
A Thesis Submitted in Partial Fulfillment of the Requirements for

the Degree of Master of Science (MSc.)

A Cookbook for the Haskell XML Toolbox
with Examples for Processing RDF

Documents

Manuel Ohlendorf

January 6, 2007

Computer Science Department

Contents

1. Preface 7

2. HXT – Haskell XML Toolbox 8
2.1. Introduction . 8
2.2. Basic Data Types . 8

2.2.1. NTree . 8
2.2.2. XmlTree . 9
2.2.3. Class XmlNode – Basic Interface to NTree and XNode 13

2.3. Arrows in Haskell . 14
2.3.1. Introduction . 14
2.3.2. Main Arrow Class . 15
2.3.3. Additional Arrow Classes . 17
2.3.4. Arrow Syntax . 19

2.4. Main Arrow Modules . 20
2.4.1. ArrowList – List Processing . 21
2.4.2. ArrowIf – Conditional Arrows . 27
2.4.3. ArrowState . 29
2.4.4. ArrowIO . 30
2.4.5. ArrowTree – Tree Processing . 31
2.4.6. ArrowXml . 33
2.4.7. Final Structure . 34

3. Example RDF/XML Processing 36
3.1. Introduction . 36

3.1.1. Basic Concepts of RDF . 36
3.1.2. Model of RDF . 37
3.1.3. RDF/XML - Syntax . 43
3.1.4. SPARQL – Query Language for RDF 46

3.2. Writing the RDF/XML Parser . 49
3.2.1. Introduction . 49
3.2.2. Main Function and Option Handling 49
3.2.3. Parsing RDF/XML . 53
3.2.4. Normalisation of Advanced RDF/XML Syntax Abbreviation . . . 61

2

Contents

3.2.5. Simple Query Language . 70
3.2.6. Combining the SPARQL Parser and the RDF/XML Parser 73
3.2.7. Module Hierarchy . 76

4. Conclusion 77
4.1. Assessment of the Filter and Arrow Approach 77
4.2. Related Work . 79
4.3. Conclusion and Future Work . 80

Bibliography 82

A. List of Options for readDocument and writeDocument 85

B. Grammar of the Query Language 87

C. Affidavit 89

3

List of Figures

2.1. Arrow Class and Data Type Structure . 35

3.1. Simple RDF Graph . 38
3.2. Compound RDF Graph . 40
3.3. Graph with a Blank Node . 41
3.4. Graph with a Typed Literal . 42
3.5. Module Hierarchy . 76

4

Listings

2.1. NTree with Int . 9
2.2. Simple XML Document . 11
2.3. Graph of the XML Document . 11
2.4. Stream Function Definition . 16
2.5. SF Arrow Instance . 16
2.6. Sample Call of SF . 16
2.7. Delay Function . 16
2.8. Example Predicate . 23
2.9. Arrow with Extra Parameter . 23
2.10. arr2A Example . 24
2.11. (>>.) Example . 24
2.12. Determenistic Arrow . 25
2.13. Generalisation of (>>>) . 25
2.14. Point-Wise Example . 26
2.15. LA Implementation of ArrowIf . 28
2.16. choiceA Example . 28
2.17. changeChildren Example . 31
2.18. processChildren Example . 32
2.19. processBottomUp Example . 32
3.1. Group of Statements with N-Triple Notation 39
3.2. Triples with Blank Nodes . 41
3.3. RDF Statement with Plain Literal . 43
3.4. RDF/XML for the Creator Concept . 43
3.5. Multiple Properties . 44
3.6. Blank Nodes in RDF/XML . 45
3.7. Typed Literal in RDF/XML . 46
3.8. Simple SPARQL Query . 47
3.9. First Main Function . 50
3.10. Main Function with Error Handling . 51
3.11. Main Function with Commandline Options 52
3.12. processDocument . 52
3.13. Simple Triple Representation . 53
3.14. Predicate detecting Node Elements . 54

5

Listings

3.15. Apply the Predicate to the Tree . 54
3.16. getTriple . 54
3.17. getTriple for Multiple Properties . 55
3.18. isNodeElem with Blank Node Test . 55
3.19. processSubject with Blank Node . 56
3.20. Data Types Subject, Predicate and Object 58
3.21. Types RDFTerm and URI . 58
3.22. Triple Data Type . 58
3.23. Collect Triples . 60
3.24. Blank Nodes without Identifiers . 62
3.25. Intermediate Result of Normalisation . 63
3.26. Final Result of Normalisation . 65
3.27. Typed Node Element . 66
3.28. Concise Typed Node Element . 66
3.29. Normalise Typed Node Elements . 67
3.30. Create Elements out of Non-RDF/XML Attributes 68
3.31. Processing Property Attributes . 69
3.32. Final Normalisation Arrow . 69
3.33. Main Parser Function . 71
3.34. Query Evaluation Function . 72
3.35. Final Main Function . 74
3.36. Final processDocument . 74
3.37. Query Parser Arrow . 75

6

1. Preface

The processing of the Extensible Markup Language (XML) has become a typical task for
programs, since XML is a standard language for exchanging data between applications.
All languages used in the World Wide Web to describe data are based on XML. These
are XHTML, a language to make data human-readable, XSLT, a style-sheet language
for XML to transform XML documents in any other format, or RelaxNG, a schema
language for XML to define the structure of a document more fine grained then it can
be done with Document Type Definitions (DTD).

The functional programming language Haskell is one of the most popular one since
then it has been defined as a standard in 1998 [Jones et al. 1998] and has been further
developed to a powerful language until now. More and more professional applications
are based on Haskell and there is a large set of additional libraries providing all kind of
special functionalities. Different XML parsers belong to this set of libraries and one of
them is the Haskell XML Toolbox. The project was initiated by Prof. Dr. Uwe Schmidt
from the University of Applied Science Wedel and it was firstly presented by Martin
Schmidt’s Master Thesis [Schmidt 2002]. The Haskell XML Toolbox consists of a XML
parser, a module to validate XML documents, a module to use XPath expressions and a
XSLT module, which is not finished yet. The concept of the Haskell XML Toolbox has
been fundamentally changed recently, in this way, that the functions for manipulating
the XML document, the high-level programming interface, are now based on arrows.

The aim of this thesis is to show and describe this new approach and compare it with
the former one. An RDF/XML parser is written as an example application using the
Haskell XML Toolbox, to show the usage of the new concept. This parser is furthermore
extended by the possibility to search the parse result with a query language.

Chapter two describes the structure and the concept of the Haskell XML Toolbox. Sim-
ple examples are used to describe the application of the various functions. Chapter three
firstly gives an introduction to RDF and then shows how to process RDF/XML docu-
ments. Furthermore a simple query language to search in the RDF is introduced and
implemented. The last chapter compares the Haskell XML Toolbox with other XML
parsers written in Haskell and concludes the advantages of the new concept.
The reader of this document should be familiar with the functional programming lan-
guage Haskell.

7

2. HXT – Haskell XML Toolbox

2.1. Introduction

The Haskell XML Toolbox is a very modern and elegant validating Extensible Markup
Language (XML) 1.0 (Second Edition) [XML] parser. Since the first release it has been
extended by several additional modules. These are a XPath module and a XSLT parser
module which is not finished yet. One of the main changes which were recently made
was the implementation of a new arrow interface. The first versions of the Haskell
XML Toolbox were using monads to provide I/O and state handling. The processing
functions were based on the idea of filters. Every function was of the same type and
could be therefore combined with several special operators. John Hughes showed in the
paper “Generalizing monads to arrows” [Hughes 2000] that it is in several situations
more elegant to use arrows instead of monads and that arrows give the possibility to
define a special notion of computation. What arrows are, what kind of advantages they
bring to the Toolbox and how they are used is described later in the thesis.
Before starting with more complex examples, first of all the data structure of the Toolbox
has to be explained.

2.2. Basic Data Types

2.2.1. NTree

The most common way to represent the hierarchical structure of XML documents is to
use trees. Trees furthermore can be modelled with lists. The data type NTree, defined
in the module Data.Tree.NTree.TypeDefs, is the main data structure used throughout
the whole parser. It is a generic data type and an instance of the type class Tree defined
in Data.Tree.Class, where the structure of a tree is specified.
NTree is a n-ary ordered tree also called rose tree because it can be widely ramified. The
trees are defined as a node with a list of child nodes. Leafs of the tree are nodes which
do not have any children. The type synonym NTrees is a shortcut for node lists. The
following listing shows the defition of NTree and NTrees:

8

Chapter 2. HXT – Haskell XML Toolbox

da t a NTree a = NTree a (NTrees a)

d e r i v i n g

(Eq, Ord , Show, Read , Typeab l e)

t y p e NTrees a = [NTree a]

As NTree is generic, it cannot be used only for XML documents, but to represent any
kind of tree. The following examples use NTree with Int in order to explain the usage
of this data type. Listing 2.1 shows an example of a tree with integers as child-nodes.

Listing 2.1: NTree with Int

intTree :: NTree I n t

intTree = NTree 1 [NTree 2 [NTree 5 [],NTree 6 []

],

NTree 3 [],

NTree 4 []

]

This is a simple tree where the nodes are of type Int. For visualisation, the function
formatTree can be used. The result of this function is as follows:

---1

|

+---2

| |

| +---5

| |

| +---6

|

+---3

|

+---4

2.2.2. XmlTree

The type-specific version of the generic NTree is XmlTree defined in the module Text-

.XML.HXT.DOM.TypeDefs. Together with XmlTrees it defines a general recursive data
type for XML documents:

9

Chapter 2. HXT – Haskell XML Toolbox

t y p e XmlTree = NTree XNode

t y p e XmlTrees = NTrees XNode

Every data which is stored in XmlTree has to be of type XNode. This data type is used
to represent every possible logical unit of a XML document. This can be for example a
simple element, a comment or a text node.
The Haskell XML Toolbox is a validating parser and can therefore also handle Document
Type Definitions (DTD). DTDs define the structure of XML documents. This definition
is compared with the document while parsing. Only those documents are valid which fit
into the definition of the DTD. To process these definitions XNode can also be a DTD
definition.
Before the data type XNode is introduced, two types which are used by XNode have to
be described. These are Attributes and QName.

t y p e Attributes = AssocList S t r i n g S t r i n g

AssocList is simply a key value association list, implemented as an unordered list of
pairs for storing all kind of properties and features of the DTD parts.
In order to support namespaces [XML-NS] in XML documents, the Haskell XML Toolbox
uses the data type QName. Namespaces give the possibility to avoid element collisions,
which are elements with the same name but different meanings. This can happen when
two different applications process the same XML document. Both applications then use
or expect an element with the same name but understand it differently.

Namespaces are defined with a specific Uniform Resource Identifier (URI) and a prefix
for this namespace once in a XML document. The elements of this namespace then use
this prefix in their element name. This name is also called qualified name.
QName is divided into three sections: the prefix, the local part which is the name of the
element or attribute and the URI of the namespace.

da t a QName = QN {

namePrefix :: S t r i n g

localPart :: S t r i n g

namespaceUri :: S t r i n g

}

Finally, the algebraic data type XNode defines, along with the described types Attributes
and QName, the basic nodes and leaves for all kinds of XML’s logical units. Moreover,
the data type DTDElem defines the constructors for the DTD declarations.

10

Chapter 2. HXT – Haskell XML Toolbox

Instead of explaining every single constructor of XNode, only the most important ones
should be described here. The constructor XTag defines an element which can be an inner
node, if the element has children or a leaf, if the element is empty. QName, as explained
earlier, is the name of the XML tag and the type XmlTrees is the list of attributes of the
element. Because attributes are also stored with the data type XmlTree, every function
for processing XML documents can be used also for processing the attributes. In this
case XNode has the constructor XAttr.
XError is an internal extension and not a XML component. It stores the level and
message of errors which may occur during parsing.

da t a XNode

= XText S t r i n g

| XCharRef I n t

| XEntityRef S t r i n g

| XCmt S t r i n g

| XCdata S t r i n g

| XPi QName XmlTrees

| XTag QName XmlTrees

| XDTD DTDElem Attributes

| XAttr QName

| XError I n t S t r i n g

d e r i v i n g (Eq, Ord , Show, Read , Typeab l e)

The following example shows how the simple XML document in listing 2.2 looks like in
the described data structure of the Haskell XML Toolbox.

Listing 2.2: Simple XML Document

<?xml version="1.0" encoding="ISO -8859 -1" ?>

<?pi this is a processing instruction?>

<test attr="hello">

world!

<test2/>

</test>

The graph shown in the next example is the XML document after parsing. The root
node ’/’, which has been generated, has several new attributes added by the parser.
They contain information about the document and the command line parameters of the
parser. Furthermore, the parser has generated a DTD for this document with the general
predefined entities lt, gt, amp, apos and quote.

11

Chapter 2. HXT – Haskell XML Toolbox

Listing 2.3: Graph of the XML Document

---XTag "/"

| "trace "="4"

| "source "="test.xml"

| "status "="0"

| "parse -html "="0"

| "validate"="1"

| "issue -errors "="1"

| "issue -warnings"="1"

| "check -namespaces"="0"

| "canonicalize"="1"

| "preserve -comment"="0"

| "remove -whitespace"="0"

| "module "="getXmlContents"

| "transfer -Protocol"="file"

| "transfer -URI"="file://example.xml"

| "transfer -Status "="200"

| "transfer -Message"="OK"

| "version"="1.0"

| "encoding"="ISO -8859-1"

| "transfer -Encoding"="ISO -8859-1"

|

+---XPi "xml"

| | "version"="1.0"

| | "encoding"="ISO -8859-1"

|

+---XDTD DOCTYPE []

| |

| +---XDTD ENTITY [("name","lt")]

| | |

| | +---XCharRef 38

| | |

| | +---XText "#60;"

. .

. . (Here are the definitions of the other predefined entities)

. .

|

+---XText "\n"

|

+---XPi "pi"

| | "value "="this is a processing instruction"

|

+---XText " \n"

|

+---XTag "test"

12

Chapter 2. HXT – Haskell XML Toolbox

| | "attr"="hello"

| |

| +---XText "\nworld !\n"

| |

| +---XTag "test2"

| |

| +---XText "\n"

|

+---XText "\n"

The Haskell XML Toolbox also provides a function to print out the internal representa-
tion, i.e. the Haskell code of the tree, which is sometimes very helpful while debugging
a program.

2.2.3. Class XmlNode – Basic Interface to NTree and XNode

The class XmlNode in the module Text.XML.HXT.Arrow.XmlNode defines all the func-
tions for processing XNode and NTree. Since it is a type class, it only contains some
default implementations but the real functionality is defined in the instances XNode and
NTree of this class.
The processing functions of XmlNode can be divided into four different categories: pred-
icates, selectors, modifiers and constructors.
Predicates are functions of type bool. They are used to test specific properties of ele-
ments. A simple example is the function isText which checks if a node is a text node.
The following listing shows the type definition and the implementations of XNode and
NTree.

isText :: a -> Boo l

-- the XNode implementation

isText (XText _) = True

isText _ = F a l s e

-- the NTree implementation

isText = isText ◦ getNode

XmlNode provides various selector functions, in order to access parts of the tree. These
functions use the Maybe-type to facilitate that nothing can be returned in case that
a node processed by a selector function does not have the right expected properties.
Again, a simple example is getText which either returns the text value of a text node,
or nothing if it is not a text node.

13

Chapter 2. HXT – Haskell XML Toolbox

getText :: a -> Maybe S t r i n g

-- XNode implementation

getText (XText t) = J u s t t

getText _ = Noth ing

-- NTree implementation

getText = getText ◦ getNode

This example shows that the NTree-implementation of XmlNode is very simple. It just
combines the function getNode with the getText-implementation of the type returned
by getNode.
The third category is made up of the modifier functions that alter nodes and their at-
tributes. There are always two versions of these functions: one which takes a function
as parameter to change the specific node and the other which just takes a value to set
the new value of a node.
The constructor functions allow to create new element nodes. The function mkText for
example takes a character string and returns a text node.
But for implementing a program which should process a XML document somehow, the
functions which were just described are not very helpful. Things like I/O or state and
failure handling are not provided by these functions but necessary for real programs.
Therefore, the Haskell XML Toolbox delievers a set of arrow classes which implements
these functionalities like I/O and state handling. The class XmlNode is merely the inter-
face for the arrow classes to the data types of the Haskell XML Toolbox. These arrow
classes will be described in the following sections.

2.3. Arrows in Haskell

2.3.1. Introduction

The processing functions provided by the Haskell XML Toolbox are based on arrows.
Like monads, arrows allow to define different notions of computation, but in a much
more general manner. With arrows one can define computation with some kind of static
state handling or computation that consumes multiple inputs. There are different sub-
classes of arrows, which not only give the possibility of choice and feedback but also a
special arrow which is equivalent to monads.
The arrow classes provide combinators which allow a point-free programming style but
sometimes it can be awkward for programming specific instances. Therefore Ross Pater-
son has introduced a point-wise notation in his paper [Paterson 2001] for arrows which

14

Chapter 2. HXT – Haskell XML Toolbox

is supported by the Haskell compiler GHC [GHC]. The following sections introduce the
arrow libraries of Haskell and show how to use the arrow notation.

