</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>

Lernziele

I.1.35.1 Seminar IT-Management, Consulting und Auditing

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Seminar IT-Management, Consulting und Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(en)</td>
<td>Martin Schultz</td>
</tr>
<tr>
<td>Hörtermin</td>
<td>6</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art</td>
<td>6</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Seminar</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>2</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>Schriftl. Ausarbeitung (ggf. mit Präsentation)</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehr- und Medienform(en)</td>
<td>Handout</td>
</tr>
</tbody>
</table>

Lernziele

Die Studierenden ...

- sind in der Lage, eine abgegrenzte theoretische oder praktische Problemstellung eigenständig wissenschaftlich fundiert und umfassend zu bearbeiten
- zeigen eine verbesserte Problemlösungstechnik, sicherere Verwendung von Termini, präzisere Strukturierung im Aufbau schriftlicher Arbeiten unter Einhaltung formaler Vorgaben
- erarbeiten sich eine wissenschaftliche und sichere Vortrags- und Diskussionstechnik im Rahmen der Präsentation der Ergebnisse.

Inhalt

Literatur

- Zum Einstieg: grundlegende Literatur aus den Bereichen IT-Management und/ oder IT-Revision
- in Abhängigkeit vom gewählten Thema eigenständige Recherche weiterführender Literatur
I.1.36 Beratungskompetenz

B175 Beratungskompetenz

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B175</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Beratungskompetenz</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B175a Beratungskompetenz</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Dr. Gerrit Remané</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Kenntnisse aus dem Modul Social Skills sowie Kenntnisse der Informatik-bezogenen, betriebswirtschaftlichen und IT-Management/ IT-Revisionsbezogenen Veranstaltungen der vorherigen Semester</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>

Lernziele

1.1.36.1 Beratungskompetenz

Lehrveranstaltung: Beratungskompetenz
Dozent(en): Ronald Poppe
Hörtermin: 5
Häufigkeit: jährlich
Art: 5
Lehrform: Workshop
Semesterwochenstunden: 4
ECTS: 5.0
Prüfungsform: Schriftl. Ausarbeitung (ggf. mit Präsentation)
Sprache: None
Lehr- und Medienform(en): Beamerpräsentation, Handout, interaktive Entwicklung und Diskussion von Modellen, Tutorien

Lernziele
Die Studierenden...

- können die wesentlichen Funktionen und Rollen der Beratung beschreiben
- können die wesentlichen Phasen eines Beratungsprozesses erläutern
- können ausgewählte Methoden und Vorgehensmodelle in der Analyse- und der Umsetzungsphase von Beratungsprojekten beschreiben und auf konkrete Anwendungsfälle übertragen
- den angemessenen Einsatz der unterschiedlichen Beratungs- und Konfliktlösungsansätzen erläutern und anwenden
- den Umgang mit Personen unterschiedlicher Kulturkreise in typischen Projekt- und Problemsituationen gestalten können.

Inhalt

- Funktionen und Rollen der Beratung
- Phasen eines Beratungsprozesses
- Methoden und Vorgehensmodelle für Beratungsprojekte
- Kommunikations- und Konfliktlösungsansätze für Beratungsprojekte
- Bearbeitung von Workshops, Projekten für konkrete Beratungssituationen

159
Literatur

I.1.37 Praxissemester (dual)

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B176</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Praxissemester (dual)</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B176a Praxissemester (dual)</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Dipl.-Kauff. (FH) Journalistin Anke Amsel</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Betriebswirtschaftslehre (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Data Science (Bachelor Studiengang)</td>
</tr>
<tr>
<td></td>
<td>E-Commerce (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Ingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Medieninformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Smart Technology (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Technische Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsinformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td>Verwendbarkeit</td>
<td>Verwendung der erworbenen Fähigkeiten in der späteren praxisorientierten Bachelor-Thesis.</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>20</td>
</tr>
<tr>
<td>ECTS</td>
<td>25.0</td>
</tr>
</tbody>
</table>
| Voraussetzungen | Voraussetzung für die Zulassung zum Praxissemester ist der Nachweis der vorherigen studienbegleitenden Praxisblöcke. Sie dienen der Einarbeitung in die betriebliche Praxis. Die Praxisblöcke sind in Form von Berichten zu dokumentieren.
| | Für eine Zulassung müssen alle Übergangsleistungen gemäß Studienordnung und insgesamt mindestens 75 ECTS-Punkte erfolgreich absolviert sein. Das Praxissemester darf nicht vor dem lt. Studienverlaufsplan festgelegten Semester angetreten werden. Es kann auf Antrag an den Prüfungsausschuss vorgezogen werden, wenn zu erwarten ist, dass die beziehungsweise der Studierende zum Zeitpunkt der Aufnahme des Praxissemesters die gemäß Studienordnung bis zum Praxissemester zu erwerbenden ECTS-Punkte erworben haben wird. |
Die Anmeldung des Praxissemesters erfolgt bei der Koordinierungsstelle „Duale Studiengänge“ über ein Formblatt.

Dauer

1

Lernziele

Das Praxissemester bietet den Studierenden die Möglichkeit eine Verbindung von studiengangsspezifischem und unternehmensspezifischem Kompetenzprofil herauszubilden.

Dabei sollen sich die Studierenden mit Leitfragen ihres Studiengangs auseinandersetzen. Die inhaltliche Vertiefung kann durch die Einbindung des Kooperationsunternehmens teilweise über das Lehrangebot der FH Wedel hinausgehen.

