
A Genetic Texture Packing Algorithm

on a Graphical Processing Unit

Karsten Kaul1 Christian-A. Bohn2

Wedel University of Applied Sciences

Feldstr. 143, 22880 Wedel, FR Germany

E-Mail: 1k.arts@gmx.net, 2bo@fh-wedel.de

Abstract

Interactively modeled virtual scenes usu-
ally contain hundreds of single separate tex-
tures. A common task to prepare these
scenes for real-time rendering is to compile
the set of many textures into one large tex-
ture which is better suited to be handled by
modern graphics hardware.

We present an approach for accomplish-
ing the above task automatically. First,
a patchwork of near-optimal compactness
is calculated through a genetic algorithm
(GA), second — since “GA are slow” — we
implement the genetic algorithm on a GPU
and show that it easily outperforms a stan-
dard CPU implementation.

Keyword: Computer Graphics, Genetic Al-
gorithms, GPU programming, Textures,
Real-Time Rendering, Interactive Modeling

1 Introduction

In todays graphics applications textures —
images glued on polygons for imitating sur-
face structure which then does not have to
be modeled explicitely — are heavily used
to enhance the look of virtual objects.

To enable real-time applications and con-
currently using vast amounts of textured
surfaces on modern graphical processing
units (GPU) it is a good idea to avoid
feeding the GPU with many separate tex-

tures but instead using a patchwork of
them packed into one single large texture.
Switching between separate textures is then
accomplished by changing texture coordi-
nates such that vertices “point” on the ac-
cording locations in the patchwork.

Creating an efficient patchwork means
positioning and rotating the set of origi-
nal textures in way that they occupy the
smallest possible rectangular area. This
task is strongly related to the commonly
known knapsack problem from the field of
combinatorial optimization. Since it is NP-
complete — hardly to solve by deterministic
approaches — we decide to use an iterative
genetic optimization algorithm. Genetic al-
gorithms are very convenient, easy to im-
plement and quite efficient concerning the
quality of the solution — they mostly end
up close to a global optimum. Nevertheless,
they need huge computing resources. This
together with the fact that they are typi-
cally inherently parallel algorithms lead us
to the development of an algorithm which
utilizes modern computer graphics acceler-
ator hardware (GPUs).

The description of this work is split as
follows.

First, by adapting a genetic algorithm in
section 2 we propose a new idea for compil-
ing a compact texture patchwork. Genetic
operations are described in detail.

Second, the genetic algorithm is imple-



mented on a GPU’s parallel hardware which
is described in section 3. Here, we pro-
pose the separation of the genetic algorithm
into several GPU programs and the trigger-
ing mechanism of the main routine running
partly in the CPU.

Finally, we evaluate this approach
through a results section and conclude in
a summary.

2 Genetic Packing Algorithm

2.1 Overview of Genetic Algorithms

Genetic algorithms are a useful tool for it-
eratively finding a local, near-optimal solu-
tion within an arbitrary search space [1].
They are usually applied to search spaces
of vast dimensions where it is hardly possi-
ble to find the global optimum due to the
huge complexity of deterministic search al-
gorithms.

Consider a problem and its optimal solu-
tion like an n-dimensional search space con-
taining all solutions and an n-dimensional
point in this search space. A genetic algo-
rithm randomly selects initial points from
the search space at the start. Then, these
points are reused — parts of the points’
components are randomly combined to new
coordinates in the search space. Seeing
points like strings of coordinate compo-
nents, parts of the strings are split off and
recombined to new coordinates. By terming
a set of points as “population”, each
point as “individual”, coordinate strings as
“genome” and the algorithm which chops
strings up composing pieces into new ones as
“Mendel’s Genetic Laws” we receive a mind
model for the process of biological evolution.
Since biological evolution mostly generates
near-optimal creatures, genetic algorithms
(which emulate this evolutionary process)
are expected to find similar good solutions
to similar complex problems.

To find a suitable coding of the prob-
lem under consideration as a string-like data
structure similar to a genome string is the
vital challenge in genetic algorithms.

Figure 1: Typical work flow chart for pro-
cessing one generation of a genetic algo-
rithm.

Figure 1 shows the typical work flow of
a genetic algorithm. The scheme illustrates
the processing of one generation. First, the
population is initialized with random val-
ues, then the fitness of each individual is
computed. The fitness measures the qual-
ity of the solution. If the fitness of an in-
dividual matches some criteria it may di-
rectly be put into a new (elite-) generation.
Two individuals are selected depending on
their fitness values to create two children.
During this crossover operation the children
retrieve parts from their parents’ genome
string to form a new genome. To realize ge-
netic mutation in the copy phase some gene
values are randomly changed. As soon as
the number of children equals the number
of parents, the process for one generation



Figure 2: Textures are ordered in columns.
The width of one column is determined by
the width of the widest texture in this col-
umn. The goal texture dimension is repre-
sented by the dotted rectangle.

is finished. The whole process of creating
subsequent generations stops when either an
adequate optimum is reached or a defined
number of generations has been calculated.
For a detailed description of genetic algo-
rithms we recommend [1].