2.3.2. Main Arrow Class

The Arrow class consists of two functions arr and (>>>). The purpose of the function
arr is to convert a simple function into an arrow function; the operator (>>>) provides
composition for arrows. This is analogous to the usual Monad class – it has a way of
creating a monad function out of a pure computation with return as well as a way of
sequencing computation with (>>=).
Besides these two functions, the Arrow class provides a third combinator (&&&) which
does not have an equivalent function in the Monad class. Actually, the functionality
provided by (&&&) is already in the composition function of monads. This is to make
the second arrow of (&&&) dependant on the effects of the first arrow which is not possible
with arr and (>>>). The next listing shows the Arrow class with its three functions:

c l a s s Arrow arr where

arr :: (a -> b) -> arr a b

(>>>) :: arr a b -> arr b c -> arr a c

(&&&) :: arr a b -> arr a c -> arr a (b,c)

The operator (&&&) takes two arrows and returns another arrow with the results of the
two input arrows paired as output. Thus this operator allows to sequence two compu-
tations. A simple example is to apply two functions delivering integers simultaneously
to the input and sum their results up. With the (&&&) operator it is very easy to define
an arrow doing this:

addA f g = f &&& g >>> arr (u n c u r r y (+))

To make the implementation as easy as possible the Arrow class actually contains more
then those three functions. The operator (&&&) is defined with much simpler functions
and only one of them has to be implemented to get the full functionality. This function is
called first which lifts an arrow to operate on pairs by feeding just the first components
through the given arrow and leaving the second one untouched. The other functions,
which do not have to be implemented, shall not be described here. The type definition
of first is:

first :: arr a b -> arr (a,c) (b,c)

15

Chapter 2. HXT – Haskell XML Toolbox

A simple example to show the functionality of arrows are stream functions taken from
the paper of John Hughes [Hughes 2004]. In order to make a data type an instance of
the Arrow class, it has to be a newtype rather than a type synonym. The type definition
of stream functions (data type SF) is as follows:

Listing 2.4: Stream Function Definition

newtype SF a b = SF {runSF :: [a] -> [b]}

The instance definition for the Arrow class is not very complicated. Stream functions
are functions representing computiation from list to list. A simple function converted
with arr to a stream function just needs to be called by the higher-order function map.
This converts the simple function to a function from a list to a list.
The implementation of the composition of stream functions uses the composition for
simple functions, which is predefined in the Prelude of Haskell.

Listing 2.5: SF Arrow Instance

i n s t a n c e Arrow SF where

arr f = SF (map f)

SF f >>> SF g = SF (f >>> g)

first (SF f) = SF (u n z i p >>> first f >>> u n c u r r y z i p)

The definition of first also uses first for simple functions.
Stream functions have to be invoked via runSF. The following example shows the exe-
cution of a stream function and the result of it in the interpreted version of Haskell:

Listing 2.6: Sample Call of SF

Stream> runSF (arr (+1)) [1..5]

[2,3,4,5,6]

This example illustrates that the function (+1) is applied to every element of the list.
Another simple example and very useful operation for stream functions is to delay the
stream by one element, adding a new element at the beginning of the stream:

Listing 2.7: Delay Function

delay :: a -> SF a a

delay x = SF (x:)

16

Chapter 2. HXT – Haskell XML Toolbox

These examples above show some of the compelling advantages of arrows. A monadic
program always takes its input via the parameters of a function and therefore only in one
way. It is not possible to change this by varying the monad. By using arrow programs
instead, it depends on the particular arrow how the program takes its input. This is
because arrow computations are parameterised over their output as well as their input
type. The stream functions, as a simple example, take a stream of values rather than a
single value which cannot be represented as a monad.

2.3.3. Additional Arrow Classes

There are several additional arrow classes which add special features to the main arrow
class. Those additional functionalities are not included in the main arrow class, because
not every arrow has all these properties. The four classes shortly introduced here are
ArrowChoice, that provides an operator to make an arrow conditional on the output
of another, ArrowZero and ArrowPlus, which provide operations for failure and failure
handling and ArrowApply, that actually makes arrows as powerful as monads.

ArrowChoice

The operator (|||) provides conditionals for arrows. It uses the Either type as the input
of the choice operator so that the Left and Right values can carry different types of
data. The class is defined as:

c l a s s Arrow arr ⇒ ArrowChoice arr where

(|||) :: arr a c -> arr b c -> arr (E i t h e r a b) c

Like the operator (&&&) on pairs the choice operator is defined with simpler operators and
only one of them has to be implemented when creating an instance of the ArrowChoice

class. This operator is called left. A call of left f passes inputs tagged Left to f,
passes inputs tagged Right straight through, and tags output from f with Left. The
type definition of Left is:

l e f t :: arr a b -> arr (E i t h e r a c) (E i t h e r b c)

ArrowZero

The class ArrowZero has only one arrow which represents the case of a failure. What
counts as a failure is defined in the implementation of this arrow. As will be described

17

Chapter 2. HXT – Haskell XML Toolbox

later, this can be, for example, the empty list for computations over lists. The definition
of the class is:

c l a s s Arrow a ⇒ ArrowZero a where

zeroArrow :: a b c

ArrowPlus

The class ArrowPlus provides the combinator (<+>) in order to handle this failure
described by the class ArrowZero. Its definition is shown in the next listing:

c l a s s ArrowZero a ⇒ ArrowPlus a where

(<+>) :: a b c -> a b c -> a b c

(<+>) takes the two arrows, applies the input to both of them simultaneously, and fuses
the output of the arrows into one. Therefore, this combinator can also be seen as the
logical Or like the combinator (>>>) represents the logical And.

ArrowApply

The idea of the class ArrowApply is to provide higher-order programming with arrows.
This makes it possible to construct arrows which receive other arrows in their input and
invoke them. Hence, the class has a new arrow app which is analogous to the “apply”
function:

c l a s s Arrow arr ⇒ ArrowApply where

app :: arr (arr a b, a) b

The instance definitions for pure functions are fairly simple:

i n s t a n c e ArrowApply (->) where

app (f,x) = f x

The ArrowApply class is equivalent to the Monad class. In order to do the same with
arrows that can be done with monads, a special implementation of the class Monad is
needed. The type which does this is a computation of a as an arrow from the empty
tuple to a:

newtype ArrowMonad arr a = ArrowMonad (arr () a)

18

Chapter 2. HXT – Haskell XML Toolbox

With this type return and (>>=) can be defined as follows:

i n s t a n c e ArrowApply a ⇒ Monad (ArrowMonand a) where

r e t u r n x = ArrowMonad (arr (c o n s t x))

ArrowMonad m >>= f =

ArrowMonad (m >>>

arr (λx -> l e t ArrowMonad h = f x i n (h, ()))

>>> app)

The function f which returns an arrow is turned into an arrow outputting an arrow (h)
with arr and then app invokes the result.
Hughes says that arrows supporting app are of relatively little interest because arrow
types which correspond to a monad can be much easier replaced by a monad directly.
Only those types that cannot be represented as a monad are “interesting” arrow types.
Still app is a useful arrow which is also used in the Haskell XML Toolbox to solve some
problems with the point-free programming style.

2.3.4. Arrow Syntax

Although point-free programming is very elegant and readable, it is sometimes clearer
to give names to the values being manipulated. In monadic programs this pointed
programming is well-supported by the do-notation. To provide the same do-notation for
arrow programming Ross Paterson has designed a language extension [Paterson 2001]
which is introduced in this section. This language extension is implemented by using
a preprocessor. It translates the arrow notation into standard Haskell code before it is
compiled.
The new syntax adds a new form of expression called the arrow abstraction of the form
proc pat -> cmd where proc is a new binding operator; the body of such an expression
is called a command. The arrow application is the simplest form of command: a <-

expr where expr is a Haskell expression to be the input to the arrow a. The translation
of this into the point-free style is the following:

p r o c pat -> a -< expr = arr (λpat -> expr) >>> a

The do notation for arrows looks quite the same as the notation for monads. For the
arrow notation do blocks are nothing else then commands. The statement x <- e in
a do block means that it binds the name x to the output of the command e. As an
example, the addA arrow defined above can be rewritten:

19

Chapter 2. HXT – Haskell XML Toolbox

addA :: Arrow a ⇒ a b I n t -> a b I n t -> a b I n t

addA f g = p r o c z -> do

x <- f -< z

y <- g -< z

returnA -< x + y

The input z is fed to the two arrows f and g, and their outputs are bind to x and y.
Finally, the result of x + y is sent to the arrow returnA. The -< as the arrow application
operator means that it is the tail feather of an arrow. The binding x <- f -< e looks
as though e is being fed through an arrow labeled with f to be bound to x.
The arrow returnA is called entity arrow. This arrow is analogous to return in the
monad notation and is defined:

returnA :: Arrow a ⇒ a b b

returnA = arr i d

As explained and shown in the example, the arrow notation can be very helpful for
programming with arrows. Especially if the output of an arrow is needed several times
or is combined with other outputs of arrows. Nevertheless, during the next sections
the arrow syntax is not used when the arrow modules of the Haskell XML Toolbox
are explained, because the code in the point-free style is much easier to understand.
Furthermore the Haskell XML Toolbox provides special combinators that allow to use
an argument in two places. But, of course, every example can also be expressed with
this new syntax.

2.4. Main Arrow Modules

Now that the idea of representing computation with arrows and the data structure of the
Haskell XML Toolbox have been explained, the next sections show the different arrows
used by the parser. As already described, the best way to model the tree structure of
XML is to use lists. Furthermore, the intention of all the parts of the Haskell XML
Toolbox is to be as generic as possible. So, like the arrow library of Haskell where the
arrows are separated in different classes providing special functionalities, the Haskell
XML Toolbox contains several arrows – all for a special purpose. One of these arrow
classes provide computation over lists. This is the ArrowList, the most important arrow
class. The class ArrowIf adds operators for conditional cases to the computation over
lists and the class ArrowTree adds arrows for processing trees implementing the earlier
introduced Data.Tree.class interface. Finally, the class ArrowXml combines all classes
and provides all kind of arrows for processing XML.

20

Chapter 2. HXT – Haskell XML Toolbox

2.4.1. ArrowList – List Processing

Before the new arrow classes has been included in the Haskell XML Toolbox, the pro-
cessing functions were all of the same type and were called filter. Every filter was of the
type XmlTree -> [XmlTrees] and the idea of it was to make them easy to combine and
to be able to handle several ways of output. With a list as output type, the failure of a
predicate was represented by an empty list and it was also possible to handle more than
one result as the output.
The idea of the class ArrowList is basically the same, but it is much more flexible. In
what way will be described in chapter 4.
A list arrow is a function, which has a list of results as output for a given input. If
the list only contains one element, the arrow represents a normal function. In the case
of an empty list, the function is undefined for the given argument. Or, if the function
is a predicate, it represents the boolean value False; for none empty list a True. The
nondeterministic case is covered by a list with more than one element as result. So, the
list arrows represent computation as relations instead of partial functions.
An implementation of the class ArrowList is used in order to provide several examples.
This is the data type LA defined in the module Control.Arrow.ListArrow and it is a
function from a single argument a to a list of b:

newtype LA a b = LA { runLA :: a -> [b] }

This already shows the considerable advantage of list arrows over the filter approach.
While every filter has to have the same type of result, namely a list of XmlTrees, the
output type of list arrows is generic. The list returned by the arrow can contain any
kind of element. It was often a problem with the filters that one needs different return
types then XmlTrees, which was impossible. To solve this problem, everything was
encapsulated by XmlTrees. Thus, type errors were not detected by the type checker
because everything was of type XmlTree. Now, with arrows the type system of Haskell
can be used to prevent these errors because the return type is not fixed anymore. Hence,
the arrow approach provides the same flexibility as simple functions, while it is easier to
use than filters and prevents a lot of errors.
Two very important arrows which are actually aliases for existing arrows are this as
the identity arrow and none as the zero arrow. They are defined as follows:

this :: a b b

this = returnA

none :: a b c

none = zeroArrow

21

Chapter 2. HXT – Haskell XML Toolbox

The arrow this is an alias for returnA described in section 2.3.4 and none for zeroArrow
from the class ArrowZero. It is not necessary to use those arrows instead of the origi-
nal one, but the code becomes much more readable and logical since they are used for
combining arrows with the combinators described earlier. For the arrow none an im-
plementation of ArrowZero is needed. This is done by the list arrow data type as the
following:

i n s t a n c e ArrowZero LA where

zeroArrow = LA (c o n s t [])

To complete the definition of the data type LA as an arrow, it also needs the imple-
mentation of the class Arrow. The constructor arr creates a list arrow from a normal
function by returning the result of it in a list. The combinator (>>>) is defined by
combining the two functions with function composition and applying concatMap to it.
concatMap creates a list-from-a-list-generating function by application of this function
on all elements in a list passed as the second argument. The function first which is
used to define (&&&) returns an arrow from a pair to a list of pairs where the function
f is applied only on the first element of the input pair:

i n s t a n c e Arrow LA where

arr f = LA (λ x -> [f x])

LA f >>> LA g = LA (concatMap g ◦ f)

first (LA f) = LA (λ ~(x1, x2) -> [(y1, x2) | y1 <- f x1])

These are only those functions which do not have a default implementation. For effi-
ciency, the other functions and operators like second and (&&&) are also implemented
but shall not be described here. Now that the data type LA is defined as an arrow, the
arrows of the class ArrowList and their implementation can be introduced.
The arrows, which need an implementation are arrL, arr2A, isA and (>>.). arrL is,
like arr, a constructor. It builds a list arrow from a function which has a list as the
output type:

arrL :: (b -> [c]) -> a b c

Another constructor is arr2Awhich creates a two-argument arrow from a single-argument
one:

arr2A :: (b -> a c d) -> a (b, c) d

22

Chapter 2. HXT – Haskell XML Toolbox

Besides the identity and the zero arrow, isA is an important but simple arrow. It builds
an arrow from a predicate function which returns a single list containing the input if the
predicate holds and the empty list if not:

isA :: (b -> Boo l) -> a b b

The last function which needs to be implemented is the combinator (>>.). It converts
the result of a list arrow with a given function into another list:

(>>.) :: a b c -> ([c] -> [d]) -> a b d

The class ArrowList has to be implemented first, before the next examples can use the
data type LA. The following listing shows this instance definion:

i n s t a n c e ArrowList LA where

arrL = LA

arr2A f = LA (λ ~(x, y) -> runLA (f x) y)

isA p = LA (λ x -> i f p x t h en [x] e l s e [])

LA f >>. g = LA (g ◦ f)

The function isTwo is a predicate which returns True if the input was two or it returns
False if not. To build a list arrow out of it, the arrow isA takes this function as input.

Listing 2.8: Example Predicate

isTwo :: I n t -> Boo l

isTwo n = n == 2

testIsTwo a = runLA (isA isTwo) a

Running this example in the interpreter, it would return the empty list if a is not two
and a single list containing two if the input is two.
Another example is the list arrow addSomething which takes an extra argument of type
int and is shown in listing 2.9.

Listing 2.9: Arrow with Extra Parameter

addSomething :: (ArrowList a) ⇒ I n t -> a I n t I n t

addSomething x = arr (+x)

testAdd = runLA (addSomething 2) 2

23

Chapter 2. HXT – Haskell XML Toolbox

The call of testAdd would generate the integer four in a single list as output. Using
addSomething as input for the constructor arr2A would generate an arrow of type (a
(Int, Int) Int). With this function, testAdd could be defined as the following, which
also generates a single list with four as output:

Listing 2.10: arr2A Example

testAdd = runLA (arr2A addSomething) (2,2)

Sometimes it is practical to create constant arrows. This can be achieved by the the
constructor constA. It does the same as const for simple functions which generates a
constant function out of the input. The definition of constA is:

constA :: c -> a b c

constA = arr ◦ c o n s t

The following example shows the use of the combinator (>>.). First, the combinator
(<+>) and the constructor constA generate a list with two elements. Second the list is
reversed by the function reverse and (>>.):

Listing 2.11: (>>.) Example

ListArrow> runLA (c o n s t 2 <+> c o n s t 4 >>. r e v e r s e) []

[4,2]

The constructor arrow arrL is equivalent to the data type constructor LA. It builds a
list arrow from a function with a list as result. The arrow arr2L does the same, but it
generates a list arrow with two arguments:

arr2L :: (b -> c -> [d]) -> a (b, c) d

arr2L = arrL ◦ u n c u r r y

Besides the constructor arr, the class ArrowList also provides constructors to generate
arrows from functions with more than one argument. These constructors are arr2,
arr3 and arr4 where the numbers in their names specify the number of arguments the
functions can have:

arr2 :: (b1 -> b2 -> c) -> a (b1, b2) c

They are very helpful in combination with the pair operator (&&&) which generates an
arrow with a pair as result. Taking two arrows a1 and a2, sequencing them and then

24

Chapter 2. HXT – Haskell XML Toolbox

combining the result with the binary function f would look like this:
a1 &&& a2 >>> arr2 f

Sometimes it is necessary to convert a nondeterministic into a deterministic arrow when
the list of results must be manipulated. This conversion can be achieved by the combi-
nator listA:

listA :: a b c -> a b [c]

listA af = af >>. (:[])

An example for listA is the function collectAndSort which takes an arrow and com-
bines the deterministic version of it with the function sort:

Listing 2.12: Determenistic Arrow

collectAndSort :: (ArrowList a, Ord c) ⇒ a b c -> a b c

collectAndSort collect = listA collect >>> arrL s o r t

Furthermore, the class ArrowList provides two generalisations for the arrow combinator
(<+>) and (>>>) to ensure that the code remains readable and compact. Instead of
long chains of arrows combined with those combinators, only a list of arrows is needed.
These generalisations are catA and seqA:

catA :: [a b c] -> a b c

catA = f o l d l (<+>) none

seqA :: [a b b] -> a b b

seqA = f o l d l (>>>) this

An example of catA is to build a list of numbers by combining constA arrows and sorting
them with the collectAndSort arrow:

Listing 2.13: Generalisation of (>>>)

runLA (collectAndSort (catA [constA 3, constA 1, constA 5])) []

== [1,3,5]

Pointed Programming with ArrowList

The following groups of arrows all solve a problem of the point-free programming style:
using an argument in two places is not possible. One solution is to use the new arrow