Den Nachweis, dass sie ihr erlerntes Wissen auf eine anwendungsbezogene Aufgabenstellung aus einem Fachgebiet selbstständig auf wissenschaftlicher Grundlage im Rahmen des festgelegten Themas anwenden können, erbringen die Studierenden im Rahmen einer wissenschaftlichen Arbeit.
1.1.37.1 Praxissemester (dual)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Praxissemester (dual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(en)</td>
<td>Anke Amsel</td>
</tr>
<tr>
<td>Hörtermin</td>
<td>6</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Art</td>
<td>6</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Praktikum</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>20</td>
</tr>
<tr>
<td>ECTS</td>
<td>25.0</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>Praktikumsbericht / Protokoll</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehr- und Medienform(en)</td>
<td>Keine</td>
</tr>
</tbody>
</table>

Lernziele

Die Studierenden …

- können das Wissen aus dem bisherigen Studium in der Praxis anwenden und hinsichtlich der Tauglichkeit kritisch bewerten
- erweitern ihre wissenschaftlichen Ausbildung durch systematische praktische Erfahrungen
- können Projekten vorbereiten, analysieren und im Nachgang evaluieren
- bewerten Problemstellungen und können Lösungsansätze dafür entwickeln
- können Projektmanagement betreiben, Aktivitäten koordinieren, Planabweichungen hinterfragen.
- sehen und bewerten unternehmensweite und gesellschaftliche Zusammenhänge der eigenen Tätigkeit und zeigen ihre professionelle persönliche Qualifikation in der Zusammenarbeit mit Vorgesetzten und Kollegen
- nehmen Stellung zu den sozial-, datenschutz- oder umweltschutzbedingten Restriktionen bei der Umsetzung von betrieblichen Anforderungen
- reflektieren ihre Qualifikation und ihre eigene Tätigkeit
- sind zum selbstständigen und eigenverantwortlichen Arbeiten fähig
- übernehmen Verantwortung für die Qualität der eigenständig übernommenen Arbeit
- entscheiden sich für systematische Vorgehensweisen und Arbeitstechniken
- klassifizieren ihre Tätigkeit zu Anwendungsgebieten des Studiengangs
- sind in der Lage das Wissen aus dem bisherigen Studium in der Praxis anzuwenden, fortzubilden und hinsichtlich der Tauglichkeit kritisch zu bewerten.
Inhalt

Literatur

themenabhängig
1.1.38 Wissenschaftliche Ausarbeitung (dual)

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B179</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Wissenschaftliche Ausarbeitung (dual)</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B179a Wissenschaftliche Ausarbeitung (dual)</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Dipl.-Kauff. (FH) Journalistin Anke Amsel</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Betriebswirtschaftslehre (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Data Science (Bachelor Studiengang)</td>
</tr>
<tr>
<td></td>
<td>E-Commerce (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Ingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Medieninformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Smart Technology (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Technische Informatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsinformatik (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftsingenieurwesen (Bachelor)</td>
</tr>
<tr>
<td>Verwendbarkeit</td>
<td>Die wissenschaftliche Ausarbeitung dient als Vorbereitung auf den wissenschaftlichen Teil der Bachelor-Thesis.</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>3</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
</tbody>
</table>
| Voraussetzungen | Voraussetzung für die Zulassung im Rahmen des Praxissemesters ist der Nachweis der vorherigen studienbegleitenden Praxisblöcke. Sie dienen der Einarbeitung in die betriebliche Praxis. Die Praxisblöcke sind in Form von Berichten zu dokumentieren.

Für eine Zulassung müssen alle Übergangsleistungen gemäß Studienordnung und insgesamt mindestens 75 ECTS-Punkte erfolgreich absolviert sein. Das Praxissemester darf nicht vor dem lt. Studienverlaufsplan festgelegten Semester angetreten werden. Es kann auf Antrag an den Prüfungsausschuss vorgezogen werden, wenn zu erwarten ist, dass die beziehungsweise der Studierende zum Zeitpunkt der Aufnahme des Praxissemesters die gemäß
Studienordnung bis zum Praxissemester zu erwerbenden ECTS-Punkte erworben haben wird.

Die Anmeldung erfolgt über ein Formblatt bei der beziehungsweise dem hochschulseitigen Betreuer(in).

Dauer

1

Lernziele

Es werden Kompetenzen zu Zitieren, Recherche, Verfassen wissenschaftlicher Texte und Methoden wissenschaftlichen Arbeitens erworben.
I.1.38.1 Wissenschaftliche Ausarbeitung (dual)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Wissenschaftliche Ausarbeitung (dual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(en)</td>
<td>jeweiliger Dozent</td>
</tr>
<tr>
<td>Hörtermin</td>
<td>6</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Art</td>
<td>6</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Praktikum</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>3</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>Schriftl. Ausarbeitung (ggf. mit Präsentation)</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehr- und Medienform(en)</td>
<td>Keine</td>
</tr>
</tbody>
</table>

Lernziele

Die Studierenden sind in der Lage, innerhalb einer vorgegebenen Frist ein Themenkomplex des Praxissemesters selbstständig wissenschaftlich zu bearbeiten und diesen kritisch zur praktischen Anwendung zu betrachten.

Inhalt

Die wissenschaftliche Arbeit ist als abschließende, vom Studierenden eigenständig aber hochschul- und unternehmensseitig betreute Ausarbeitung zum Praxissemester zu verstehen. Der Themenkomplex wird im Sinne der Zielsetzung des Praxissemesters mit der/dem hochschulseitigen Betreuer(in) abgestimmt und soll Bezüge zur betrieblichen Praxis aufweisen.

