
Monoid

Monoid

Definition:

A monoid is an algebraic structure with an
associative binary operation that has an identity
element.

Data.Monoid

class Monoid a where

 mempty :: a

 mappend :: a -> a -> a

-- an identity element

- an associative operation

Rules of monoid
Rule 1: identity element

mempty `mappend` n == n
n `mappend` mempty == n

Rule 2: associative operation
(a `mappend` b) `mappend` c

 == a `mappend` (b `mappend` c)

Examples of monoid

Plus (+)

Product (*)

Examples of monoide

binary operator : (++)

identity element : []
[] ++ n == n
n ++ [] == n

associative : (a ++ b) ++ c
== a ++ (b ++ c)

Question

We already have individual functions like (++),
why do we use mappend instead?

Monoid
newtype Sum a = Sum { getSum :: a }
 deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Sum a) where
 mempty = Sum 0
 Sum x `mappend` Sum y = Sum (x + y)

Monoid
newtype Product a = Product { getProduct :: a }
 deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Product a) where
 mempty = Product 1
 Product x `mappend` Product y = Product (x * y)

Foldable

● Type class : Data.Foldable
● abstract foldl and foldr from list
● applicable to arbitrary structures

Composition

● Tuples are already instances of monoids.

● Tuples of monoids

Extend monoid

define type class Aggregation:

class (Monoid a) => Aggregation a where
 type AggResult a :: *
 aggResult :: a -> AggResult a

Summary

● Definition
● Rules
● Usage

Questions?