25

Chapter 2. HXT – Haskell XML Toolbox

notation described above or the following arrows where the combinator applyA is the
most important one. It uses the argument in two places. First, to compute an arrow
with it and, second, to apply this new arrow to the input which is done by the app arrow
of the ArrowApply class. This means that every data type which should implement the
class ArrowList also has to implement ArrowApply. Therefore, the example data type
LA for simple list processing also implements it. The definition of applyA is:

applyA :: a b (a b c) -> a b c

applyA f = (f &&& this) >>> app

The implementation of the class ArrowApply shows the following listing.

i n s t a n c e ArrowApply LA where

app = LA (λ (LA f, x) -> f x)

The combinator applyA is used to define several other arrows which all deal with the
same problem of the point-free programming using values more than once. One of them
is the infix operator ($<). The following listing shows its definition:

($<) :: (c -> a b d) -> a b c -> a b d

g $< f = applyA (f >>> arr g)

It computes the arrow f to get the parameter for the arrow with an extra parameter g

from the input and applies the arrow g for all parameter values to the input which is
very useful for joining arrows. So if f computes n values, the whole arrow computes n
values but only if g is deterministic. If f fails, the whole arrow will fail.
There is also a binary version of ($<), a version taking three, and a version which takes
four extra parameters. These are the operators ($<<), ($<<<) and ($<<<<). Each
of them solves the problem with the point-free programming. The next listing shows an
example with simple list arrows over strings and the use of the binary operator ($<<):

Listing 2.14: Point-Wise Example

infixString :: S t r i n g -> S t r i n g -> a S t r i n g S t r i n g

infixString s1 s2 = arr (λ s -> s1 ++ s ++ s2)

runLA (infixString $<< constA "y" &&& constA "z") "x"

The result of this list arrow would be the string ”yxz”.
An arrow which offers a slightly different but significant functionality is the operator

26

Chapter 2. HXT – Haskell XML Toolbox

($<$). In contrast to ($<) this operator applies all results of the second arrow sequen-
tially to the input by the arrow with an extra parameter. This allows programming in
a point-wise style in the second arrow, which again becomes necessary, when a value is
needed more than once.
If it is essential to transform a single value step by step, this combinator is very useful.
The second arrow collects the data for all steps and the arrow with an extra argument
transforms the input step by step. The definition of the operator is the following:

($<$) :: (c -> a b b) -> a b c -> a b b

g $<$ f = applyA (listA (f >>> arr g) >>> arr seqA)

If g is a deterministic arrow (i.e. computes exactly one result) the results of g $<$ f

and g $< f are equal. But if g computes more than one result the whole arrow only
has one result because f is applied sequentially to the input for every result of g. Again,
the arrow addSomething is used to show the functionality of the combinator:

runLA (addSomething $<$ constA 2 <+> constA 3) 1

This arrow would compute the result [5] while the same arrow with the combinator
($<) would compute the result [3,4].
This is the introduction to the ArrowList class so far. Now, the other arrow classes pro-
vided by the Haskell XML Toolbox are introduced. Naturally, the arrows of ArrowList
will be described more detailed later in more complex examples.

2.4.2. ArrowIf – Conditional Arrows

The class ArrowIf provides conditional combinators for list arrows and is defined in the
module Control.Arrow.ArrowIf. All conditional operations are based on the idea that
the result of an arrow is a list and the empty list represents False while a none-empty
list represents True. For that reason, every data type implementing ArrowIf also has
to implement ArrowList.
Two arrows ifA and orElse do not have a default implementation. The combinator ifA
is the standard if lifted to list arrows. The first argument is the predicate arrow, the
second the then-case and the third arrow describes the else-case. The type signature of
ifA is the following:

ifA :: a b c -> a b d -> a b d -> a b d

The directional choice is provided by the combinator orElse. If the first arrow succeeds,
then the result of it is returned, else the second arrow is applied to the input. In most

27

Chapter 2. HXT – Haskell XML Toolbox

cases, the arrow orElse is used in the infix notation. Its type definition is:

orElse :: a b c -> a b c -> a b c

Only these two arrows need an instance definition in order to gain the entire functionality
from ArrowIf. The data type LA which was already used for simple examples is also an
instance of this class. The following listing shows the implementation:

Listing 2.15: LA Implementation of ArrowIf

i n s t a n c e ArrowIf LA where

ifA (LA p) t e

= LA (λx -> runLA (i f n u l l (p x) t h en e e l s e t) x)

(LA f) ‘ o r E l s e ‘ (LA g)

= LA (λx -> l e t res = f x i n

i f n u l l res t h en g x e l s e res)

Another useful arrow is neg which is the same as not for simple predicate functions and
is used to negate arrows. The arrows when and guards are also combinators to make the
application of arrows dependent on predicates. The call f ‘when‘ g means that, if the
predicate g holds, the arrow f is applied, and if not, the identity filter this is returned.
In contrast, g ‘guards‘ f means that when g does not hold, nothing is returned, and
when g holds, f is applied.
The arrow containing tests whether the results of the first arrow are holding the pred-
icate, in which case only those results are returned.
Case expressions in Haskell are very useful for handling multi-way branches of condi-
tionals. This can also be done with list arrows using the arrow choiceA, which is a
generalisation of orElse. The arrow choiceA uses an auxiliary data type IfThen with
an infix constructor (:->) to deal with multi-way branches. The next listing displays
an example and the definition of it. In the example, p1 and p2 are predicates and exp1

to exp3 are the expressions which should be applied:

Listing 2.16: choiceA Example

choiceA :: [IfThen (a b c) (a b d)] -> a b d

--example

choiceA [p1 :-> exp1

, p2 :-> exp2

, this :-> exp3]

28

Chapter 2. HXT – Haskell XML Toolbox

2.4.3. ArrowState

Dealing with states is a very important feature of programming with Haskell. These
states can be some kind of information which is needed throughout the whole program,
for example a counter for generating unique identifiers. In monadic programs, this state
handling can be done by the class MonadState. For programs based on arrows, the
Haskell XML Toolbox provides the class ArrowState to manage an explicit state. State
arrows work similarly to state monads by threading a state value through the application
of arrows. The definition of the class and its functions are shown in the next listing:

c l a s s Arrow a ⇒ ArrowState s a | a -> s where

changeState :: (s -> b -> s) -> a b b

accessState :: (s -> b -> c) -> a b c

getState :: a b s

setState :: a s s

nextState :: (s -> s) -> a b s

The arrows changeState and accessState take functions which change the state based
on the old state and which access the state with a function using the arrow input as data
for selecting state components, respectively. To read the complete state while ignoring
the arrow input, the class provides the arrow getState. The arrow setState allows
to overwrite the old state. Especially for consecutive states like identifiers, the arrow
nextState is provided. It changes the state via a simple function and returns the new
state value, while the arrow input is ignored.
To show examples of the state arrows, the data type LA is not appropriate anymore.
A data type which implements the class ArrowState requires also special implementa-
tions of all other arrows like the (>>>) or (&&&) operators. This is because the state
components always have to be taken into consideration throughout all arrow computa-
tions. Thus, the Haskell XML Toolbox provides the data type SLA defined in the module
Control.Arrow.StateListArrow, which is a list arrow combined with state handling.
The implementation of all arrow classes like ArrowList should not be described here,
because it does not differ much from the implementation of LA. The only difference is
that every arrow has to loop the state values through the application. The definition of
the simple data type SLA is the following, where s represents the state:

newtype SLA s a b = SLA { runSLA :: s -> a -> (s, [b]) }

A simple example of generating consecutive numbers with the arrow nextState is pre-
sented by the following listing. The arrow newId takes an Int as input, increments this
by one and returns the result as String.

29

Chapter 2. HXT – Haskell XML Toolbox

newId :: SLA I n t b S t r i n g

newId = nextState (+1)

>>>

arr ((’_:’:) ◦ show)

test = runSLA 0 (newId <+> newId <+> newId) u n d e f i n e d

Invoking test in the interpreter would generate the output (3,[" :1"," :2"," :3"]),
in which the first element of the tuple is the final state and the second is the list of result
generated by the arrow newId. The function undefined is used as input for the arrow
because the input is ignored by the state arrow.

2.4.4. ArrowIO

The support of I/O operations is, like state handling, indispensable for larger programs.
The class ArrowIO provides arrows for lifting I/O actions to arrows. Furthermore, the
module in which the class is defined, contains also a class called ArrowIOIf which allows
to convert an I/O predicate to an arrow. The class ArrowIO only has some constructors
to create different arrows. The one that has no default implementation is arrIO and is
defined as:

arrIO :: (b -> IO c) -> a b c

There are several possible implementations of ArrowIO. One is the data type IOLA defined
in the module IOListArrow, which combines computations over lists with I/O handling,
and another data type is IOSLA which also provides state handling. The data type and
instance definition of IOLA for the class ArrowIO is the following:

newtype IOLA a b = IOLA { runIOLA :: a -> IO [b] }

i n s t a n c e ArrowIO IOLA where

arrIO cmd = IOLA (λx -> do

res <- cmd x

r e t u r n [res])

In addition to the constructor arrIO, there are several arrows which differ in the num-
ber of arguments. These are from arrIO0, which constructs an arrow from an I/O
action without any parameter to the constructor arrIO4, taking an I/O action with four
parameters.

30

Chapter 2. HXT – Haskell XML Toolbox

2.4.5. ArrowTree – Tree Processing

The last class ArrowTree which adds special features to the Haskell XML Toolbox is
essential for the XML parser. It provides arrows for processing trees which implement
the Data.Class.Tree interface. This is the generic data type NTree and therefor also
the type XmlTree. All functions of ArrowTree have default implementations and use list
arrows for processing. That is why the simple data types like LA are also instances of
ArrowTree without any extra implementation. The main arrows of ArrowTree are func-
tions defined in Data.Class.Tree and lifted to arrows. Therefore, the definition of how
ArrowTree actually processes trees depends on the implementation of Data.Class.Tree.
These arrows are getChildren, setChildren, changeChildren, getNode, setNode and
changeNode. The first three arrows process the child-nodes of the root of a tree by
selecting the children, substituting them or editing the children with a given function,
respectively. In order to process the attribute of the root of a tree, the second three
arrows are provided and, again, allow to select, substitute or change the attribute.

The data type NTree as an instance of Data.Class.Tree provides all these functions and
therefore also the type XmlTree, which means that these arrows also allow to process a
whole document tree of a XML document. To show the functionality in some examples,
the list arrow data type LA and the tree intTree defined in listing 2.2.1 is used. The
function addOne increments every element in a list of NTree and its children by one.
Handing this function over to changeChildren, will apply it to every child element of
the root tree, as shown in listing 2.17.

Listing 2.17: changeChildren Example

addOne :: [NTree I n t] -> [NTree I n t]

addOne [] = []

addOne ((NTree i ys):xs)

= (NTree (i+1) (addOne ys)) : addOne xs

testAddOne = runLA (changeChildren (addOne)) intTree

The result of testAddOne would be a tree in which, besides the root, every element
is incremented by one. This can be achieved much easier because ArrowTree provides
several compound arrows for traversing the whole tree with different strategies.

The arrow processChildren applies an arrow element-wise to all children of the root of
a tree, collects the results of it and than substitutes the children with this result. With
processChildren, the function addOne is much easier to define. Instead of a simple
function, it is now defined as a list arrow:

31

Chapter 2. HXT – Haskell XML Toolbox

Listing 2.18: processChildren Example

addOneA :: LA (NTree I n t) (NTree I n t)

addOneA = changeNode (+1) >>> processChildren addOneA

testAddOneA = runLA (processChildren addOneA) intTree

The result of testAddOneA would be, again, a tree in which every element has been
incremented by one. This, however, can be done even easier than within the last example.
The arrows processTopDown and processBottomUp recursively transform a whole tree
by applying an arrow to all subtrees. This is done with a top down depth first traversal
strategy by processTopDown and bottom up, depth first, leaves first and the root as last
tree by processBottomUp. Therefore, it is not necessary to implement the recursion on
one’s own. Furthermore, there are the arrow processBottomUpWhenNot that stops the
transformation if a predicate does not hold and the arrow processTopDownUntil, which
stops the recursion if a tree is successfully transformed.
Now addOneA can be rewritten with one of the traversal arrows. Both of them can be
used, because traversing the tree from top to bottom gives in this case the same result
than from bottom to top:

Listing 2.19: processBottomUp Example

addOneA :: LA (NTree I n t) (NTree I n t)

addOneA = processBottomUp (changeNode (+1))

testAddOneA = runLA (processChildren addOneA) intTree

Several other arrows provide additional features for processing a tree. The arrow replace-

Children is similar to processChildren, but the children are replaced by new ones
which are computed by processing the whole input tree. With insertChildrenAt and
insertChildrenAfter, it is possible to determine in which place of the tree the new
children should be inserted. The arrow insertChildrenAt takes an index where the
computed list of trees should be inserted and insertChildrenAfter searches the inser-
tion place with a predicate.
In order to search a whole tree for subtrees recursively, the class ArrowTree provides the
arrows deep as a top down search, deepest as a bottom up search and multi also as a
top down search. While deep and deepest stop when a tree is found which matches the
predicate and returns it, multi moves on (when a matching tree is found) and returns
all the subtrees for which the predicate holds.

32

Chapter 2. HXT – Haskell XML Toolbox

2.4.6. ArrowXml

The classes ArrowList, ArrowIf, ArrowState, ArrowIO and ArrowTree together provide
all the functionalities, needed by a powerful XML parser. The features described in the
last sections are combined in the class ArrowXml defined in the module Text.XML.HXT.Ar-
row.XmlArrow. It provides a huge set of arrows to process XML documents. The class
ArrowDTD is based on this interface, which contains special arrows for DTD processing.
All the functions which are defined in the class XmlNode and described in section 2.2.3
are lifted to arrows, so that now the processing functions for XML documents are able
to deal with I/O actions, global states and errors. Furthermore, the arrows of ArrowXml
are also grouped in predicates, selectors, constructors and modifiers. Since instances of
ArrowXml are also instances of ArrowList, all predicates return this, if the predicate
holds, while returning none in case it fails (see section 2.4.2). In order to make the
difference between the functions in XmlNode and ArrowXml clear, the next listings show
how isText and getText, which were already introduced in section 2.2.3, are defined.

isText :: a XmlTree XmlTree

isText = isA XN.isText

Since isText is of type bool, it is handed over to the arrow isA, which generates a
list arrow out of a predicate function. The qualified import name XN is used to differ
between the function defined in the class XmlNode and the new local definition. The
selector function getText returns the text of a text node and is lifted to arrows as
follows:

getText :: a XmlTree S t r i n g

getText = arrL (maybeToL i s t ◦ XN.getText)

In this listing, arrL, which creates an arrow from a list function, is used to lift getText.
The function getText is transformed from the Maybe type to a list function with
maybeToList, defined in the Prelude of Haskell.
Among the lifted functions from XmlNode, ArrowXml also provides additional arrows,
for instance to process the whole attribute list. How to use these arrows for processing
XML documents in “real-life”-programs will be described in the following chapter, where
a simple RDF/XML parser is implemented.

State for XML Processing

The processing of XML documents also needs a state for global processing options, like
encoding options, the document base URI, trace levels or error message handling. The

33

Chapter 2. HXT – Haskell XML Toolbox

module XmlIOStateArrow provides this, based on IOStateListArrow. That is the list
arrow implementation with state and I/O handling. The main data type defined in this
module is XIOS which represents the global store and is defined as follows:

newtype XIOS

= XIOS (AssocList S t r i n g (IOSArrow XmlTree XmlTree))

t y p e IOSArrow b c = IOSLA XIOS b c

Again, AssocList is used to provide a key-value list. But this time the value is not
just a string but a state arrow for XmlTree. This enables to store – besides simple
trace messages which are just character strings – whole XML trees for collecting error
messages and functions, e.g. for error message handling. The type IOSArrow is an alias
for state arrows with a XIOS state.
The main entry point for running a state arrow with I/O is the function runX and its
type definition is:

runX :: IOSArrow XmlTree c -> IO [c]

This function is used to start all kind of XML processing. While invoking runX f, an
empty XML root node is applied to f. Usually, f will start with a constant arrow that
ignores the input. This can be an arrow which reads in the XML document. The usage
of runX is shown in examples later in this document.

2.4.7. Final Structure

The relationship between the different arrow classes, their instances and the data types
of the Haskell XML Toolbox is illustrated in figure 2.1. It clearly shows, that the class
XmlNode acts as the interface between the data type XmlTree and the class ArrowXml.
The arrows provided by ArrowTree depend on the functions defined in the class Tree.
The figure is limited to the most important classes and data types.

34

Chapter 2. HXT – Haskell XML Toolbox

Figure 2.1: Arrow Class and Data Type Structure

35

3. Example RDF/XML Processing

3.1. Introduction

Now that the structure, the basic ideas as well as the different classes of the Haskell XML
Toolbox have been described, this chapter will demonstrate how to design a program
with it. The implementation of an RDF/XML parser was chosen as an example, because
all parts of the Haskell XML Toolbox, from simple file handling to complex arrows, are
needed for reaching this goal. But before starting the programming, the language and
the idea of RDF need to be discussed.
The Resource Description Framework (RDF) is a language for representing information
about resources in the World Wide Web [RDF Primer]. The main intention of RDF is
to represent meta data about Web resources, e.g. the author, title, or the modification
date of the Web page. However, RDF can also be used more generally to represent
information about all kinds of things that can be identified on the Web. This can be
information about the goods of an online shop or the description of a Web service pro-
vided by a Web page.
The idea of RDF is not to provide another concept of displaying information to people
like the Hypertext Markup Language (HTML), but rather to make the information pro-
cessable by applications. The handling of RDF is based on a common framework, so the
information can be processed outside the environment in which it was created or even
combined with other information.
In RDF, every resource can be identified by Web identifiers called Uniform Resource
identifiers (URI). The resources are described in terms of simple properties and prop-
erty values. This defines a simple but flexible data model which represents the resources
as graphs of nodes and arcs.
The following sections give an overview of the concept of RDF based on the following
three documents: Primer [RDF Primer], concepts [RDF Concepts] and syntax specifi-
cation [RDF/XML Syntax].