Literatur

themenabhängig
I.1.39 Applied Data Science and Machine Learning

B209 Applied Data Science and Machine Learning

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B209</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Applied Data Science and Machine Learning</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B209a Applied Data Science and Machine Learning</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Prof. Dr. Ulrich Hoffmann</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Data Science (Bachelor Studiengang)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Smart Technology (Bachelor)</td>
</tr>
<tr>
<td>Verwendbarkeit</td>
<td>Das Modul lässt sich sinnvoll mit dem Modulen “Bildverarbeitung- und Analyse” und “Statistik” kombinieren, bei denen Grundlagen und ein wesentliches Anwendungsgebiet des maschinellen Lernens vermittelt werden. In den Modulen “Projekt Intelligente Systeme” und “Projekt Intelligente Umgebungen” können die erworbenen Kompetenzen in umfangreichen, interdisziplinären Projekten je nach gewählter Aufgabe eingesetzt werden.</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Sie Studierenden sollten solide mathematische Grundkenntnisse besitzen, wie sie in den Modulen “Mathematik 1” und “Mathematik 2” vermittelt werden. Sie sollten zudem über Fähigkeiten in der imperativen und objekt-orientierten Programmierung verfügen (“Programmstrukturen 1”, “Programmstrukturen 2”).</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>

Lernziele

Arbeitsweise und Eigenschaften benennen. Sie können Machine-Learning-Projekte bezüglich ihrer Qualität systematisch untersuchen und bewerten.

I.1.39.1 Applied Data Science and Machine Learning

Lehrveranstaltung: Applied Data Science and Machine Learning
Dozent(en): Christo Zonnev
Hörtermin: 4
Häufigkeit: jährlich
Art: Vorlesung mit integrierter Übung/Workshop/Assigm.
Semesterwochenstunden: 4
ECTS: 5.0
Prüfungsform: Schriftl. Ausarbeitung (ggf. mit Präsentation)
Sprache: None
Lehr- und Medienform(en): Beamerpräsentation, interaktive Entwicklung und Diskussion von Modellen, Online-Aufbereitung, Software-Demonstration, studentische Arbeit am Rechner, Tafel

Lernziele

Nach Abschluss des Moduls besitzen die Studierenden…

• Kenntnisse über wesentliche Fragestellungen des maschinellen Lernens
• Kenntnisse über das systematische Vorgehen bei der Durchführung von Machine-Learning-Projekte und die beteiligten Schritten
• Kenntnisse der auftretenden Herausforderungen im Machine-Learning-Projekten
• Kenntnisse wesentlicher Begriffe des Maschinellen Lernens und die Fähigkeit sie gezielt und präzise einzusetzen
• Kenntnisse unterschiedlicher Machine-Learning-Aufgaben, verschiedener Machine-Learning-Verfahren (Algorithmen)
• die Fähigkeit die Einsatzgebiete, Arbeitsweise und Eigenschaften von Machine-Learning-Verfahren zu benennen
• Fähigkeit Machine-Learning-Projekte bezüglich Ihrer Qualität systematisch zu untersuchen und zu bewerten.
• Kennnisse über verschiedene Machine-Learning-Werkzeuge und ihre Anwendungsgebiete
• Fähigkeiten im Umgang mit ausgewählten Machine-Learning-Werkzeugen
• die Fähigkeit gegebene Daten für das maschinelle Lernen aufzubereiten
• die Fähigkeit Daten auf Eignung zum maschinellen Lernens zu überprüfen

Inhalt

Vorlesung

• Einführung
 – Maschinelles Lernen - warum, wie, was / Grundlagen
• Data-Science-Grundlagen
 – Wiederholung der erforderlichen Mathematik & Statistik
 – Daten-Algorithmen
 – Einführung in allgemeinen Software-Werkzeuge für Data-Science

• Grundlagen des maschinellen Lernen
 – Daten-Algorithmen

• Einführung in Software-Werkzeuge des maschinellen Lernens

• Graph-Daten
 – Verarbeitung von Graphenstrukturen
 – Soziale Netzwerke

• neuronale Netze
 – neuronale Netze im Detail
 – Software-Werkzeug Keras
 – Software-Werkzeug Tensorflow

• Kursretrospektive

Praktischer Teil

• Projektaufgegenstellung
 – Ideenfindung
 – Aufgabenverteilung

• Projekt-Präsentationen

Literatur

• Bishop: Neural Networks for Pattern Recognition, Oxford Press 1995

• Brause: Neuronale Netze, Teubner, 1991

• Raschka: Python Machine Learning, Packt, 2015

• Müller, Guido: Introduction to Machine Learning with Python, O’Reilly, 2016

• Richert, Coelho: Building Machine Learning Systems with Python, Packt, 2018
• Goodfellow: Deep Learning (Adaptive Computation and Machine Learning)
 MIT Press, 2017

• Géron: Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools,
 and Techniques for Building Intelligent Systems
 O’Reilly, 2017
Strategisches IT-Management

B210 Strategisches IT-Management

Studiengang Bachelor-Studiengang IT-Management, -Consulting & -Auditing
Kürzel B210
Bezeichnung Strategisches IT-Management
Lehrveranstaltung(en) B210a Strategisches IT-Management
Verantwortliche(r) Dr. Gerrit Remané
Zuordnung zum Curriculum IT-Management, -Consulting & -Auditing (Bachelor)
Verwendbarkeit Das Modul baut auf den erworbenen Kenntnissen zur Gestaltung und Implementierung von Informationssystemen aus den informatikbezogenen Modulen auf und ergänzt diese um eine strategische Perspektive. Das Modul kann daher sinnvoll mit den genannten Modulen kombiniert werden.
Semesterwochenstunden 4
ECTS 5.0
Voraussetzungen Inhalte des Moduls Einführung in IT-Management und Prüfung
Dauer 1

Lernziele

Traditionell wurde propagiert, dass IT-Strategie sich vor allem an der Geschäftsstrategie eines Unternehmens ausrichten soll, um diese möglichst effizient zu unterstützen. Im Internetzeitalter wurde es dann offensichtlich, dass die IT-Strategie in vielen Fällen gleichermaßen ein zentraler Enabler für neue Produkte, Services und Geschäftsmodelle ist. Damit wurde die Beziehung zwischen IT-Strategie und Geschäftsstrategie bidirektional. Heutzutage hat die Bedeutung der IT weiter zugenommen und IT ist mittlerweile ein Kernbestandteil fast jeder Geschäftsstrategie, sodass diese nicht mehr separat betrachtet werden kann.

Dadurch ist auch das strategische IT-Management auf verschiedene Arten betroffen. Erstens, müssen finanzielle und personelle Ressourcen anders gemanagt werden als früher (z.B. alternative Organisationsformen zum traditionellen „Plan-Build-Run“). Zweitens, verlangt ein sich zunehmend schneller ändernder Geschäftskontext, dass die IT-Architektur darauf hinreichend schnell reagieren kann, gleichzeitig aber effizient und sicher bleibt (z.B. Cloud Computing). Drittens, gibt einige Bereiche in denen sich die IT-Abteilung zukünftig noch stärker als Innovationstreiber und Berater der Fachbereiche positionieren sollten.

173
(z.B. Automatisierung von Prozessen). Das Ziel dieser Veranstaltung ist es somit, den Studierenden die wesentlichen Aufgaben des strategischen IT-Managements im digitalen Zeitalter aufzuzeigen.
I.1.40.1 Strategisches IT-Management

Lehrveranstaltung: Strategisches IT-Management
Dozent(en): Gerrit Remané
Hörtermin: 4
Häufigkeit: jährlich
Art: 4
Lehrform: Vorlesung mit integrierter Übung/Workshop/Assigm.
Semesterwochenstunden: 4
ECTS: 5.0
Prüfungsform: Klausur / Mündliche Prüfung + ggf. Bonus
Sprache: deutsch
Lehr- und Medienform(en): Beamerpräsentation, Gastreferenten, interaktive Entwicklung und Diskussion von Modellen

Lernziele

Die Studierenden können ...

- Unterschiede zwischen einer traditionellen einer IT-Strategie und einer Digital Business Strategy erläutern
- geeignete Frameworks und Methoden anwenden, um finanzielle und personelle Ressourcen im digitalen Zeitalter sinnvoll einzusetzen (v.a. IT-Organisation, IT-Personal, IT-Controlling)
- geeignete Konzepte zur Entwicklung einer effizienten, flexiblen und gleichzeitig sicheren IT-Architektur anwenden (z.B. Enterprise Architecture Management, IT-Sourcing, Cyber Security)
- zentrale Fähigkeiten beschreiben, welche die IT-Abteilung aufbauen muss, um die digitale Transformation des Unternehmens mitzugestalten (z.B. Datenanalyse, Prozessautomatisierung, IT-Innovationsmanagement)
- kritische Abwägungen, welche es bei all diesen Fragestellungen in der Praxis häufig zu treffen gilt, selbstständig treffen und begründen

Inhalt

IT-Management besteht aus strategischen (z.B. IT-Strategie, IT-Organisation, IT-Personal) und eher operativen Aufgaben (z.B. Softwareentwicklung, Projektmanagement, IT Service Management). Dieser Kurs fokussiert die strategischen Aufgaben und betrachtet vor allem den Einfluss zunehmender Digitalisierung auf das strategische IT-Management. Studierende sollen die wesentlichen strategischen Aufgaben verstehen und durch Einbindung realer Praxisbeispiele lernen, welche Abwägungen dabei zu treffen sind und wie diese umgesetzt werden können.

Kurzgliederung:

- Von der IT-Strategie zur Digital Business Strategie
- Steuerung der IT-Ressourcen (Organisation, Personal, Finanzen, ...)
• Schaffung einer effizienten, flexiblen und sicheren IT-Architektur (Enterprise Architecture Management, IT-Sourcing, Cyber Security, …)

• Aufbau erfolgskritischer IT-Kompetenzen für die Zukunft (IT-Innovationsmanagement, Prozessautomatisierung, Datenmanagement und -analyse, …)

Literatur

I.1.41 IT-Steuerung und IT-gestütztes BPM

B211 IT-Steuerung und IT-gestütztes BPM

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B211</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>IT-Steuerung und IT-gestütztes BPM</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B211a IT-Steuerung und IT-gestütztes BPM</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Dr. Gerrit Remané</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td>Verwendbarkeit</td>
<td>Das Modul IT-Steuerung und IT-gestütztes BPM baut auf den erworbenen Kenntnissen der IT-Management Module auf und vertieft diese in Hinblick auf IT-Steuerungsmodelle, IT-Managementinstrumente und IT-gestütztes Business Process Management. Das Modul kann daher sinnvoll mit den genannten Modulen kombiniert werden</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Für dieses Modul sind Kenntnisse aus den Modulen Strategisches IT-Management, Lebenszyklus von IT-Systemen und System-/ Prozessmodellierung hilfreich</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>

Lernziele

Die ganzheitliche Steuerung der IT-Funktion ist ein wesentlicher Bestandteil des IT-Managements. Neben der konsequenten Ausrichtung der IT-Funktion an der (digitalen) Unternehmensstrategie u.a. durch eine effektive IT-Governance ist auch die effiziente Steuerung der operativen IT-Leistungserbringung erfolgskritisch.

Aufgrund der Digitalisierung und der zunehmenden Komplexität IT-gestützter Geschäftsprozesse gewinnen zudem Werkzeuge und Technologien, die die Steuerung, Automatisierung und Überwachung von Geschäftsvorfällen/-prozessen unterstützen, stark an Bedeutung.