3.1.1. Basic Concepts of RDF

The purpose of RDF is to describe resources in the Web. In other words, it is used to
make statements about resources. As already mentioned, these statements are defined

36

Chapter 3. Example RDF/XML Processing

as a thing identified by an URI and described in terms of a property with a value. In
an RDF statement, these three things are named subject, predicate and object. Together
they form a pattern which is called a triple. Like in natural languages, the subject is the
thing which is described and identified, the predicate is the property of the subject and
the object is the value of the predicate. An example of an English statement is:

http://www.example.org/index.html has a creator whose value is John Smith

The RDF terms of this statement are:

• the subject is the Uniform Resource Locater (URL) to identify the Web page
http://www.example.org/index.html

• the predicate is the word “creator”

• the object is the phrase “John Smith”

This example shows how RDF is structured, but it is not complete. In RDF, every-
thing is identifiable and ambiguity should be avoided to ensure that the statements
are machine-processable. Ambiguity among subjects, predicates or objects would mean
that they cannot be clearly identified and, therefore, not processed by an application.
To solve this problem, RDF uses Uniform Resource Identifier (URI) [URIS] extended
with references called URI reference or URIref.
In the example above, the subject, namely the Web page, is identified by an URL. But
in order to identify every part of the statement, it is also necessary to describe aspects
which have no network locations and URLs. URIs are more general and not limited to
identifying things in the Web. URLs are, in fact, only a particular kind of URI.

To be machine-processable, RDF needs to be represented in a way that applications
can read it. There are different languages to serialise RDF. One is N-Triples, which is
often used to explain RDF and to write down simple statements because it is very short
and clear. The other one is RDF/XML, the official language, recommended by the W3C.
RDF/XML uses the Extensible Markup Language (XML), which allows to design own
document formats and write documents in that format. A detailed description about
XML can be found in the document [XML]. RDF/XML and its syntax will be described
more thoroughly in section 3.1.3.

3.1.2. Model of RDF

The example statement of the last section:

http://www.example.org/index.html has a creator whose value is John Smith

can also be represented by the following triple:

37

Chapter 3. Example RDF/XML Processing

• the subject: http://www.example.org/index.html

• the predicate: http://purl.org/dc/elements/1.1/creator

• the object: http://www.example.org/staffid/87540

In RDF, neither the subject nor the predicate must be character strings. That is because
every element of a triple should be identifiable and only the object can be a so-called
literal. Those literals can be plain literals, which is a simple character string, or typed
literals, where the literal has an additional data type information. Both, plain and typed
literals, can contain Unicode characters that allow to represent information from many
languages directly.
The URIrefs used in triples are often organised so that they define a vocabulary. The
predicate URIref http://purl.org/dc/elements/1.1/creator, for example, is part of
the Dublin Core vocabulary [DC]. In this vocabulary there are definied several commonly
used terms, like the term creator. The advantage of vocabularies lies in their reusability.
Applications using the same vocabulary understand or interpret the predicates of triples
in the same way, since their meaning and their usage are defined. Vocabularies for RDF
are written in the RDF Vocabulary Description Language [RDF Schema], which shall
not be described here.
The statements of RDF can be modelled as nodes and arcs in a graph and in this notation
a statement is represented by

• a node for the subject

• a node for the object

• a directed arc from the subject node to the object node for the predicate

So, the statement above can be modelled by the graph in figure 3.1.

Figure 3.1: Simple RDF Graph

38

Chapter 3. Example RDF/XML Processing

Another way to represent or serialise RDF statements using English statements is the
N-Triples notation, which is a fixed subset of N3 [N3]. The N-Triples notation requires
that URI references are written out completely in angle brackets. This can result in
very long lines per page. Therefore, in order to abbreviate full URI references, qualified
names (see section 2.2.2) are used to avoid this. The following list includes the qualified
names that are used throughout this document and without explicitly specifying them
each time:

• prefix rdf: namespace URI: http://www.w3.org/1999/02/22-rdf-syntax-ns#

• prefix dc: namespace URI: http://purl.org/dc/elements/1.1/

• prefix ex: namespace URI: http://www.example.org/

• prefix exterms: namespace URI: http://www.example.org/terms/

• prefix exstaff: namespace URI: http://www.example.org/staffid/

• prefix xsd: namespace URI: http://www.w3.org/2001/XMLSchema#

The next listing shows a group of statements with additional information added to the
example above in N-Triples notation and using this new shorthand:

Listing 3.1: Group of Statements with N-Triple Notation

ex:index.html dc:language "en" .

ex:index.html exterms:creation -date "August 16, 1999" .

ex:index.html dc:creator exstaff:85740 .

The RDF graph of that group is shown in figure 3.2.

39

Chapter 3. Example RDF/XML Processing

Figure 3.2: Compound RDF Graph

This example illustrates the use of vocabularies: An organisation such as example.org has
a vocabulary consisting of URIrefs starting with the prefix http://www.example.org/

terms/ for terms it uses in its business, such as “creation-date” or “product”. An-
other vocabulary of the organisation is to identify its employees with URIrefs start-
ing with http://www.example.org/staffid/. RDF itself uses the same approach to
define its own vocabulary of terms with special meanings in RDF. As shown in the
list above, the URIrefs in the RDF vocabulary all begin with http://www.w3.org/

1999/02/22-rdf-syntax-ns#, which is conventionally associated with the QName pre-
fix rdf:.
In addition to this, it is crucial to distinguish between any meaning that RDF for it-
self associates with terms such as dc:creator and externally-defined meaning that pro-
grams might associate with those terms. Only the semantics of the RDF vocabulary and
the graph syntax are directly defined in the documents [RDF/XML Syntax] and RDF-
Semantics [RDF Sematics]. The meaning of any other vocabularies is defined somewhere
externally to RDF. Thus, generic RDF applications like parsers, would only recognise a
statement with a specific vocabulary as a valid triple, but would not add and verify any
special meaning that might be associated with any terms of the vocabulary.

Blank Nodes

Graphs may also include nodes without URIrefs, i.e. blank nodes. The idea behind blank
nodes is to represent something that does not have an URIref, but can be described in
terms of other information. As an example, figure 3.3 shows a graph which represents

40

Chapter 3. Example RDF/XML Processing

the statement “the document ’http://www.w3.org/TR/rdf-syntax-grammar’ has a title
’RDF/XML Syntax Specification (Revised)’ and has an editor, the editor has a name
’Dave Beckett’ and a home page ’http://purl.org/net/dajobe’ ”.

Figure 3.3: Graph with a Blank Node

The concept of the editor of a Web page does not need to be referred directly from outside
a particular graph and hence, does not require a “universal” identifier. The blank node
simply provides the necessary connectivity between the remaining parts of the graph.
However, to represent this graph with the N-Triples notation, the blank nodes also need
some form of explicit identifier. N-Triples use blank node identifiers having the form
:name for that, where name can be any kind of character string. In most cases, this is a
number. For instance, a blank node identifier :id1 might be used to refer to the blank
node. To keep this example short, only the subgraph with the blank node is shown:

Listing 3.2: Triples with Blank Nodes

<http://www.w3.org/TR/rdf -syntax-grammar > exterms:editor _:id1 .

_:id1 exterms:homePage <http://purl.org/net/dajobe> .

_:id1 exterms:fullName "Dave Beckett" .

Blank node identifiers are not actual parts of the RDF graph, like URIrefs and literals

41

Chapter 3. Example RDF/XML Processing

are. They serve as representatives of the blank nodes in a graph and distinguish one
blank node from another when the graph is written in the N-Triple form. Additionally,
blank node identifiers also have significance only within the triples representing a single
graph.
Because RDF can only represent binary relations directly, blank nodes also provide a
way of dealing with n-ary relations by breaking them up into a group of separate binary
relations.

Typed Literals

In some situations, it might be more appropriate to store some kind of type information
to the plain literal of a statement. For example, if the age of a person is to be recorded,
it does not make sense to use a plain literal for this, like illustrated in the next listing:

exstaff:85740 exterms:age "27" .

An application processing this statement cannot “know” that the literal “27” is a decimal
number and not a character string. Therefore, the data type information of this literal is
added to the statement like it is done in database systems or programming languages. In
RDF, these extended literals are called type literals. The example above can be rewritten
using a typed literal to store the age:

exstaff:85740 exterms:age "27"^^ xsd:integer .

The same example is show as a graph in figure 3.4.

Figure 3.4: Graph with a Typed Literal

42

Chapter 3. Example RDF/XML Processing

In this example the data type integer defined in the XML Schema [XML Schema] data
types is used. It is very important to keep in mind that the data types of the typed
literals are not validated by generic RDF applications. As it is the case with the vocab-
ulary, the data type definition is done externally from the RDF definition, which means
that an RDF parser cannot determine whether a literal is valid or not. This has to be
done by the applications which know how to process these particular data types.

This section has presented an introduction to the concepts of RDF. It has shown how
RDF can be used to store all kinds of data and that RDF graphs are similar to the way
of recording information in simple relational databases.

3.1.3. RDF/XML - Syntax

Although the conceptual model of RDF is a graph, it is also necessary to write down and
exchange or, in other words, to serialise RDF graphs. The N-Triples notation, which has
been already introduced, can be used for this but it was only intended as a shorthand
notation. RDF/XML instead, is the normative syntax for serialising RDF graphs and
is defined in the RDF/XML Syntax Specification [RDF/XML Syntax]. The basic ideas
behind the RDF/XML syntax can be illustrated by using some of the examples presented
previously. The example in listing 3.3 has taken the first example and has replaced the
URIref of the object by a plain literal.

Listing 3.3: RDF Statement with Plain Literal

ex:index.html exterms:creator "John Smith"

This RDF statement can be encoded in RDF/XML Syntax as the following listing:

Listing 3.4: RDF/XML for the Creator Concept

1 <?xml version="1.0"?>

2 <rdf:RDF xmlns:rdf="http: //www.w3.org/1999/02/22 -rdf -syntax-ns#"

3 xmlns:exterms="http://www.example.org/terms/">

5 <rdf:Description rdf:about="http://www.example.org/index.html">

6 <exterms:creator>John Smith </ exterms:creator>

7 </rdf:Description>

9 </rdf:RDF>

Lines 1-3 are the “introduction” of the RDF/XML document. First, in line one, there
is the XML declaration to indicate that the following content is XML. Then, in line two

43

Chapter 3. Example RDF/XML Processing

and three, there begins an rdf:RDF element which indicates that the following content
up to the end tag is RDF. The namespace declarations for the RDF namespace, defin-
ing the terms from the RDF vocabulary and all the others which are used throughout
this document, are also written down in these lines. Although the RDF namespace and
the rdf:RDF element are optional in situations where the XML can be identified as an
RDF/XML document by context, it is always better to provide them, since this makes
the documents much clearer.
In line five there is the rdf:Description element, which indicates the start of a de-
scription of a resource and is also called node element. What this statement is about,
is specified in the rdf:about attribute. The content of this attribute is the URIref of
the subject. The following line, line six, provides a property element, which represents
the predicate and object of the statement. The qualified name exterms:creator of
this element specifies the predicate and the content of the property element is the plain
literal John Smith, which is the object.
The listing 3.4 illustrates the basic ideas of RDF/XML. There are several other ways
of representing an RDF statement in XML and also a lot of abbreviations to keep the
RDF/XML documents from becoming too big. All of these options are described in
[RDF/XML Syntax] and this section introduces only those which are shown in
[RDF Primer].
Making more than one statement about the same resource can be represented in RD-
F/XML by using the lines 5-7 in listing 3.4 for every new statement. To avoid this
overhead of repeating the same rdf:Description element for every statement, RD-
F/XML allows multiple property elements, representing the predicates and objects for
the same subject resource. For example, listing 3.5 represents the following group of
statements:

ex:index.html dc:creator exstaff:85740

ex:index.html exterms:creation -date "August 16, 1999"

ex:index.html dc:language "en"

These triples are the same as the RDF graph shown in figure 3.2.

Listing 3.5: Multiple Properties

1 <?xml version="1.0"?>

2 <rdf:RDF xmlns:rdf="http: //www.w3.org/1999/02/22 -rdf -syntax-ns#"

3 xmlns:dc="http://purl.org/dc/elements/1.1/"

4 xmlns:exterms="http://www.example.org/terms/">

6 <rdf:Description rdf:about="http: //www.example.org/index.html">

7 <exterms:creation -date>August 16, 1999</exterms:creation -date>

8 <dc:language>en</dc:language>

44

Chapter 3. Example RDF/XML Processing

9 <dc:creator rdf:resource="http: //www.example.org/staffid/85740"/>

10 </rdf:Description>

12 </rdf:RDF>

Apart from showing how to use multiple property elements, the listing 3.5 also introduces
a new form of property element. Unlike the first two properties, the property in line
nine is an empty element with an rdf:resource attribute. This attribute represents
a property whose value is another resource, rather than a literal. If the URIref of this
resource has been written in the same way as the literal values, the URIref would not
be a resource identifier but a character string. Unfortunately, the URIref cannot be
abbreviated as a qualified name and has to be written out, since it is being used as an
attribute value.
Using blank nodes to describe resources is another technique of RDF. Blank nodes are
nodes which do not have an URIref but can be described in terms of other information
as discussed in section 3.1.2. RDF/XML provides several ways to represent graphs
containing those nodes, but only the most direct approach should be illustrated here.
This is to assign a blank node identifier to each blank node. A blank node identifier only
identifies a blank node within a particular RDF/XML document and is, in contrast to an
URIref, unknown outside the document. In order to refer to a blank node in RDF/XML,
the rdf:nodeID attribute and the identifier as its value are used. This attribute can
appear in places where the URIref of a resource would otherwise be and replaces the
rdf:about attribute of node elements (elements with the name rdf:Description). The
example in listing 3.6 shows the RDF/XML corresponding to figure 3.3.

Listing 3.6: Blank Nodes in RDF/XML

1 <?xml version="1.0"?>

2 <rdf:RDF xmlns:rdf="http: //www.w3.org/1999/02/22 -rdf -syntax-ns#"

3 xmlns:dc="http://purl.org/dc/elements/1.1/"

4 xmlns:exterms="http://www.example.org/terms/">

6 <rdf:Description rdf:about="http: //www.w3.org/TR/rdf -syntax -grammar">

7 <dc:title>RDF/XML Syntax Specification (Revised)</dc:title>

8 <exterms:editor rdf:nodeID="abc"/>

9 </rdf:Description>

11 <rdf:Description rdf:nodeID="abc">

12 <exterms:fullName>Dave Beckett</exterms:fullName>

13 <exterms:homePage rdf:resource="http://purl.org/net/dajobe/"/>

14 </rdf:Description>

16 </rdf:RDF>

45

Chapter 3. Example RDF/XML Processing

In listing 3.6 the value of the exterms:editor property is a blank node with the iden-
tifier abc. The blank node itself is defined in line 11 as the subject of two statements.

Instead of using plain literals as usual, the typed literals introduced in section 3.1.2
may be used as well. This can be done in RDF/XML by adding an rdf:datatype at-
tribute with the data type URIref as its value to the property element. The following
listing illustrates the graph shown in figure 3.4 in the RDF/XML syntax:

Listing 3.7: Typed Literal in RDF/XML

1 <?xml version="1.0"?>

2 <rdf:RDF xmlns:rdf="http: //www.w3.org/1999/02/22 -rdf -syntax-ns#"

3 xmlns:exterms="http://www.example.org/terms/">

5 <rdf:Description rdf:about="http: //www.example.org/staffid/85740">

6 <exterms:age rdf:datatype=

7 "http: //www.w3.org/2001/ XMLSchema#integer">27

8 </exterms:age>

9 </rdf:Description>

11 </rdf:RDF>

The RDF/XML Syntax described so far provides a simple but general way of expressing
RDF graphs. This simple approach gives the most direct representation of the actual
graph structure. Some other additional abbreviations provided by RDF/XML will be
introduced in section 3.2 along with the example RDF/XML parser.

3.1.4. SPARQL – Query Language for RDF

The approach of storing information in RDF is very similar to that of simple relational
databases. Almost every relational database provides the Structured Query Language
(SQL) to access the information recorded in the tables of a database. SQL provides
several commands to manipulate and to search for data. It seems likely to provide such
a data access language also for RDF, which could be used to query the information
stored in RDF graphs. There are several approaches of query languages for RDF and
one of them should be introduced here. This is the query language part of the Protocol
and RDF Query Language (SPARQL) [SPARQL] which is still under development and
not finished yet. SPARQL provides a lot of features to search for information in RDF,
like querying more than one graph and connecting several RDF stores. As this document
intends to exemplify how to implement an RDF/XML parser with a small query engine,
only the basic language features of SPARQL should be introduced here.