Vor diesem Hintergrund vermittelt dieses Modul den Studierenden zum einen die grundlegenden Kenntnisse zur effektiven und effizienten Steuerung der IT. Darüber hinaus werden Grundlage der Serviceorientierung und des IT-Servicemanagements behandelt. Zudem verfügen die Studierenden nach Abschluss des Moduls über ein umfassendes Verständnis über die Einsatzmöglichkeiten von IT-Systemen für das Business Process Management (BPM).
I.1.41.1 IT-Steuerung und IT-gestütztes BPM

Lehrveranstaltung: IT-Steuerung und IT-gestütztes BPM
Dozent(en): Ronald Poppe
Hörtermin: 5
Häufigkeit: jährlich
Art: 5
Lehrform: Vorlesung
Semesterwochenstunden: 4
ECTS: 5.0
Prüfungsform: Klausur / Mündliche Prüfung
Sprache: deutsch
Lehr- und Medienform(en): Beamerpräsentation, Handout, interaktive Entwicklung und Diskussion von Modellen, Software-demonstration, Tutorien

Lernziele
Die Studierenden können …

- Rahmen, Inhalte und wesentliche Objekte der IT-Steuerung beschreiben
- CIO-Kennzahlensysteme für die strategische IT-Steuerung erläutern und abhängig vom IT-Steuerungsobjekt zusammenstellen
- die Einführung einer IT-Governance im Rahmen eines integrierten und IT-gestützten Governance-, Risiko- & Compliance-Managements erläutern und um Aspekte des Reputationsmanagements erweitert diskutieren
- unterschiedliche IT-Management Referenzmodelle (wie z.B. COBIT, ITIL) und deren IT-Kennzahlensysteme für eine effektive IT-Steuerung erläutern und bewerten
- Grundlagen strukturierter serviceorientierter IT-Steuerungsmodelle für eine durchgängigen Serviceorientierung der IT erläutern und geeignete ITIL-Elemente für ein professionelles IT-Servicemanagement im Rahmen eines Einführungsprojektes zusammenstellen
- IT-gestütztes Business Process Management erläutern und funktionale & architekturbegleitende Aspekte marktgängiger iBPM-Sofwarelösungen beschreiben
- ausgewählte IT-Managementinstrumente erläutern und abhängig vom Steuerungsobjekt auswählen und einsetzen

Inhalt

Kurzgliederung:

- CIO-Kennzahlensysteme und IT-Benchmarking
- IT-Governance und IT-gestütztes GRC-Management
- IT-Referenzmodelle zur Steuerung der operativen IT-Leistungserbringung
- IT-gestütztes Business Process Management

Literatur

I.1.42 Internationale Rechnungslegung & Unternehmensbesteuerung 1

B212 Internationale Rechnungslegung & Unternehmensbesteuerung 1

Studiengang
Bachelor-Studiengang IT-Management, -Consulting & -Auditing

Kürzel
B212

Bezeichnung
Internationale Rechnungslegung & Unternehmensbesteuerung 1

Lehrveranstaltung(en)
B212a Unternehmensbesteuerung 1
B212a Internationale Rechnungslegung

Verantwortliche(r)
Prof. Dr. StB. Stefan Christoph Weber

Zuordnung zum Curriculum
Betriebswirtschaftslehre (Bachelor)
Data Science (Bachelor Studiengang)
IT-Management, -Consulting & -Auditing (Bachelor)

Verwendbarkeit

für diesen Textabschnitt zuständige Mitarbeiter konnte die angeforderten Inhalte leider nicht rechtzeitig liefern.

Semesterwochenstunden
4

ECTS
5.0

Voraussetzungen

für diesen Textabschnitt zuständige Mitarbeiter konnte die angeforderten Inhalte leider nicht rechtzeitig liefern.

Dauer
1

Lernziele

für diesen Textabschnitt zuständige Mitarbeiter konnte die angeforderten Inhalte leider nicht rechtzeitig liefern.
Unternhmensbesteuerung 1

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Unternehmensbesteuerung 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(en)</td>
<td>Felix Reiche</td>
</tr>
<tr>
<td>Hörtermin</td>
<td>3</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art</td>
<td>3</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>2</td>
</tr>
<tr>
<td>ECTS</td>
<td>2.5</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>Klausur + ggf. Bonus</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehr- und Medienform(en)</td>
<td>Beamerpräsentation, Handout, Overheadfolien, Tafel</td>
</tr>
</tbody>
</table>

Lernziele

Inhalt

Literatur
1.1.42.2 Internationale Rechnungslegung

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Internationale Rechnungslegung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(en)</td>
<td>Stefan Christoph Weber</td>
</tr>
<tr>
<td>Hörtermin</td>
<td>3</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art</td>
<td>3</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung mit integrierter Übung/Workshop/Assigm.</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>2</td>
</tr>
<tr>
<td>ECTS</td>
<td>2.5</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>Klausur + ggf. Bonus</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehr- und Medienform(en)</td>
<td>Tutorien</td>
</tr>
</tbody>
</table>

Lernziele

Lernziele der Veranstaltung sind:

- Ableiten und Beurteilen der Internationalisierung der deutschen Rechnungslegung.
- Analysieren des institutionellen Rahmens der IFRS.
- Ableiten der Zwecke und Grundsätze der Rechnungslegung nach IFRS sowie der Elemente des IFRS-Abschlusses und jeweils kritisch vergleichen mit dem HGB.
- Entwickeln eines systematischen Verständnisses für die Ansatz-, Bewertungs- und Erfolgserfassungskonzeptionen nach IFRS sowie kritisch vergleichen mit dem HGB.
- Anwenden der Ansatz-, Bewertungs- und Erfolgserfassungskonzeptionen nach IFRS auf ausgewählte Bilanzposten sowie kritisch vergleichen mit dem HGB.

Inhalt

Erster Teil: Internationalisierung der deutschen Rechnungslegung

- Ausgestaltung von Rechnungslegungssystemen
 - Klassifikation von Rechnungslegungssystemen
 - Wesentliche Determinanten von Rechnungslegungssystemen
- Internationalisierung der Unternehmensität
- Harmonisierungsbestrebungen in der Rechnungslegung
 - Supranationale Harmonisierungsbestrebungen der Europäischen Union
 - Nationale Harmonisierungsbestrebungen

Zweiter Teil: Institutionelle und konzeptionelle Grundlagen der Rechnungslegung nach IFRS

- Institutioneller Rahmen der IFRS
– Struktur und Verbindung internationaler Standardsetter
– Organisation des International Accounting Standards Board (IASB)
– Formelles Standardsetzungsverfahren (Due Process)
– Regelungssystem des IASB
– Anerkennung der IFRS in der Europäischen Union (Endorsement)
– Exkurs: Deutsches Rechtssystem und privates Standardsetting

• Zwecke und Grundsätze der Rechnungslegung nach IFRS
 – Überblick
 – Zwecke der Rechnungslegung nach IFRS
 – Grundsätze der Rechnungslegung nach IFRS
 – Wesentliche Unterschiede zum HGB und Fallbeispiele

• Elemente des IFRS-Abschlusses
 – Überblick
 – Bilanz
 – Gesamtergebnisrechnung
 – Eigenkapitalveränderungsrechnung
 – Kapitalflussrechnung
 – Segmentberichterstattung
 – Exkurs: Management Commentary
 – Wesentliche Unterschiede zum HGB

• Ansatzkonzeption
 – Aktivierungsfähigkeit
 – Passivierungsfähigkeit
 – Wesentliche Unterschiede zum HGB und Fallbeispiele

• Bewertungskonzeption
 – Bewertungsmaßstäbe - Überblick
 – Zugangsbewertung
 – Folgebewertung
 – Wesentliche Unterschiede zum HGB und Fallbeispiele

• Erfolgserfassungskonzeption
 – Grundkonzeption
 – Ertragsrealisation
– Wesentliche Unterschiede zum HGB und Fallbeispiel

Dritter Teil: Ansatz, Bewertung und Anhangangaben ausgewählter Bilanzposten

- Sachanlagevermögen
 - Grundlegendes
 - Ansatz
 - Bewertung
 - Angaben
 – Wesentliche Unterschiede zum HGB und Fallbeispiel

- Immaterielles Anlagevermögen
 - Grundlegendes
 - Ansatz
 - Bewertung
 - Angaben
 – Wesentliche Unterschiede zum HGB und Fallbeispiel

- Vorräte
 - Grundlegendes
 - Ansatz
 - Bewertung
 - Angaben
 – Wesentliche Unterschiede zum HGB und Fallbeispiel

- Forderungen
 - Grundlegendes
 - Ansatz
 - Bewertung
 - Angaben
 – Wesentliche Unterschiede zum HGB und Fallbeispiel

- Rückstellungen und Erfolgsunsicherheiten
 - Grundlegendes
 - Ansatz
 - Bewertung
 - Angaben
 – Erfolgsunsicherheiten
Wesentliche Unterschiede zum HGB und Fallbeispiel

Verbindlichkeiten
- Grundlegendes
- Ansatz
- Bewertung
- Angaben
- Wesentliche Unterschiede zum HGB und Fallbeispiel

Latente Steuern
- Grundlegendes
- Ansatz
- Bewertung
- Angaben
- Wesentliche Unterschiede zum HGB und Fallbeispiel

Literatur
I.1.43 Konzernrechnungslegung & Unternehmensbesteuerung 2

B213 Konzernrechnungslegung & Unternehmensbesteuerung 2

Studiengang Bachelor-Studiengang IT-Management, -Consulting & -Auditing

Kürzel B213

Bezeichnung Konzernrechnungslegung & Unternehmensbesteuerung 2

Lehrveranstaltung(en) B213a Unternehmensbesteuerung 2
B213a Konzernrechnungslegung

Verantwortliche(r) Prof. Dr. StB. Stefan Christoph Weber

Zuordnung zum Curriculum Betriebswirtschaftslehre (Bachelor)
Data Science (Bachelor Studiengang)
IT-Management, -Consulting & -Auditing (Bachelor)

Verwendbarkeit für diesen Textabschnitt zuständige Mitarbeiter konnte die angeforderten Inhalte leider nicht rechtzeitig liefern.

Semesterwochenstunden 5

ECTS 5.0

Voraussetzungen für diesen Textabschnitt zuständige Mitarbeiter konnte die angeforderten Inhalte leider nicht rechtzeitig liefern.

Dauer 1

Lernziele für diesen Textabschnitt zuständige Mitarbeiter konnte die angeforderten Inhalte leider nicht rechtzeitig liefern.
I.1.43.1 Unternehmensbesteuerung 2

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Unternehmensbesteuerung 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(en)</td>
<td>Felix Reiche</td>
</tr>
<tr>
<td>Hörtermin</td>
<td>4</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>2</td>
</tr>
<tr>
<td>ECTS</td>
<td>2.5</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>Klausur + ggf. Bonus</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
</tbody>
</table>

Lernziele

Inhalt

Literatur
I.1.43.2 Konzernrechnungslegung

Lehrveranstaltung: Konzernrechnungslegung
Dozent(en): Stefan Christoph Weber
Hörtermin: 4
Häufigkeit: jährlich
Art: 4
Lehrform: Vorlesung mit integrierter Übung/Workshop/Assigm.
 Semesterwochenstunden: 3
ECTS: 3.0
Prüfungsform: Klausur + ggf. Bonus
Sprache: deutsch
Lehr- und Medienform(en): Tutorien

Lernziele
Lernziele der Veranstaltung sind:

- Ableiten und kritischer Vergleich der Aufgaben, Grundsätze und (Mindest-)Bestandteile des Konzernabschlusses nach HGB und IFRS.
- Entwickeln eines systematischen Verständnisses für die Theorien des Konzernabschlusses sowie Anwenden auf die Konzernrechnungslegung nach HGB und IFRS.
- Praxisorientierte und IT-basierte Anwendung der Konsolidierungs- und Prüfungstechniken.