46

Chapter 3. Example RDF/XML Processing

The idea of the SPARQL query language is based on matching graph patterns. There
are several versions of graph patterns. The simplest one is the triple pattern which is
the same as an RDF triple but with the possibility of a variable in any of the subject,
predicate or object positions. An exact match of this triple pattern to an RDF graph is
needed to fulfill a pattern. A simple query which searches for the title of a book in the
following data:

ex:book/book1 dc:title "SPARQL Query"

shows the next listing:

Listing 3.8: Simple SPARQL Query

SELECT ?title

WHERE { <http://www.example.org/book/book1 >

<http://purl.org/dc/elements/1.1/ title >

?title . }

The result of this query would be:

title

"SPARQL Query"

A query always consists of two parts, the SELECT clause and the WHERE clause. The
SELECT clause specifies the variables, which should be returned by the query. The WHERE
clause contains the graph pattern. In this case the graph pattern consists one single
triple pattern. Graph patterns can also be of other pattern types. Every pattern adds
additional functionality to SPARQL. These additional pattern types will not be taken
into consideration.
The triple pattern consists of three query terms. These can be an URIref delimited by
“<>”. The object can also be a literal which is delimited by single or double quotes and
can be followed by an optional language tag, introduced with ’@’, or an optional data
type URI, introduced by ’ˆˆ’ . As a convenience, integers, floating point numbers and
boolean values can be directly written and are interpreted as typed literals of data type
xsd:integer, xsd:double or xsd:boolean.
The variables used in a SPARQL query have a global scope and are indicated by ’?’ or
’$’.
The term “binding” is used as a descriptive term to refer to a pair of variable and RDF
term. These bindings result in tabular form so if variable x is bound to “Fred” it is
shown as:

47

Chapter 3. Example RDF/XML Processing

x

"Fred"

The results of a query can also be returned in RDF, in a special XML format defined in
[SPARQL Result] or in forms specific to the implementation.
The matching of a graph pattern to a graph, gives bindings between the variables of the
triple patterns and the RDF terms. This means, the triple pattern, with the variables
replaced by the corresponding RDF terms, is a triple of the graph being matched. This
process is also called substitution.
The last example has shown how to search for only one triple. In the following exam-
ple, the data consists of two triples with blank nodes as the subject and the query also
consists of two triple patterns. This graph pattern only matches if each of the triple
patterns matches with the same substitution. The data is:

_:a dc:name "Johnny" .

_:a dc:mbox <mailto:jlow@example.com > .

The query to search for the mail address is:

SELECT ?mbox

WHERE { ?x <http://purl.org/dc/elements/1.1/name > "Johnny" .

?x <http://purl.org/dc/elements/1.1/mbox > ?mbox }

This leads to the following result:

mbox

<mailto:jlow@example.com>

With SPARQL, it is also possible to deal with multiple matches. The example above
could have two mail addresses as a result if the data contained two entries with the name
“Johnny”.
Triple patterns are written as a list of subject, predicate and object, which can result
in very long lists and can therefore be abbreviated. The predicate-object list allows to
write down the subject only once where several triple patterns with the same subject
are needed. The predicate-object list is then delimited by a ’;’ like shown in the next
listing:

?x dc:creator ?name ;

dc:creation -date ?date .

Another way of abbreviating triple patterns are object lists, which can be used when
triple patterns share both subject and predicate. The following listing illustrates how

48

Chapter 3. Example RDF/XML Processing

the object list is used.

?x dc:creator "Alice" , "Alice_" .

This is the same as writing the triple patterns in the following form:

?x dc:creator "Alice" .

?x dc:creator "Alice_" .

Like section 3.1.3, this section illustrated some, but not all of the abbreviations and
language features of the SPARQL query language. A number of additional ones will be
described in further detail in the next sections, but the language shown so far already
provides enough features to write simple and useful queries for RDF triples.

3.2. Writing the RDF/XML Parser

3.2.1. Introduction

The RDF/XML parser, which shall now be implemented, is structured and based on the
complexity of the tasks. First of all, a function or module is needed which takes care
of the I/O handling, i.e. reading an RDF document and presenting the result of the
parsing process. Then, the real processing of the document needs to be implemented,
which is also separated in several parts. The first part is to normalise all the RDF/XML
abbreviations into a simple and normative RDF/XML document. This normalised doc-
ument is then processed and the result is stored in a new data structure. After that,
the data structure can be printed out in several formats like the N-Triples notation or
a simple RDF/XML representation. Furthermore, a SPARQL parser and a module for
searching in the RDF data structure is also a part of it, in order to provide simple query
features.

3.2.2. Main Function and Option Handling

The first part of a program is the main function, which is the “main entry point”. The
file handling and the additional processing of the XML document are coordinated in this
function. The Haskell XML Toolbox provides – besides the arrows introduced in section
2.4 – the module XmlStateFilterInterface, which consists of compound arrows for
reading, parsing, validating and writing XML documents. The most important arrows
of this module are readDocument and writeDocument. The arrow readDocument is the
main document input arrow. It can be configured by an option list of type Attributes

49

Chapter 3. Example RDF/XML Processing

and takes the file name of the document which should be read as parameter. The
attribute list of readDocument is stored in the global state component to ensure that it
can be accessed everywhere in the program. Some of the available options are:

• a validate : validate document, else skip validation (default)

• a check namespaces : check namespaces, else skip namespace processing (default)

• a canonicalize : canonicalise document (default), else skip canonicalisation

• a remove whitespace : remove all whitespace, used for document indentation,
else skip this step (default)

• a trace : trace level: values: 0 - 4

The writing of XML documents to files is done by the arrow writeDocument. Like
readDocument, it takes a list of options and the file name of the document which should
be written. The full list of the available options for both arrows is listed in appendix A.
The next listing, for example, illustrates how to write a main function that reads an
RDF file “simple.rdf” in, processes all namespaces, removes all white spaces and then
creates a new RDF file “output.rdf” out of it:

Listing 3.9: First Main Function

main :: IO ()

main

= do

runX (readDocument [(a_check_namespaces ,"1"),

(a_remove_whitespace ,"1")]

"simple.rdf"

>>>

writeDocument [] "output.rdf"

)

r e t u r n ()

Unlike the two options handed over to readDocument, the arrows removeAllWhiteSpace
and propagateNamespaces can be used to delete the whitespaces and process all names-
paces. Line-breaks to indent a XML document are interpreted as XML text nodes. When
processing those documents, it is crucial to call removeAllWhiteSpace, since these extra
text nodes are also returned by getChildren. Sometimes, the number of chil-nodes of
an element are of interest and text nodes containing line-breaks disturb or cover up the
real number which maybe leads to incorrect results.

50

Chapter 3. Example RDF/XML Processing

The function runX, described in section 2.4.6, is used to run the processing. In this case,
it consists of the two arrows readDocument and writeDocument combined with the op-
erator (>>>), which results in an I/O action. This action is executed by runX and
the main function ends by returning the empty tuple. Several errors, like XML syntax
error, can occur during the processing. These errors, however, are ignored and the main
function always ends successfully.
To enable the error handling in the example above, the arrow getErrStatus from the
module XmlIOStateArrow reads the error status from the global state, which can then
be used to determine, how the main function should end. The example in listing 3.10
shows how the main function can be rewritten, so as to enable error handling and tracing
parse errors while processing.

Listing 3.10: Main Function with Error Handling

main

= do

[rc] <- runX (readDocument [(a_trace ,"1")]

"simple.rdf"

>>>

removeAllWhiteSpace >>> propagateNamespaces

>>>

writeDocument [] "output.rdf"

>>>

getErrStatus

)

e x i tW i t h (i f rc >= c_err

t h en E x i t F a i l u r e (-1)

e l s e E x i t S u c c e s s)

When including the main function from the example above into a Haskell module, two
modules have to be imported. One of them is the module Text.XML.HXT.Arrow which
is the application programming interface to the arrow modules of the Haskell XML
Toolbox and exports all important arrows, basic data types and functions. The other
one is the module System.Exit from the standard Haskell libraries which is used to get
the functions for advanced program termination.
However, the example above is still not completed. Another considerable feature which
should be provided by every program is to deal with command-line options. Furthermore,
the name of the input and output file should not be hard coded but rather specified by
a command-line argument. Therefore, the main function has to be rewritten again.

51

Chapter 3. Example RDF/XML Processing

Listing 3.11: Main Function with Commandline Options

main

= do

argv <- g e tA r g s

(al, src) <- cmdlineOpts argv

[rc] <- runX (processDocument al src)

e x i t W i t h (i f rc >= c_err

t h en E x i t F a i l u r e (-1)

e l s e E x i t S u c c e s s)

Listing 3.11 shows that, the command-line parameters are collected first by the Haskell
function getArgs. After that, the function cmdlineOpts processes these parameters and
returns a pair of the list of processed arguments and the input file name. This pair, then,
is handed over to the arrow processDocument which is executed by runX. Finally, the
error handling is done in the same way as shown in the last example.
The function cmdlineOpts parses the command-line parameters, prints the list of avail-
able command-line arguments or terminates the program if no input file name has been
specified. The definition of it shall not be described here in detail, because it is not a
Haskell XML Toolbox specific function, but a standard Haskell code.
The main function is much shorter now that the processing arrows are encapsulated by
the arrow processDocument, which is defined as follows:

Listing 3.12: processDocument

processDocument :: Attributes -> S t r i n g -> IOSArrow b I n t

processDocument al qr src

= readDocument al src

>>>

removeAllWhiteSpace >>> propagateNamespaces

>>>

writeDocument al (fromMaybe "" (l o o kup a_output_file al))

>>>

getErrStatus

The arrow takes the attributes and the name of the input file as extra parameters. These
arguments are handed over to readDocument. Moreover, the command-line option for
the name of the output file is looked up in the list of parameters al. If this parameter
does not exist, the output is printed to the standard output. This list can contain any
options, allowed by readDocument and writeDocument. Later in this section, an extra
command-line option will be added to the available list of arguments.

52

Chapter 3. Example RDF/XML Processing

The program described so far is already a fully working application, which parses a
XML document and writes it back to a file or the standard output. However, it does
not contain any RDF/XML specific arrows yet. The arrow processDocument can be
extended easily by any arrow which processed XML somehow. In the next section this
will be shown by implementing parser arrows for RDF/XML.

3.2.3. Parsing RDF/XML

Before starting to parse the full RDF/XML syntax, only a subset of it is processed.
This subset covers all the features described in section 3.1.3. The additional syntax
abbreviations and their processing are discussed in the next section.

Simple Processing Arrows

The first simple RDF/XML document which should be processed by the parser is the
document presented in listing 3.4. The next listing shows this RDF document in order
to recall the syntax of RDF/XML (the XML and namespace declaration have been
removed):

<rdf:Description rdf:about="http://www.example.org/index.html">

<exterms:creator >John Smith </ exterms:creator >

</rdf:Description >

It contains no abbreviations and has only one RDF triple with a plain literal as the object.
First of all, the processing functions return their results in a simple XML document and
later it will be shown how to store these results in a special data structure for RDF.
The structure of this XML document is illustrated in the next listing, using the data of
listing 3.4:

Listing 3.13: Simple Triple Representation

<triple >

<subject >http://www.example.org/index.html </subject >

<predicate >http://www.example.org/terms/creator </predicate >

<object >John Smith </object >

</triple >

To achieve this result, every rdf:Description-element has to be selected by processing
the whole XML document tree. The following listing shows the predicate, which tests
whether an element has the name rdf:Description and the attribute rdf:about.

53

Chapter 3. Example RDF/XML Processing

Listing 3.14: Predicate detecting Node Elements

isNodeElem :: (ArrowXml a) ⇒ a XmlTree XmlTree

isDesc

= isElem >>> hasQName rdf_Description >>> hasQAttr rdf_about

The constants rdf Description and rdf about are of type QName and represent the
qualified names.
This predicate can now be applied to the whole document tree. If the predicate holds,
this element can be further processed. The traversing through the tree is done by the
arrow deep:

Listing 3.15: Apply the Predicate to the Tree

processRDF :: (ArrowXml a) ⇒ a XmlTree XmlTree

processRDF

= processChildren (deep (isNodeElem ‘ g u a r d s ‘ getTriple))

The arrow getTriple does the actual processing of the rdf:Description elements.
It selects the value of the rdf:about attribute and creates an element with the name
“subject” and the value as a text element. The same is done with the property element
by selecting the predicate and object value and generating elements with the name
“predicate” and “object” out of it. These three elements are then added to the list of
children of an element called “triple”:

Listing 3.16: getTriple

getTriple :: (ArrowXml a) ⇒ a XmlTree XmlTree

getTriple

= selem "triple"

[getQAttrValue rdf_about >>> selem "subject" [mkText]

,getChildren >>> getUniversalUri

>>> selem "predicate" [mkText]

,selem "object" [getChildren>>>getChildren]

]

The arrow processRDF can now be added to the processDocument arrow from listing
3.12, so that it processes the XML tree generated by readDocument and passes the result
of it to the arrow writeDocument.
The resulting program is already able to process very simple RDF documents with one
or more triples, but every triple has to be declared explicitly and no abbreviations are

54

Chapter 3. Example RDF/XML Processing

allowed. In order to process the multiple property elements as shown in listing 3.5, the
function above has to be rewritten, because the URIref of the subject is needed several
times. The function getTriple now takes an additional parameter of type string which
is the URIref of the subject to ensure that it can be used more than once. The listing
3.17 presents the rewritten function getTriple.

Listing 3.17: getTriple for Multiple Properties

getTriple subject

= getChildren >>> selem "triple"

[selem "subject" [txt subject]

, getUniversalUri >>> selem "predicate" [mkText]

, selem "object" [getChildren]

]

Furthermore, a new arrow is needed to select the value of the rdf:about attribute. This
new arrow is called processSubject and is defined as follows:

processSubject :: (ArrowXml a) ⇒ a XmlTree XmlTree

processSubject = arr getTriple $< getQAttrValue rdf_about

It hands the value of the attribute over to the arrow getTriple via the combinator $<,
which allows the programmer to use a parameter more than once (see section 2.4.1).
This arrow shows, that the special combinators for point-wise programming are highly
practical. Without them the code of such a simple arrow would be awkward and con-
fusing.
Now, processSubject and not getTriple has to be applied to the whole tree in the
arrow processDocument. Every time the predicate isNodeElem holds, the rdf:about

value is selected and handed over to getTriple, which generates a triple element for
every child-node of the rdf:Description element.

The next RDF/XML syntax feature that should be supported by the parser are blank
nodes. There are several ways of representing blank nodes in RDF/XML, but first
only blank nodes with a explicit blank node identifier should be processed. Therefore,
the predicate isNodeElem has to be rewritten, because an rdf:Description element
can also have a rdf:nodeID attribute carrying the blank node identifier instead of the
rdf:about attribute. The choice between these two possibilities is made by the combi-
nator orElse, as the next listing shows:

Listing 3.18: isNodeElem with Blank Node Test

isNodeElem = isElem >>> hasQName rdf_Description

>>> (hasQAttr rdf_nodeID ‘ o r E l s e ‘ hasQAttr rdf_about)

55

Chapter 3. Example RDF/XML Processing

In addition to isNodeElem, the arrow processSubject also has to be rewritten, since
the blank node identifier has to be selected as well as the URIref. The following listing
illustrates how the choice between attributes can be made by the choiceA-construction
(the type signature has been removed):

Listing 3.19: processSubject with Blank Node

processSubject

= arr getTriple

$< choiceA [hasQAttr rdf_about :-> getQAttrValue rdf_about

,hasQAttr rdf_nodeID:-> getQAttrValue rdf_nodeID

]

Moreover, the processing of the object of a triple has to be changed, since an object can
also have an rdf:nodeID attribute referring to a blank node or an rdf:resource with
an URIref. This is done by the arrow processObject which also uses choiceA to deal
with the different cases:

processObject :: (ArrowXml a) ⇒ a XmlTree XmlTree

processObject

= choiceA [isResource :-> getQAttrValue rdf_resource

,isBlankNodeRef :-> getQAttrValue rdf_nodeID

,this :-> getChildren >>> getText

]

>>>

selem "object" [mkText]

The predicates isResource and isBlankNodeRef test if the element is empty and has the
right attribute. Now, the creation of the “object” element can be replaced in getTriple

by processObject and the application is able to process RDF documents with blank
nodes like the one in listing 3.6, which would generate the following output:

<triple >

<subject >http://www.w3.org/TR/rdf -syntax-grammar </subject >

<predicate >http://purl.org/dc/elements/1.1/title </predicate >

<object>RDF/XML Syntax Specification (Revised)</object>

</triple >

<triple >

<subject >http://www.w3.org/TR/rdf -syntax-grammar </subject >

<predicate >http://www.example.org/terms/editor </predicate >

<object>abc </object >

</triple >

56

Chapter 3. Example RDF/XML Processing

<triple >

<subject >abc </subject >

<predicate >http://www.example.org/terms/fullName </predicate >

<object>Dave Beckett </object >

</triple >

<triple >

<subject >abc </subject >

<predicate >http://www.example.org/terms/homePage </predicate >

<object>http://purl.org/net/dajobe/</object >

</triple >

Finally, the typed literals need to be processed to support all the functionality of
RDF/XML as presented in section 3.1.3. This time, however, only the arrow process-

Object has to be rewritten by adding a new case to the choiceA-construction. If an
object is a typed literal, the value of the rdf:datatype attribute and the text of the
element has to be selected as illustrated by the following listing:

processObject

= choiceA [isResource :-> getQAttrValue rdf_resource

,isBlankNodeRef :-> getQAttrValue rdf_nodeID

,isTypedLiteral :-> op1

,this :-> getChildren >>> getText

]

>>>

selem "object" [mkText]

where

op1 = (getChildren >>> getText) &&& getQAttrValue rdf_datatype

>>> arr (λ(t,qn) = t++"^^"++qn)

The locally defined arrow op1 selects the text of the property node and the URIref of
the datatype attribute simultaneously. The resulting tuple is handed over to the lambda
expression that combines the two character strings. Then, the lambda expression is
converted to an arrow.
The language features of RDF/XML which can be processed by the application so far,
provide sufficient ways of expression to represent every possible RDF graph. The next
step in the development of the RDF/XML parser is to design a data structure in which
the result of the processing should be stored without using a XML document for this.

57

Chapter 3. Example RDF/XML Processing

Data Structure

An RDF triple consists of a subject, a predicate and an object. These three parts are
represented by data types as follows:

Listing 3.20: Data Types Subject, Predicate and Object

t y p e Subject = RDFTerm

t y p e Predicate = URI

t y p e Object = RDFTerm

The definition of the data types RDFTerm and URI are shown in listing 3.21

Listing 3.21: Types RDFTerm and URI

da t a RDFTerm = URIref URI

| RDFLiteral S t r i n g

| RDFLangLiteral S t r i n g S t r i n g

| RDFTypedLiteral S t r i n g URI

| BlankNode S t r i n g

d e r i v i n g (Ord ,Eq)

t y p e URI = S t r i n g

The constructors of RDFTerm express all the different units, a subject or an object can
be. Actually, a subject can only be an URIref or a blank node and not the different
kinds of literals. Later in this document, it will be shown that a subject can be a literal
although this is forbidden by the RDF/XML Syntax specification. Besides typed and
plain literal an object can also be a literal with a language specification, which has not
been introduced yet.
The type URI is a character string to prevent the examples from becoming too complex.
The following listing shows the definition of the data type representing a triple. The
type RDFStore is a shortcut for a list of triples.

Listing 3.22: Triple Data Type

da t a Triple = Triple Subject Predicate Object

d e r i v i n g (Ord ,Eq)

t y p e RDFStore = [Triple]

58

Chapter 3. Example RDF/XML Processing

The implementation of the Show class for all types, which enables data types to be
printed out, is based on the N-Triples syntax and shall not be further described here.
Furthermore, every data type has several constructor functions to create the different
kinds of types.

Storing Parse-Result in the Data Structure

The output of every arrow has to be changed to the data types described above and
unlike of creating XML elements, they have to use one of the constructor functions.
Thus, processObject has to be rewritten as follows:

processObject :: (ArrowXml a) ⇒ a XmlTree Object

processObject

= choiceA

[isResource :-> (getQAttrValue rdf_resource

>>> mkResourceA)

,isBlankNodeRef :-> (getQAttrValue rdf_nodeID

>>> mkObjectBlankNodeA)

,isTypedLiteral :-> op1

,this :-> (getChildren

>>> getText >>> mkLiteralA)

]

where
op1 = getQAttrValue rdf_datatype &&& (getChildren >>> getText)

>>> arr2 mkTypedLiteral

The arrow version of one of the type constructors is used, in every case of the choiceA-
construct. The arrow getTriple has to be rewritten, too. It takes a Subject as extra
parameter in place of the character string and has the type Triple as output, which is
generated by the function mkTriple:

getTriple :: (ArrowXml a) ⇒ Subject -> a XmlTree Triple

getTriple subject

= getChildren

>>> (processPredicate &&& processObject)

>>> arr2 (mkTriple subject)

where

processPredicate = (getUniversalUri >>> mkPredicateA)

The arrow processSubject, which calls getTriple, has the output type Triple as
well and creates a Subject in the two cases of an URIref or a blank node at the

59

Chapter 3. Example RDF/XML Processing

rdf:Description element. Furthermore, the arrow getChildren is applied in front
of it, because the processing of the whole XML tree has changed, which will be shown
later. The next listing illustrates the new version of processSubject:

processSubject :: (ArrowXml a) ⇒ a XmlTree Triple

processSubject

= getChildren

>>> (isNodeElem ‘ guards ‘ (arr getTriple $< blankOrNot))

where
blankOrNot = choiceA

[hasQAttr rdf_about :-> (getQAttrValue rdf_about

>>> mkURIrefA)

,hasQAttr rdf_nodeID :-> (getQAttrValue rdf_nodeID

>>> mkSubjectBlankNodeA)

]

At last, the traversing of the tree and the types in processRDF have to be changed.
The idea of the parser is to generate a list of triples out of the RDF/XML document.
Accordingly, the triples created by processSubject have to be collected in a list. A list
arrow with the input type XmlTree and a list of triples (i.e. RDFStore) as output type
would provide exactly this functionality. The ensuing listing presents such a list arrow:

Listing 3.23: Collect Triples

triples :: XmlTree -> RDFStore

triples = runLA (processSubject)

This function can be used to rewrite processRDF, which also tests if the RDF/XML
elements are encapsulated by a rdf:RDF-element where all namespaces are defined. Fur-
thermore, the traversing of the tree has changed by a call of getChildren instead of the
arrow deep:

processRDF :: (ArrowXml a) ⇒ a XmlTree RDFStore

processRDF = getChildren >>> isRDF ‘ g u a r d s ‘ arr triples

The function processDocument from listing 3.12 would stop working, if the arrow above
were placed between the reading and the writing arrows. One reason is that processRDF
is not of the correct type; its result is a RDFStore and not a XmlTree. This can be solved
by an arrow that calls the show function of RDFStore and then creates a text node for
every character string. But this would not be sufficient. The generated text nodes con-
taining the result of the show function would not have a root node which is compellingly
necessary for a XmlTree. The arrow replaceChildren solves this problem by replacing

60

Chapter 3. Example RDF/XML Processing

the child elements of the root node with the text nodes containing the results. The
next listing shows the line of code which has to be placed between readDocument and
writeDocument to make processDocument successfully operate again:

replaceChildren (processRDF >>> (arr showRDFStore) >>> mkText)

Since processRDF now creates a list of triples, it can be combined with all kind of arrows
processing this list and cannot only be printed out. But before explaining this with a
simply query language which makes it possible to search the list of triples for statements,
the next section shows how more complex abbreviations of RDF/XML can be processed
by the parser described so far.

3.2.4. Normalisation of Advanced RDF/XML Syntax Abbreviation

The idea behind the normalisation is to generate a simple standardised RDF/XML docu-
ment out of a complex one that contains different abbreviations. The resulting document
of the normalisation is passed to the arrow processRDF, which creates a list of parsed
triples. This procedure keeps the actual parsing simple. Every additional abbreviations
which have not been explained in section 3.1.3 will be introduced shortly, before the way
how to cut them down is shown. The abbreviations are processed sequentially, which
means that the whole document tree is completely extended several times and might
result in a poor performance when parsing large RDF/XML documents. Nevertheless,
this approach keeps the normalisation arrows simple and clearly focused on one prob-
lem to make them understandable and compact. In order to gain performance, they
can be combined effortlessly, so that several abbreviations are processed during one tree
walking-through.
All normalisation arrows are joined together in one arrow which generates the final result,
as it has been done with processRDF.

Omitting Blank Node Identifiers and Nested Node Elements

So far, blank nodes have been represented by node elements with specific blank node
identifiers. But it is also possible to omit these identifiers. Additionally, property ele-
ments which have a reference to a blank node, can contain a nested node element instead
of referring to the blank node via a rdf:nodeID attribute. So, the RDF graph illustrated
in figure 3.3 can be written down much shorter, as the following example shows:

61

Chapter 3. Example RDF/XML Processing

Listing 3.24: Blank Nodes without Identifiers

1 <?xml version="1.0"?>

2 <rdf:RDF xmlns:rdf="http: //www.w3.org/1999/02/22 -rdf -syntax-ns#"

3 xmlns:dc="http://purl.org/dc/elements/1.1/"

4 xmlns:exterms="http://www.example.org/terms/">

5 <rdf:Description rdf:about="http: //www.w3.org/TR/rdf -syntax -grammar">

6 <dc:title>RDF/XML Syntax Specification (Revised)</dc:title>

7 <exterms:editor>

8 <rdf:Description>

9 <exterms:fullName>Dave Beckett</exterms:fullName>

10 <exterms:homePage rdf:resource="http://purl.org/net/dajobe/"/>

11 </rdf:Description>

12 </exterms:editor>

13 </rdf:Description>

14 </rdf:RDF>

Although the RDF/XML in example 3.6 is equivalent to the listing above and repre-
sents the same graph, the RDF parser described up till now is not able to process the
last example. This is because, firstly, every node element is expected to have either
a rdf:about attribute or a rdf:nodeID attribute and secondly, nested node elements
are not allowed inside property elements. Processing listing 3.24 directly would be a lot
more complicated than changing the XML tree in a way that the RDF parser can handle
it. Hence, three arrows are needed: one to generate rdf:nodeID attributes where they
are missing, one to break the nested node elements up and one to add the generated
blank node identifier to the property element. The first arrow is generateNodeID which
creates a blank node identifier for every node element. Its definition is shown in the next
listing:

generateNodeID :: IOSArrow XmlTree XmlTree

generateNodeID

= processTopDown (

addAttrl (qattr rdf_nodeID attrValue)

‘when ‘
(isElem >>> hasQName rdf_Description

>>> neg (hasQAttr rdf_nodeID ‘ o rE l s e ‘ hasQAttr rdf_about))

where attrValue

= getCounter "node_id" >>> arr("genid"++) >>> mkText

The additional attribute is added by the arrow addAttrl. It takes an arrow which
generates a list of attributes and adds them to the existing list. In this case, the arrow
qattr is used to create the new attribute. The value of it is defined locally in attrValue.

62

Chapter 3. Example RDF/XML Processing

The arrow getCounter creates an integer value with the name “node id” in the global
state and returns the initialisation value or increments the global state by one and re-
turns the new value if the state with the given name already exists. This function will
be used several times to create unambiguous numbers. As illustrated in the next listing,
the operator to use the output of an arrow more then once, is applied. It hands the
integer value of the state over to the local defined function, which increments it and
then converts it into a character string.

getCounter :: St r i ng -> IOSArrow b St r i ng
getCounter name

= arr genNewId $< getParamInt 1 name

where
genNewId :: I n t -> IOSArrow b St r i ng
genNewId i

= setParamInt name (i+1)

>>>

constA (show i)

The next step in the normalisation of blank nodes without identifiers and nested node
elements is to convert the document into the tree structure, which the parser expects.
Thus, every nested node element has to become a child-node of the root element. This
can be achieved effortlessly by copying every existing node element in the document to
the root element. Unfortunately, the tree contains duplicate node elements after this
process. Moreover, the property elements that refer to the nested node elements still do
not have the extra attribute with the URIref or the identifier of the rdf:Description

element.
The copying of every node element to the root node can be done by the following
expression:

processChildren (multi isNodeElem)

The arrow multi selects all subtrees for which the predicate holds and processChildren

substitutes the children with this result. The listing 3.25 shows the intermediate result of
normalising the document presented in example 3.24 (the namespace declarations have
been removed).

Listing 3.25: Intermediate Result of Normalisation

1 <rdf:Description rdf:about="http://www.w3.org/TR/rdf -syntax-grammar">

2 <dc:title>RDF/XML Syntax Specification (Revised)</dc:title>

3 <exterms:editor>

4 <rdf:Description rdf:nodeID="genid1">

63

Chapter 3. Example RDF/XML Processing

5 <exterms:fullName>Dave Beckett</exterms:fullName>

6 <exterms:homePage rdf:resource="http://purl.org/net/dajobe/"/>

7 </rdf:Description>

8 </exterms:editor>

9 </rdf:Description>

10 <rdf:Description rdf:nodeID="genid1">

11 <exterms:fullName>Dave Beckett</ exterms:fullName>

12 <exterms:homePage rdf:resource="http://purl.org/net/dajobe/"/>

13 </rdf:Description>

The nested element, illustrated in line four to seven, has to be deleted, to ensure that
the document after the normalisation is equal to the source document. Furthermore,
the property element in line three has to be extended by the rdf:nodeID attribute and
the value of the same attribute in line four. This can also be done by one arrow which
is presented in the next listing:

deleteDuplicate :: (ArrowXml a) ⇒ a XmlTree XmlTree

deleteDuplicate

= processTopDown (

(processChildren(

(addAttrl (getChildren >>> getAttrl) >>> setChildren [])

‘when ‘
(getChildren >>> isNodeElem))

)

‘when ‘
(isNodeElem >>> (deep isNodeElem)))

First, the arrow searches for rdf:Description elements containing nested node ele-
ments. If one is found, the child-nodes, which are the property elements, are processed.
Thereby, the attribute list of the nested node element is copied to the property element
and the list of child-nodes is deleted.
Every normalisation step, which deals with omitted blank node identifiers and nested
node elements, is now complete and can be sequenced in the arrow normaliseRDF:

normaliseRDF :: IOSArrow XmlTree XmlTree

normaliseRDF = seqA [generateNodeID

,processChildren (multi isNodeElem)

,deleteDuplicate

]

The next example shows the final result of the normalisation, where the nested node
elements have been deleted:

64

Chapter 3. Example RDF/XML Processing

Listing 3.26: Final Result of Normalisation

1 <rdf:Description rdf:about="http://www.w3.org/TR/rdf -syntax-grammar">

2 <dc:title>RDF/XML Syntax Specification (Revised)</dc:title>

3 <exterms:editor rdf:nodeID="genid1"/>

4 </rdf:Description>

5 <rdf:Description rdf:nodeID="genid1">

6 <exterms:fullName>Dave Beckett</ exterms:fullName>

7 <exterms:homePage rdf:resource="http://purl.org/net/dajobe/"/>

8 </rdf:Description>

The parser which has been developed in the last section, is able to process this document
and is therefore – in combination with the normalisation – also able to parse more
advanced language features without actually extending the parser.

Unicode Support

In RDF/XML, every application of string refers to an Unicode character string, while
non US-ASCII characters like ’ü’ have to be replaced by the encoded version of the
character, i.e. “\u00FC” (see [CHARMOD] for more information on encoding). Every
attribute as well as every text node needs replacing. Again, this is a typical normalisation
by processing the whole tree and converting all occurrences of strings. First, a function
is needed replacing every non US-ASCII character by the correct encoded one, then this
function has to be applied to the whole document tree.

stringToUtf :: S t r i n g -> S t r i n g

stringToUtf = concatMap charToUtf

where

charToUtf :: Char -> S t r i n g

charToUtf c

| o rd c < 0x80 = [c]

| o t h e r w i s e = "\\u00" ++ charToHexString c

The function charToHexString is defined in the module Text.XML.HXT.DOM.Utilwhich
provides several utility functions; the one used here converts a character into a two-digit
hexadecimal string.
Now, stringToUtf can be applied to all attributes and elements by processTopDown-

WithAttrl. Of course, this processing is restricted to text nodes to ensure that only the
text values of attributes and elements are converted:

65

Chapter 3. Example RDF/XML Processing

convertToUtf :: (ArrowXml a) ⇒ a XmlTree XmlTree

convertToUtf

= processTopDownWithAttrl editToUtf

where

editToUtf = changeText stringToUtf ‘ when ‘ isText

At last, this arrow has to be added to the list in normaliseRDF in order to use it during
the normalisation process.

Typed Node Elements

It is common for RDF graphs to have rdf:type predicates from subject nodes. These
are conventionally called typed nodes in a graph, or typed node elements in RDF/XML.
They are used to describe resources as instances of specific types or classes. The next
listing illustrates an example of typed node elements:

Listing 3.27: Typed Node Element

1 <?xml version="1.0"?>

2 <rdf:RDF xmlns:rdf="http: //www.w3.org/1999/02/22 -rdf -syntax-ns#"

3 xmlnx:exterms="http://www.example.org/terms/">

4 <rdf:Description rdf:about="http: //www.example.org/staffid/85740">

5 <rdf:type rdf:resource="http://www.example.org/terms/person"/>

6 <exterms:name>John Smith</exterms:name>

7 </rdf:Description>

8 </rdf:RDF>

The example above does not contain an abbreviation and can be parsed by the processRDF
arrow. But typed node elements appear more frequently in their shortened form, which
has to be normalised before it is processed. The triple can be expressed more concisely by
replacing the rdf:Description node element name with the namespaced-element of the
value of the type relationship. The following listing shows how this can be achieved:

Listing 3.28: Concise Typed Node Element

1 <?xml version="1.0"?>

2 <rdf:RDF xmlns:rdf="http: //www.w3.org/1999/02/22 -rdf -syntax-ns#"

3 xmlnx:exterms="http://www.example.org/terms/">

4 <exterms:person rdf:about="http://www.example.org/staffid/85740">

5 <exterms:name>John Smith</exterms:name>

6 </exterms:person>

7 </rdf:RDF>

66

Chapter 3. Example RDF/XML Processing

The result of the normalisation of this example has to be similar to listing 3.27, which
means that an additional property element with the name rdf:type has to be generated.
Additionally, the node element name has to be replaced by rdf:Description while
the original one has to be stored as the value of the property element. The arrow
presented in the next listing performs exactly the essential steps. It uses the special
predicate isTypedNodeElem, which holds, if an element is a node element without the
name rdf:Description. Furthermore, the condition that the element is not empty
has to be fulfilled, since the predicate isTypedNodeElem would also be true at property
elements with the rdf:nodeID attribute:

Listing 3.29: Normalise Typed Node Elements

processTypedElem :: (ArrowXml a) ⇒ a XmlTree XmlTree

processTypedElem

= processTopDown (

(insertChildrenAt 0 typeElem

>>> setElemName rdf_Description)

‘when ‘
(neg isEmptyElem >>> isTypedNodeElem))

where
typeElem

= mkElement rdf_type

(qattr rdf_resource (getUniversalUri >>> mkText))

none

isTypedNodeElem

= isElem >>> (hasQAttr rdf_nodeID ‘ o rE l s e ‘ hasQAttr rdf_about)

>>> neg (hasQName rdf_Description)

The arrow insertChildrenAt makes it possible to control the positioning of new ele-
ments in the list of child-nodes.