Inhalt
Erster Teil: Grundlagen des Konzernabschlusses

- Begriffliche, normative und theoretische Grundlagen
 - Konzernunternehmen
 - Konzernabschluss als Abschluss der wirtschaftlichen Einheit
 - Theorien des Konzernabschlusses
 - Grundsätze der Konzernrechnungslegung
 - Normierungen zur Konzernrechnungslegung im Überblick
 - Zusammenfassender Vergleich HGB / IFRS
- Verpflichtung zur Aufstellung des Konzernabschlusses und Abgrenzung des Konsolidierungskreises
 - Verpflichtung zur Aufstellung des Konzernabschlusses
 - Abgrenzung des Konsolidierungskreises
Verpflichtung zur Aufstellung des Konzernabschlusses und Abgrenzung des Konsolidierungskreises nach IFRS

Zusammenfassender Vergleich HGB / IFRS und Fallbeispiel

- Vorbereitung der Einzelabschlüsse für den Einbezug in den Konzernabschluss
 - Einordnung in den Prozess der Konzernabschlusserstellung
 - Identische Normen für den Einzel- und Konzernabschluss
 - Grundsatz der Einheitlichkeit
 - Einheitlichkeit des Ansatzes, der Bewertung und des Ausweises
 - Vorbereitung der Einzelabschlüsse für den Einbezug in den Konzernabschluss nach IFRS
 - Zusammenfassender Vergleich HGB / IFRS und Fallbeispiel

Zweiter Teil: Konsolidierungsmaßnahmen im Rahmen des Konzernabschlusses

- Überblick
- Kapitalkonsolidierung
 - Differenzierung nach Beteiligungsverhältnissen
 - Vollkonsolidierung
 - Quotenkonsolidierung
 - Equity-Konsolidierung
- Schuldenkonsolidierung
 - Aufgabe der Schuldenkonsolidierung
 - In die Schuldenkonsolidierung einzubeziehbende Bilanzposten
 - Entstehung und Behandlung von Aufrechnungsdifferenzen
 - Verzicht auf die Schuldenkonsolidierung
 - Schuldenkonsolidierung bei Quoten- und Equity-Konsolidierung
 - Schuldenkonsolidierung nach IFRS
 - Zusammenfassender Vergleich HGB / IFRS und Fallbeispiel
- Zwischenerfolgseliminierung
 - Aufgabe der Zwischenerfolgseliminierung
 - Zwischenerfolg
 - Verzicht auf die Zwischenerfolgseliminierung
 - Zwischenerfolgseliminierung bei Quoten- und Equity-Konsolidierung
 - Zwischenerfolgseliminierung nach IFRS
 - Zusammenfassender Vergleich HGB / IFRS und Fallbeispiel
Aufwands- und Ertragskonsolidierung
 – Aufgabe der Aufwands- und Ertragskonsolidierung
 – In die Aufwands- und Ertragskonsolidierung einzubeziehende GuV-Posten
 – Konsolidierung der Innenumsatzerlöse
 – Konsolidierung anderer Erträge und Aufwendungen
 – Konsolidierung innerkonzernlicher Ergebnisübernahmen
 – Verzicht auf die Aufwands- und Ertragskonsolidierung
 – Aufwands- und Ertragskonsolidierung bei Quoten- und Equity-Konsolidierung
 – Aufwands- und Ertragskonsolidierung nach IFRS
 – Zusammenfassender Vergleich HGB / IFRS und Fallbeispiel

Latente Steuern
 – Aufgabe der latenten Steuerabgrenzung
 – Konzeption der latenten Steuerabgrenzung
 – Ebenen der Bilanzierung latenter Steuern
 – Bewertung latenter Steuern
 – Ausweis latenter Steuern
 – Latente Steuern nach IFRS
 – Zusammenfassender Vergleich HGB / IFRS und Fallbeispiel

Dritter Teil: Weitere Bestandteile des Konzernabschlusses
 – Konzernanhang
 – Konzernkapitalflussrechnung
 – Konzernsegmentberichterstattung
 – Konzerneigenkapitalspiegel
 – Konzernlagebericht

Vierter Teil: Fallbeispiel zur IT-gestützten Erstellung und Prüfung eines Konzernabschlusses

Literatur

• STEINER, Eberhard et al.: Konzernrechnungslegung nach HGB und IFRS. Stuttgart 2010.

I.1.44 Prüfungswesen & Praxisworkshops IT-Audit

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B214</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Prüfungswesen & Praxisworkshops IT-Audit</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B214a Prüfungswesen & Praxisworkshops IT-Audit</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Prof. Dr. StB. Stefan Christoph Weber</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Betriebswirtschaftslehre (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Data Science (Bachelor Studiengang)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td>Verwendbarkeit</td>
<td>für diesen Textabschnitt zuständige Mitarbeiter konnte die angeforderten Inhalte leider nicht rechtzeitig liefern.</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>für diesen Textabschnitt zuständige Mitarbeiter konnte die angeforderten Inhalte leider nicht rechtzeitig liefern.</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>

Lernziele

für diesen Textabschnitt zuständige Mitarbeiter konnte die angeforderten Inhalte leider nicht rechtzeitig liefern.
1.1.44.1 Prüfungswesen & Praxisworkshops IT-Audit

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Prüfungswesen & Praxisworkshops IT-Audit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(en)</td>
<td>Stefan Christoph Weber</td>
</tr>
<tr>
<td>Hörtermin</td>
<td>4</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art</td>
<td>4</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>Klausur</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsches</td>
</tr>
<tr>
<td>Lehr- und Medienform(en)</td>
<td>Beamerpräsentation, Gastreferenten, Handout, Overheadfolien, studentische Arbeit am Rechner, Tafel</td>
</tr>
</tbody>
</table>

Lernziele

Inhalt

Literatur
B215 Finanzwirtschaft

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B215</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Finanzwirtschaft</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B215a Investition x</td>
</tr>
<tr>
<td></td>
<td>B215a Finanzierung x</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Prof. Dr. Franziska Bönte</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Betriebswirtschaftslehre (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Data Science (Bachelor Studiengang)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td>Verwendbarkeit</td>
<td>❗️ für diesen Textabschnitt zuständige Mitarbeiter konnte die angeforderten Inhalte leider nicht rechtzeitig liefern.</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>keine</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>

Lernziele

Nach dem erfolgreichen Abschluss des Moduls kennen Sie diese Zusammenhänge von Finanzierung und Investition.

Unter Einbeziehung finanzmathematischer Methoden können Sie Entscheidungen und Begriffe der Finanzwirtschaft einordnen und erläutern.

Sie können gängige Verfahren der Investitionsrechnung sicher anwenden und interpretieren.

Sie können unterschiedliche Finanzierungsformen gegenüberstellen und bewerten.
I.1.45.1 Investition x

Lehrveranstaltung: Investition x
Dozent(en): Franziska Bönte
Hörtermin: 2
Häufigkeit: jährlich
Art: 2
Lehrform: Vorlesung
Semesterwochenstunden: 2
ECTS: 2.5
Prüfungsform: Klausur + ggf. Bonus
Sprache: None
Lehr- und Medienform(en): Beamerpräsentation, Handout, Tafel, Tutorien

Lernziele
Sie können den Investitionsprozess erläutern und kennen die dabei existenten Risiken.
Sie können gängige Verfahren der Investitionsrechnung sicher anwenden und interpretieren.

Inhalt
- Investitionsbegriff und –arten
- Investitionsplanung
- Verfahren der Einzel-Investitionsrechnung
 - Statistische Verfahren
 - Dynamische Verfahren
 - Berücksichtigung von Steuern
 - Berücksichtigung von Inflation
- Investitionen unter Berücksichtigung von Risiko / unsicheren Erwartungen
- Investitionsprogrammmscheidungen

Literatur
- Blohm, Hans; Lüder, Klaus; Schaefer, Christina: Investition, 10. Aufl., Verlag Vahlen, München, 2012
- Däumler, Klaus-Dieter; Grabe, Jürgen: Grundlagen der Investitions- und Wirtschaftlichkeitsrechnung, 13. vollständig überarbeitete Auflage, Herne: NWB Verlag 2014
- Olfert, Klaus: Investition, 12. Aufl., Herne, NWB Verlag 2012
I.1.45.2 Finanzierung x

Lehrveranstaltung: Finanzierung x
Dozent(en): Fikret Koyuncu
Hörtermin: 2
Häufigkeit: jährlich
Art: 2
Lehrform: Vorlesung
Semesterwochenstunden: 2
ECTS: 2.5
Prüfungsform: Klausur + ggf. Bonus
Sprache: deutsch
Lehr- und Medienform(en): Beamerpräsentation, Handout, Tafel, Tutorien

Lernziele
Sie kennen die Grundbegriffe der Finanzierung und können unterschiedliche Finanzierungsformen gegenüberstellen und bewerten.

Sie können die Finanzierung eines Unternehmens beurteilen und optimieren.

Inhalt
- Grundlagen der Finanzierung
- Finanzplanung
- Finanzierungskennzahlen
- Beteiligungsfinanzierung
- Kurzfristige Fremdkapitalfinanzierung
- Langfristige Fremdkapitalfinanzierung
- Kreditsubstitute
- Innenfinanzierung
- Finanzierungsregeln und Kapitalstruktur

Literatur
- Perridon, Louis; Steiner, Manfred; Rathgeber, Andreas: Finanzwirtschaft der Unternehmung, 17. Aufl., Vahlen Verlag, München, 2016
- Olfert, Klaus: Finanzierung, 17. Aufl., Friedrich Kiehl Verlag, Ludwigshafen, 2017
- Wöhe, Günther; Bilstein, Jürgen; Ernst, Dietmar; Häcker, Joachim: Grundzüge der Unternehmensfinanzierung, 11. Aufl., Vahlen Verlag, München, 2013
- Bieg, Hartmut; Kußmaul, Heinz; Waschbusch, Gerd: Finanzierung in Übungen, 3. Aufl., Vahlen Verlag, München, 2013
<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Bachelor-Studiengang IT-Management, -Consulting & -Auditing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>B216</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Grundlagen der Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>B216a Grundlagen der Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Prof. Dr. Thorsten Giersch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Betriebswirtschaftslehre (Bachelor)</td>
</tr>
<tr>
<td></td>
<td>Data Science (Bachelor Studiengang)</td>
</tr>
<tr>
<td></td>
<td>IT-Management, -Consulting & -Auditing (Bachelor)</td>
</tr>
<tr>
<td>Verwendbarkeit</td>
<td>❌für diesen Textabschnitt zuständige Mitarbeiter konnte die angeforderten Inhalte leider nicht rechtzeitig liefern.</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>❌für diesen Textabschnitt zuständige Mitarbeiter konnte die angeforderten Inhalte leider nicht rechtzeitig liefern.</td>
</tr>
<tr>
<td>Dauer</td>
<td>1</td>
</tr>
</tbody>
</table>

Lernziele

❌für diesen Textabschnitt zuständige Mitarbeiter konnte die angeforderten Inhalte leider nicht rechtzeitig liefern.
I.1.46.1 Grundlagen der Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Grundlagen der Betriebswirtschaftslehre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(en)</td>
<td>Thorsten Giersch</td>
</tr>
<tr>
<td>Hörtermin</td>
<td>1</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art</td>
<td>1</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5.0</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>Klausur</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
</tbody>
</table>

Lernziele

Inhalt

Literatur