Property Attributes

When an object is a plain literal, it may be used as an attribute on the containing node
element. Multiple properties on the same node element can be used as well, but only if
the property element’s name is not repeated, since attribute names have to be unique in
an element. This abbreviation is known as property attributes and can be used on any
node element. The next example illustrates the use of property attributes based on the
document in listing 3.24:

67

Chapter 3. Example RDF/XML Processing

1 <rdf:Description rdf:about="http://www.w3.org/TR/rdf -syntax-grammar"

2 dc:title="RDF/XML Syntax Specification (Revised)">

3 <exterms:editor>

4 <rdf:Description exterms:fullName="Dave Beckett">

5 <exterms:homePage rdf:resource="http://purl.org/net/dajobe/"/>

6 </rdf:Description>

7 </exterms:editor>

8 </rdf:Description>

The most obvious way of normalising this abbreviation is to generate property elements
out of the property attributes. Every node element has to be tested for additional
attributes besides the different RDF/XML specific ones. These additional attributes are
those property attributes, out of which new property elements have to be created. The
following listing shows the arrow that selects all non RDF/XML attributes and creates
a new element out of them. This arrow has to be applied to every node element.

Listing 3.30: Create Elements out of Non-RDF/XML Attributes

propertyElements :: (ArrowXml a) ⇒ a XmlTree XmlTree

propertyElements

= getAttrl

>>> neg (hasQName rdf_about

‘ o rE l s e ‘ hasQName rdf_nodeID)

>>> arr mkqelem $<<< getQName

&&& listA none

&&& (listA (constA getChildren))

This listing illustrates the use of the special combinator ($<<<). Three values have to
be calculated before they can be used to create the new property node. Both arrows,
getChildren and none have to be handed over to listA, since these arrows have to be
computed before they are added to the new element.

The implementation of the arrow, which applies propertyElements to every node ele-
ment and inserts the new property elements into the list of child-nodes, is straightfor-
ward. The predicate isNodeElem does not follow an additional predicate that tests for
non RDF/XML attributes. That is because propertyElements returns none, if there
are no property attributes and then nothing happens which is the same as testing before
applying:

68

Chapter 3. Example RDF/XML Processing

Listing 3.31: Processing Property Attributes

processPropertyAttr ::(ArrowXml a) ⇒ a XmlTree XmlTree

processPropertyAttr

= processTopDown (

insertChildrenAt 0 propertyElements

‘ when ‘ isNodeElem)

With property attributes in node elements, it possible to define node elements with-
out child-nodes. The described normalisation arrows would not be able to process the
following node element:

<exterms:Book rdf:about="http://www.w3.org/TR/rdf -syntax-grammar"

dc:title="RDF/XML Syntax Specification (Revised)"/>

This is a typed node element with a property attribute. It would not be detected and
normalised by processTypedElem, since it is an empty node which has been excluded by
the used predicates. Thus, the predicates of processTypedElem have to be extended so
that empty elements with property attributes can be processed as well and the resulting
elements would be as follows:

<rdf:Description rdf:about="http://www.w3.org/TR/rdf -syntax-grammar"

<dc:title >"RDF/XML Syntax Specification (Revised)"</dc:title >

<rdf:type rdf:resource="http://www.example.org/terms/Book"/>

</rdf:Description >

The final normalisation arrow contains more functions than before and is defined as
follows:

Listing 3.32: Final Normalisation Arrow

normaliseRDF = processChildren $

seqA [convertToUtf

,generateNodeID

,processTypedElem

,processChildren (multi isNodeElem)

,deleteDuplicate

,processPropertyAttr

]

In order to keep the rdf:RDF element with all the namespace declarations of the source
document in the resulting tree, the list of normalisation arrows is applied with process-

69

Chapter 3. Example RDF/XML Processing

Children to the tree.
The order of all normalisation arrows in the list is significant. Of course, it does not
matter when the encoding arrow convertToUtf is executed, since it is not influenced by
the structure of the document tree. But processPropertyAttr, for example, can only
be applied to the document after all node elements have been processed.

As a first conclusion, it has become evident that it is fairly easy to build a program
with the Haskell XML Toolbox. Bigger problems can be separated into smaller tasks
and then be combined, like it has been done with the several normalisation arrows and
the RDF/XML parser. The next section will illustrate how a simple query language for
RDF can be implemented and combined with the RDF/XML parser.

3.2.5. Simple Query Language

The query language which will be included into the RDF/XML parser is based on
SPARQL. Since just some basic search features should be supported, only a subset
of the full language will be implemented. These features are those which have been
described in section 3.1.4. The grammar of the query language is listed in appendix B
and shall not be discussed in detail. The EBNF format is the same as that used in the
XML 1.1 specification. The productions in the grammar are almost the same as those
of SPARQL, reduced by a number of language abbreviations and features.

A language parser has to be implemented, in order to provide the support of a special
language in a program. The RDF/XML parser described above is very different from
the one which is needed for the query language, because the real parsing of RDF/XML
(i.e. analysing the syntax, generating tokens and finally create a data structure out of it)
is provided by the XML parser of the Haskell XML Toolbox. The RDF/XML parser, on
the other hand, processes the language on a higher level and adds additional semantics
to the XML document.
The query language parser, however, must provide all steps of processing a language.
The most common way of implementing a parser is to use a parser generator rather than
to develop all the functionalities by one’s own hand. In Haskell, there is the monadic
parser combinator library Parsec [Parsec], which offers several advantages to the classic
parser generators, e.g. it is written in Haskell and can be introduced easily into existing
Haskell applications. The idea of parser combinators is to write small parsers for parts
of the language and combine them to the final parser of a language. This is a common
approach in Haskell. The Haskell XML Toolbox is also based on this idea, it provides
several combinators, i.e. arrows, which allow to build complex arrows out of simpler
ones. Parsec is part of the GHC compiler and has become a standard in Haskell. Even
the XML parser of the Haskell XML Toolbox is based on Parsec which is another rea-

70

Chapter 3. Example RDF/XML Processing

son to use Parsec for the query language as well. How a parser is written with Parsec
shall not be discussed here because it is not the topic of this document. Only the main
entry point to the parser and the connection between the query language parser and the
RDF/XML parser will be described in detail.
The output of the parser is the SPARQL query stored in a special data structure. The
main parser function is parseSPARQL, which has a Query as output. The type signature
of the function is as follows:

Listing 3.33: Main Parser Function

parseSPARQL :: Parser Query

A function for applying this parser to a SPARQL query string is provided by Parsec. It is
called parse and takes three arguments: the parser, the name of the input and the input
itself. The input name is only used for error messages and can be empty. The actual use
of the parse function will be illustrated in the next listing when the RDF/XML parser
and the query language parser will be combined.
A SPARQL query conceptually consists of two things, the variables used in the SELECT-
clause and the triple patterns of the WHERE-clause. The structure of a triple pattern
is the same as of a normal RDF triple but it can have a variable instead of an RDF term
in every position.
The data type Query has three constructors: the first one is used to represent the actual
result of the parsing process, the second one is a normalised query where all abbreviations
of the triple patterns, like object lists or predicate-object lists, have been removed, and
the third one represents the empty query in case of an error during the parsing process.
The next listing shows the definition of Query with its two type constructors:

da t a Query = Query [Var] GraphPattern

| QueryN [Var] [TriplePattern]

| Empty

d e r i v i n g (Show,Ord ,Eq)

t y p e Var = S t r i n g

The first constructor uses a data type GraphPattern which contains differently abbrevi-
ated triple patterns. It will not be listed here, because only the constructor QueryN is of
interest. This constructor represents the final result of the SPARQL parser and is used
to perform the actual searching in the list of triples delivered by the RDF/XML parser.
The type Var is a character string representing the name of a variable. A TriplePattern

is defined as follows:

71

Chapter 3. Example RDF/XML Processing

da t a TriplePattern = TriplePat Subject [(Predicate , [Object])]

| TriplePatN Subject Predicate Object

d e r i v i n g (Show,Ord ,Eq)

This data type has two variants, one is the abbreviated version which is used in GraphPattern

and the other one is the normalised variant. It uses the data types Subject, Predicate
and Object, which have already been defined and used in the implementation of the RD-
F/XML parser. In order to use these data types in the query language data structure,
they have to be extended. The next listing shows the rewritten data types:

da t a Subject = Subject RDFTerm

| SubjectVar Var

d e r i v i n g (Ord ,Eq)

da t a Predicate = Predicate URI

| PredicateVar Var

d e r i v i n g (Ord ,Eq)

da t a Object = Object RDFTerm

| ObjectVar Var

d e r i v i n g (Ord ,Eq)

Now, every data type cannot only contain an RDF specific term, but also a variable.
Of course, the variable constructor is not needed by the RDF/XML parser. The ad-
vantage of this approach is, that both parsers use the same data types which makes
the parse results easier to combine, especially during the query evaluation. Like already
mentioned, a subject may only be an URIref and not one of any other RDF terms that
are represented by the data type RDFTerm. But still, the constructor Subject takes an
RDFTerm and not an URI. That is because the specifications of RDF/XML and SPARQL
contradict each other. In SPARQL, a subject can also be a literal, while this is still pro-
hibited by RDF/XML. The RDF Core Working Group has noted, that the syntax may
be extended to allow literals as the subjects of statements (see section 2.2 in [SPARQL]).

For every data type used in the SPARQL parser, there is a function which creates
the normalised version of that data type. This normalisation is applied to the parser
result before the query is evaluated. The type definition of the evaluation function is
illustrated in the next listing:

Listing 3.34: Query Evaluation Function

evalQuery :: Query -> RDFStore -> [(Var ,[(E i t he r RDFTerm URI)])]

72

Chapter 3. Example RDF/XML Processing

The function evalQuery takes a query generated by the SPARQL parser-function parse-

SPARQL and a list of triples. The result is a list of tuples where the first part is a variable of
the SELECT-clause and the second part is a list of RDF values representing all possible
bindings of the particular variable. These RDF values can either be a RDFTerm or an URI.
The result can then be printed out in tabular form by the function showQueryResult.
The actual matching of the triple patterns to the triples is done by several functions
which are used by evalQuery. Every triple pattern is compared with all triples and
every possible binding is listed and returned. The list of bindings then contains any
matching pairs of variables and RDF terms. This process is done in several steps, since
it is quite a complex task. The functions which provide these functionalities shall not
be listed here.
As a conclusion, two functions of the query language part are of interest. The first
one is parseSPARQL which creates a Haskell data structure out of a SPARQL query
string. The second one is the function evalQuery that performs the search defined in
the SPARQL query on a list of triples. These triples can either be generated by another
Haskell application or by the RDF/XML parser described above. How the result of the
RDF/XML parser can be handed over to the query evaluation function will be presented
in the next section.

3.2.6. Combining the SPARQL Parser and the RDF/XML Parser

The main function and the main processing function processDocument (see 3.12) have
to be rewritten, in order to include the SPARQL parser into the RDF/XML parser.
Furthermore, an additional commandline option should be added, which allow to choose
between the real processing of the RDF/XML document and the normalisation without
parsing. If the normalisation flag is set, the output of the parser will be RDF/XML and
not the N-Triples format.
First, processDocument has to be extended by an additional parameter which is the
SPARQL query character string and then it has three parameters: the commandline
options stored in the Attributes type, the query string and the name of the input file:

processDocument :: Attributes -> St r i ng -> St r i ng -> IOSArrow b I n t

The function cmdLineOpts now generates a triple with the list of attributes, the query
string and the input file name. The new main function is shown in the next listing:

73

Chapter 3. Example RDF/XML Processing

Listing 3.35: Final Main Function

main :: IO ()

main = do

argv <- g e tA r g s

(al, qr, src) <- cmdlineOpts argv

[rc] <- runX (processDocument al qr src)

e x i tW i t h (i f rc >= c_err

t h en E x i t F a i l u r e (-1)

e l s e E x i t S u c c e s s)

The new commandline option is:

–normaliseRDF : document is normalised only

and has to be taken into consideration for two things: The option specify which process-
ing arrows should be called and determine the output type of writeDocument, since it
can be XML or plain text. Every commandline parameter is stored in the global state
and can be therefore also accessed by the arrows dealing with the state. The follow-
ing listing illustrates the predicate that tests if the option to normalise the RDF/XML
document is set:

normaliseOption = getParamString a_normalise >>> isA (== "1")

The string a normalise is the commandline option which can be set. Since the list of
parameters is also accessible in processDocument directly, the lookup for the option
a normalise can also be done without the state arrows. With this predicate, the arrow
processDocument can be rewritten:

Listing 3.36: Final processDocument

processDocument al qr src

= readDocument al qr src

>>>

removeAllWhiteSpace >>> propagateNamespaces

>>>

ifA normaliseOption

(normaliseRDF >>> indentDoc

>>> writeDocument al outputFile)

(replaceChildren (parseRDF >>> processQuery qr)

>>> writeDocument ((a_output_xml ,v_0):al) outputFile)

>>>

getErrStatus

74

Chapter 3. Example RDF/XML Processing

If the normalise-option is set, the arrow normaliseRDF is applied to the tree, the resulting
XML document is indented and the final result is passed to the arrow writeDocument.
Else, if it is not set, the arrow parseRDF followed by processQuery is applied with
replaceChildren to the tree and the result is also passed to writeDocument. The
arrow parseRDF is just the normalisation followed by the RDF/XML processing arrow
and the result of it is a RDFStore. The lookup for the output file parameter is done by
outputFile. Before describing processQuery, another arrow has to be explained first.
This is getSPARQLQuery which runs the parsing process of a query string and returns the
query in the data structure. It uses the parse function of Parsec that has been already
mentioned but not yet illustrated by an example. If an error occurs during the parsing, it
is printed out and an empty query is returned, which means, that the evaluation process
of this query is terminated and nothing is brought back. The actual input of the arrow
is ignored. The listing 3.37 illustrates the definition of this arrow.

Listing 3.37: Query Parser Arrow

getSPARQLQuery :: S t r i n g -> IOSArrow a Query

getSPARQLQuery queryStr

= c a s e (parse parseSPARQL "" queryStr) o f

L e f t parseError

-> (issueFatal ("Syntax error in SPARQL query "

++ show queryStr ++ ": "

++ show parseError)

>>> constA (Empty))

R igh t theQuery

-> constA (theQuery)

Finally, processQuery takes the generated RDFStore and the query string as an extra
parameter. Out of them, it creates a Query with the function defined above and starts
the evaluation process with them. The result is formated into a character string repre-
sentation and then turned into a XML text node. If the query string is empty the whole
RDFStore is printed without parsing and evaluating a query:

processQuery :: S t r i n g -> IOSArrow RDFStore XmlTree

processQuery qr = ifP (c o n s t (qr == ""))

(arr showRDFStore)

((getSPARQLQuery qr &&& this)

>>> arr2 evalQuery

>>> arr showResult)

>>> mkText

75

Chapter 3. Example RDF/XML Processing

The result of getSPARQLQuery has to be combined with the identity arrow so that they
build a tuple. The function evalQuery needs the result of the query-parse process and
the input of the arrow, i.e. RDFStore, as parameters. The input of the arrow would be
lost if the operator (&&&) with the identity arrow this would not have been used.

3.2.7. Module Hierarchy

The processing functions for RDF/XML and the functions of the SPARQL parser are
structured in several modules. The module RDF is the main entry point and exports
all the essential functions. RDFDataTypes defines all RDF specific data types while
SPARQLDataTypes contains the type declarations for the query language parser. The
module RDFFunctions includes the different predicates and the QName-definitions used
during the RDF/XML processing.
The normalisation arrows are collected in RDFNormalise. This module provides various
more arrows, additionaly to those which have been described. The arrows that parse the
RDF/XML documents are defined in the module RDFParser. SPARQLParser contains
the Parsec parsers for the query language grammar and SPARQLEval is the module which
defines the evaluation functions of SPARQL queries. At last, the diverse functions for
the query language, like function generating the character string representation, are in
the module SPARQLFunctions. Figure 3.5 illustrates the structure and the dependences
of these modules.

Figure 3.5: Module Hierarchy

76

4. Conclusion

4.1. Assessment of the Filter and Arrow Approach

It has already been mentioned, that the Haskell XML Toolbox has provided a different
high-level programming interface than the discussed arrow approach. This interface
is still available because of compatibility reasons. The idea of it is to use filters for
manipulating XML documents. Different combinator functions give the possibility to
create complex filters out of simple ones. The data structure used by these filters are
the same as the one described above. The generic type NTree defines the tree structure
and the specialised type XmlTree with XNode represents the XML document tree. The
filter functions have one of the types shown in the next listing:

t y p e TFilter node = NTree node -> NTrees node

t y p e TSFilter node = NTrees node -> NTrees node

The first one defines a filter which takes a single generic tree and returns a list of trees,
while the second filter takes a list of trees and also returns a list of trees. Of course,
there are also specialised versions of these types, representing filters for XML trees:

t y p e XmlFilter = TFilter XNode

t y p e XmlSFilter = TSFilter XNode

The different filters can be separated in selector-functions, predicates, constructors and
functions to manipulate nodes and subtrees, like it has been done with the different
arrows. The boolean values True and False are represented by the none-empty list and
the empty list, respectively, and there are also filters which embody the identity and the
null case. Every function processing the XML document has to be of type XmlFilter,
to ensure that they can be combined. One of the often used combinators is the operator
(>.) which represents the sequential composition of filters. It is equivalent to the arrow
composition with (>>>).
For example, a filter which selects the text of a comment node has the following type:

getXCmt :: XmlFilter

77

Chapter 4. Conclusion

One would expect, that a filter which selects the text of a comment node would return
a character string. But that is not allowed, since the filters all have to be of the same
type. The result of the filter getXCmt is therefore encapsulated by a text node stored in
a list. If the processed node is not a comment node the resulting list would be empty.
The type definition of the arrow providing the same functionality is shown in the next
listing:

getCmt :: a XmlTree S t r i n g

Comparing the arrow getCmt and the filter getXCmt exhibits the two disadvantages of
the filter approach. The first problem is related to the programming style. As every
filter function has to be of the same type, the type signature of it does not give any
information about the way of operation of the filter. Only the name of the function and
a possible description can help to discover what the filter actually does.
The second issue with the filter approach is also related to the type. The type checker of
the Haskell compiler cannot detect any type errors. Haskell is a strong typed language,
which is a big advantage. But by using the same type for all functions, the powerful
type system of Haskell is practically switched off. The filter function getXCmt could also
return a char reference or a new XML tag instead of the comment-text encapsulated by
a text node. As a result, the type checker would not produce an error. This is because
XmlFilter is a type synonym. There is no way to parameterise this type and to change
the input and result type. The programmer has to rely on the description of the filter
function, when he wants to process the output of a filter.
These problems become irrelevant when using arrows rather then filters. Arrows always
have a specified type, the input and output type are specific and not always the same,
since the instances of the arrow classes are data types defined with newtype. This makes
the programming with them much more natural than with filters, since the type system
of Haskell is able to react on type errors. Furthermore, the example of the RDF/XML
parser has shown, that it is also possible to use other data types for special purposes with
the arrows of the Haskell XML Toolbox. The filter approach would not allow this and
the data structure of the XML parser has to be used. Everything has to be encapsulated
by a XmlTree, although it is senseless.
The idea of using filters as the programming interface has been adopted from the XML
parser HaXML [HaXML]. The filters of HaXML are all of the following type:

t y p e CFilter = Content -> [Content]

A filter works for nodes of the type Content. A Content represents the document subset
of XML which is only a small part of the whole XML document. In contrast to the data
model of the Haskell XML Toolbox, HaXML uses not a generic one but a more data

78

Chapter 4. Conclusion

centric approach. The whole XML document is represented by different algebraic data
types and almost every production of the XML grammar is modelled with a special
type. Therefore, the filters cannot process the whole XML document and if one wants
to work with other parts of the document, like the DTD, special functions have to be
implemented.
The filters of the Haskell XML Toolbox instead give the possibility to process the whole
generic data structure, hence the whole document. But nevertheless, HaXML has the
same problems with the filter approach as the Haskell XML Toolbox. Type errors cannot
be detected by the type system of Haskell.

4.2. Related Work

There are two other XML parsers written in Haskell, HaXML [HaXML] and HXML
[HXML]. HaXML has already been introduced and since it has not an arrow module
as the programming interface it will not be taken into consideration in this section.
HXML, alternately, has changed its programming interface to arrows recently and will
be compared with the Haskell XML Toolbox.
HXML is a non-validating parser and does not support XML namespaces but in return
it is designed for space-efficiency. Moreover, HXML provides a special adapter to use it
as a drop-in replacement for HaXML. The data model used in HXML is quite similar to
the one in the Haskell XML Toolbox and has been a pattern for it. The structure of a
XML document is modelled by the generic data type Tree and the document subset is
represented as a Tree of XmlNodes:

type XML = Tree XMLNode

data Tree a = Tree a [Tree a]

data XMLNode =

RTNode -- root node

| ELNode Name [(Name , St r i ng)] -- element node: name , attributes

| TXNode St r i ng -- text node

| PINode Name St r i ng -- processing instruction (target,value)

| CXNode St r i ng -- comment node

| ENNode Name -- general entity reference

DTDs are not stored in the tree model but in a special data type, in contrast to the
Haskell XML Toolbox, where the DTD subset is also represented by the generic tree
type. Hence, the approach of the Haskell XML Toolbox is much more general. This
leads to the fact, that no extra processing functions for DTDs need to be implemented
and the functions for processing the XML document subset and the DTD subset are the
same.

79

Chapter 4. Conclusion

HXML also uses arrows as the high-level programming interface. It follows the same
idea as the Haskell XML Toolbox. The processing arrows represent computation over
lists. In the Haskell XML Toolbox these arrows are called list arrows and in HXML they
are named filters:

newtype F i l t e r a b = F i l t e r (a -> [b])

The arrow class which is implemented by Filter is provided by HXML and slightly
different than the one used by the Haskell XML Toolbox. This is because the idea
of arrows has been very new at the moment of the implementation and the compilers
GHC or Hugs [Hugs] have not provided this class at that time. Therefore, the arrow
class contains several combinators which are not included in the standard arrow class.
There are no special combinators for list arrows like they are provided by the class
ArrowList. This makes the programming interface of HXML less powerful then the one
of the Haskell XML Toolbox. Especially, combinators which solve the problem of the
point-free programming are missing. Furthermore, HXML does not provide any state
handling. All in all, HXML seems to be in an experimental state in comparison to the
Haskell XML Toolbox which offers more functionallity to serve as a professional XML
parser.

4.3. Conclusion and Future Work

The examples of processing RDF/XML documents have shown that it is straightforward
to implement applications with the programming interface of the Haskell XML Toolbox.
The resulting RDF/XML parser and the query language extension are very short and
compact programs. This is because of the functional language Haskell, which allows to
develop in a very problem-oriented way.

The new approach of using arrows to process the XML document, has proven to be
a flexible and useful way in comparison to the filter approach. Not only XML parsers,
but also several other libraries for Haskell and other functional programming languages
have adopted this approach recently. The idea of defining ones own notion of compu-
tations based on the specific problem provides an attractive programming style. The
problem of arrows, using values more than once, i.e. the point-wise programming, can
be solved with the arrow notation of Ross Patterson [Paterson 2001]. The special opera-
tors, provided by the Haskell XML Toolbox, are another way to deal with the problems
of the point-free programming.

The intention of developing an RDF/XML parser and the SPARQL query language

80

Chapter 4. Conclusion

parser was not to design a professional program. Instead, it has demonstrated the way
of programming with the Haskell XML Toolbox. Nevertheless, the program parts can be
extended easily in order to be used in a professional application, since the arrow interface
and the functional approach have made the code understandable and maintainable. The
different normalisation steps of RDF/XML can be improved so that they support all
abbreviations of the RDF/XML syntax.

The Haskell XML Toolbox will be extended and maintained as well. At this moment,
a parser for the schema language RelaxNG is written in the context of another master
thesis. It also uses the arrow interface of the Haskell XML Toolbox.

81

Bibliography

[Bird 1988] Introduction to Functional Programming using Haskell, second edition,
Richard Bird (1988), Prentice Hall Series in Computer Science, ISBN 0-13-48436-0

[CHARMOD] Character Model for the World Wide Web 1.0, Dürst M., Yergeau F.,
Ishida R., Wolf M., Freytag A., Texin T. (Editors), W3C Working Draft, 20 Febru-
ary 2002. This version is http://www.w3.org/TR/2002/WD-charmod-20020220/.
The latest version is http://www.w3.org/TR/charmod/.

[DC] Dublin Core Metadata Element Set, Version 1.1: Reference Description, 02 June
2003. This version is http://dublincore.org/documents/2003/06/02/dces/. The
latest version is http://dublincore.org/documents/dces/.

[GHC] The Glasgow Haskell Compiler, http://www.haskell.org/ghc

[HaXML] HaXML: Haskell and XML, Mallcom Wallace,
http://www.cs.york.ac.uk/fp/HaXml/ .

[Hughes 2000] Generalising monads to arrows, John Hughes (2000), Science of Com-
puter Programming, Volume 37.

[Hughes 2004] Programming with Arrows, John Hughes (2004), In AFP, Tartu, Estonia.

[Hugs] Hugs 98 http://www.haskell.org/hugs/

[HXML] HXML, Joe Englisch, http://www.flightlab.com/ joe/hxml/ .

[Jones et al. 1998] The Haskell 98 Report, Simon Peyton Jones, John Hughes et
al. (1998), http://www.haskell.org/onlinereport/ .

[N3] Notation 3, Tim Berners-Lee, http://www.w3.org/DesignIssues/Notation3 .

[Parsec] Parsec: a free monadic parser combinator library for Haskell, Daan Leijen,
http://www.cs.uu.nl/∼daan/parsec.html .

[Paterson 2001] A new notation for arrows, Ross Paterson (2001), In ICFP, Firenze,
Italy. ACM.

82

Bibliography

[Paterson 2003] Arrows and computation, Ross Paterson (2003), In Jeremy Gibbons and
Oege De Moor, editors, The Fun of Programming. Palgrave.

[RDF Concepts] Resource Description Framework (RDF): Concepts and Abstract Syn-
tax, Klyne G., Carroll J. (Editors), W3C Recommendation, 10 February 2004.
This version is http://www.w3.org/TR/2004/REC-rdf-primer-20040210/. The lat-
est version is http://www.w3.org/TR/rdf-concepts/.

[RDF Primer] RDF Primer, Manola F., Miller E., Editors, W3C Recommendation,
10 February 2004. This version is http://www.w3.org/TR/2004/REC-rdf-primer-
20040210/. The latest version is at http://www.w3.org/TR/rdf-primer/.

[RDF Schema] RDF Vocabulary Description Language 1.0: RDF Schema, Brickley D.,
Guha R.V. (Editors), W3C Recommendation, 10 February 2004. This version
is http://www.w3.org/TR/2004/REC-rdf-schema-20040210/. The latest version is
http://www.w3.org/TR/rdf-schema/.

[RDF Sematics] RDF Semantics, Hayes P. (Editor), W3C Recommendation, 10 Febru-
ary 2004. This version is http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.
The latest version is http://www.w3.org/TR/rdf-mt/.

[RDF Tests] RDF Test Cases, Grant J., Beckett D. (Editors), W3C Recommenda-
tion, 10 February 2004. This version is http://www.w3.org/TR/2004/REC-rdf-
testcases-20040210/. The latest version is http://www.w3.org/TR/rdf-testcases/.

[RDF/XML Syntax] RDF/XML Syntax Specification (Revised), Beckett D.
(Editor), W3C Recommendation, 10 February 2004. This version
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/. The lat-
est version is http://www.w3.org/TR/rdf-syntax-grammar/.

[Schmidt 2002] Design and Implementation of a validating XML parser in Haskell, Mar-
tin Schmidt (1999), Master’s Thesis .

[SPARQL] SPARQL Query Language for RDF, Prud’hommeaux E., Seaborne
A. (Editors), W3C Working Draft, 19 April 2005. This version is
http://www.w3.org/TR/2005/WD-rdf-sparql-query-20050419/. The latest version
is http://www.w3.org/TR/rdf-sparql-query/.

[SPARQL Result] SPARQL Variable Binding Results XML Format, Beck-
ett D. (Editor), W3C Working Draft, 27 May 2005. This version is
http://www.w3.org/TR/2004/WD-rdf-sparql-XMLres-20050527/. The latest
version is http://www.w3.org/TR/rdf-sparql-XMLres/.

83

Bibliography

[URIS] RFC 2396 - Uniform Resource Identifiers (URI): Generic Syntax, Berners-
Lee T., Fielding R., Masinter L., IETF, August 1998, http://www.isi.edu/in-
notes/rfc2396.txt.

[XML] Extensible Markup Language (XML) 1.0, Second Edition, Bray T., Paoli J.,
Sperberg-McQueen C.M., Maler E. (Editors), World Wide Web Consortium, 6
October 2000. This version is http://www.w3.org/TR/2000/REC-xml-20001006.
The latest version is http://www.w3.org/TR/REC-xml.

[XML-NS] Namespaces in XML, Bray T., Hollander D., Layman A. (Edi-
tors), World Wide Web Consortium, 14 January 1999. This version is
http://www.w3.org/TR/1999/REC-xml-names-19990114/. The latest version is
http://www.w3.org/TR/REC-xml-names/.

[XML Schema] XML Schema Part 2: Datatypes, Biron P., Malhotra A. (Ed-
itors), World Wide Web Consortium. 2 May 2001. This version is
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/. The latest version is
http://www.w3.org/TR/xmlschema-2/.

84

A. List of Options for readDocument and
writeDocument

Options for readDocument

Option Description

a parse html use HTML parser, else use XML parser (default)

a parse html use HTML parser, else use XML parser (default)

a validate validate document, else skip validation (default)

a check namespaces check namespaces, else skip namespace processing (default)

a canonicalize canonicalise document (default), else skip canonicalisation

a preserve comment preserve comments during canonicalisation, else remove com-
ments (default)

a remove whitespace remove all whitespace, used for document indentation, else
skip this step (default)

a indent indent document by inserting whitespace, else skip this step
(default)

a issue warnings issue warnings, when parsing HTML (default), else ignore
HTML parser warnings

a issue errors issue all error messages on stderr (default), or ignore all error
messages (default)

a trace trace level: values: 0 - 4

a proxy proxy for http access, e.g. www-cache:3128

a use curl for http access via external programm curl, default is native
HTTP access

a options curl more options for external program curl

a encoding default document encoding (utf8, isoLatin1, usAscii, ...)

Options for writeDocument

a indent indent document for readability, (default: no indentation)

a remove whitespace remove all redundant whitespace for shorten text (default:
no removal)

a output encoding encoding of document, default is a encoding or utf8

85

Appendix A. List of Options for readDocument and writeDocument

a output xml (default) issue XML: quote special XML chars >,<,”,’,& add
XML processing instruction and encode document with re-
spect to a output encoding, if explicitly switched of, the plain
text is issued, this is useful for non XML output, e.g. gener-
ated Haskell code, LaTex, Java, ...

a show tree show tree representation of document (for debugging)

a show haskell show Haskell representaion of document (for debugging)

86

B. Grammar of the Query Language

[1] Query ::= SelectClause WhereClause

[2] SelectClause ::= ’SELECT’ Var+ | ’SELECT’ ’*’

[3] WhereClause ::= ’WHERE’ GraphPattern

[4] GraphPattern ::= ’{’ PatternElementsList ’}’

[5] PatternElementsList ::= PatternElement PatternElementsListTail ?

[6] PatternElementsListTail ::= ’.’ PatternElementsList ?

[7] PatternElement ::= Triples

| GraphPattern

[8] Triples ::= VarOrTerm PropertyListNotEmpty

[9] PropertyList ::= PropertyListNotEmpty ?

[10] PropertyListNotEmpty ::= Verb ObjectList PropertyListTail ?

[11] PropertyListTail ::= ’;’ PropertyList ?

[12] ObjectList ::= Object ObjectTail ?

[13] ObjectTail ::= ’,’ ObjectList ?

[14] Verb ::= VarOrURI | ’a’

[15] Object ::= VarOrTerm

[16] VarOrURI ::= Var | URI

[17] VarOrTerm ::= Var | GraphTerm

[18] Var ::= <VAR>

[19] GraphTerm ::= RDFTerm

[20] RDFTerm ::= URI

| RDFLiteral

| NumericLiteral

| BooleanLiteral

| BlankNode

[21] NumericLiteral ::= Integer | FloatingPoint

[22] RDFLiteral ::= String (<LANGTAG> | ’^^’ URI)?

[23] BooleanLiteral ::= ’TRUE’ | ’FALSE’

[24] String ::= <STRING_LITERAL1> | <STRING_LITERAL2>

[25] URI ::= QuotedURIref

[26] BlankNode ::= <BNODE_LABEL>

[27] QuotedURIref ::= <Q_URIref>

[28] Integer ::= <INTEGER_10>

87

Appendix B. Grammar of the Query Language

[29] FloatingPoint ::= <FLOATING_POINT>

[30] <Q_URIref> ::= ’<’ ([^>])* ’>’ /* RFC 3869 */

[31] <BNODE_LABEL> ::= ’_:’ (<NCNAME2>|<NCNAME1>)

[32] <VAR> ::= (’?’|’$’) (<NCNAME2>|<NCNAME1>)

[33] <LANGTAG> ::= <AT> <A2Z>+ (’-’ (<A2ZN>)+)*

[34] <AT> ::= ’@’

[35] <A2Z> ::= [a-zA-Z]

[36] <A2ZN> ::= [a-zA-Z0-9]

[37] <INTEGER_10> ::= <DIGITS>

[38] <FLOATING_POINT> ::= [0-9]+ ’.’ [0-9]* <EXPONENT>?

| ’.’ ([0-9])+ <EXPONENT>?

| ([0-9])+ <EXPONENT>

[39] <EXPONENT> ::= [eE] [+-]? [0-9]+

[40] <STRING_LITERAL1> ::= "’" (([^’\\\n\r]) | (’\\’ [^\n\r]))* "’"

[41] <STRING_LITERAL2| ::= ’"’ (([^’\\\n\r]) | (’\\’ [^\n\r]))* ’"’

[42] <DIGITS> ::= [0-9]+

[43] <NCCHAR1> ::= [A-Z]

| [a-z]

| [#x00C0-#x00D6]

| [#x00D8-#x00F6]

| [#x00F8-#x02FF]

| [#x0370-#x037D]

| [#x037F-#x1FFF]

| [#x200C-#x200D]

| [#x2070-#x218F]

| [#x2C00-#x2FEF]

| [#x3001-#xD7FF]

| [#xF900-#xFFFF]

[44] <NCCHAR_END> ::= <NCCHAR1> | ’_’ | ’-’ | [0-9] | #x00B7

[45] <NCCHAR_FULL> ::= <NCCHAR_END> | ’.’

[46] <NCNAME1> ::= <NCCHAR1> (<NCCHAR_FULL>* <NCCHAR_END>)?

[47] <NCNAME2> ::= ’_’ (<NCCHAR_FULL>* <NCCHAR_END>)?

88

C. Affidavit

I hereby declare that this master thesis has been written only by the undersigned and
without any assistance from third parties.
Furthermore, I confirm that no sources have been used in the preparation of this thesis
other than those indicated in the thesis itself.

Wedel, January 6, 2007

89