2.2 Genetic Search for a Good Patchwork

Texture objects are taken as simple rect-
angular images. Our problem now is
to find the smallest possible goal texture
(GT) which completely holds the set of our
smaller original textures. The textures on
the GT must not overlap each other or over-
hang the GT.

Figure 3: Textures from Figure 2 are or-
dered and rotated differently in a way that
the area they occupy is minimized.

Figure 4: Textures are shifted to the left to
further decrease the area of the goal texture.

Search space

We order our n textures, Ti, i = 1...n
through virtual columns like Figure 2 shows.
The height HGT of the GT equals the height
of the highest column

HGT = max(HCk), with k < m

and HCk =

nk∑
l=1

Hl.

HCk denotes the height of column k out of
m columns. nk is the number of textures in
a column k and Hl is the height of the base
texture l. The width WGT is the sum of
the maximum width of the textures in each
column,

WGT =
m∑

k=1

WCk, with WCk =

nk∑
l=1

Wl

where Wl denotes the width of a texture Tl.

To minimize the space which the texture-
objects occupy, they may be rotated and po-
sitioned in arbitrary columns (see Figure 3).
To further minimize the GT’s area the tex-
tures may be shifted one column to the left
as Figure 4 shows.

Despite this limiting of the degree of free-
dom when moving through the search space,
in almost all cases the GA finds acceptable



Figure 5: Structure of the whole genome
and one example gene. Width and height of
a texture are not stored within each gene.

results. We choose these operations intu-
itively to significantly reduce the dimension
of the search space.

Encoding search space

The individual from the preceeding para-
graph has now to be encoded into a string-
like data structure — a genome (see Figure
5). Every genome contains several genes —
all of which are representatives of a single
base texture. Each gene stores a reference
number of a certain texture, the column in
which this texture resides and a flag mark-
ing that the texture is tilted compared to
a fixed initial orientation. Each genome’s
length is identical to the number of base tex-
tures.

Traveling through search space

Searching is done by randomizing the pa-
rameters of the genes and letting the
genomes split, mutate, and crossover ac-
cording to certain evolutionary rules from
general genetic learning. Due to the number
of parameters the search space is untypically
large compared to common problems from
genetic algorithm literature like the Travel-
ing Salesman problem [1].

3 Genetic Algorithm on a GPU

3.1 Overview of GPUs

The graphical capabilities of modern com-
puter hardware are crucial due to the
high demand in todays graphics applica-
tions (i.e., computer games) resulting from
a strong consumer market demand. This
demand led to a stronger focus on the de-
velopment of hardware for specific graph-
ical operations (graphical processing units
(GPUs)) instead of hardware for general
purpose computational operations.

On the one hand, it is quite obvious that
nowadays GPUs outperform general pur-
pose hardware if used for pure graphical
operations, on the other hand, it is amaz-
ing that under certain conditions GPUs are
also faster in executing non-graphics appli-
cations. One of these conditions is the in-
herently parallel nature of the algorithm to
be implemented.

The above has been proven by several re-
searchers. [2] presented a solution for the
raytracing algorithm. Physical simulations
using GPUs have been realized by [3]. Mov-
ing further apart from graphics leads to pure
linear algebra [4], robot motion planning [5],
cryptography [6], and also neural networks
[7, 8].

3.2 Porting GA to GPU

Overview

Like many numerical problems put on GPUs
also genetic algorithms are not suitable to
be compiled as a whole on the GPU. Instead
we break the problem down to different sub-
problems to be solved separately on the
GPU. In our approach crossover, mutation,
and the fitness calculation are these sepa-
rate parts. The CPU concatenates these
steps by transferring results from one to the
next and then triggering the execution of
these single steps.

The GPU implements one point crossover
and standard random mutation. Greedy
variants for crossover and mutation do not



Figure 6: General work flow chart of the
GPU implementation. Abbreviations are
framebuffer (FB), texture (T), fragment
shader (FG).

suit the parallel architecture of a GPU. The
GPU approach does not left-shift texture-
objects since it is not possible to get better
results than when using the CPU.

During execution, all needed data resides
in the framebuffer (FB), i.e., it is not trans-
ferred to the CPU. Instead it is read back
into texture memory from where it can be
reused for the operations in following steps.

General work flow

The general work flow is shown in Figure
6. In an initializing step all individuals,
their initial fitness values, and the widths
and heights of the texture-objects are writ-

Figure 7: Framebuffer data structure,
shown as a grid of single pixels. Individuals’
chromosome strings are ordered in horizon-
tal manner. Texture data for one texture
and genes are stored within one pixel.

Figure 8: Different pixel data formats using
RGBA texture format. “Tex-ID” is a refer-
ence to a texture. “RandVal” stores a ran-
dom value (between 0-255). “Col-No” refers
to a column number. “Hor” is set when tex-
tures should be rotated. “Max. Col” refers
to the number of columns a solution pos-
sesses.

ten into the FB. Then, the calculation of
the next generation is realized by reading
the fitness values from the FB, computing
the choice of parents, reordering them, cal-
culating mutation and crossover, and finally
determining new fitness values. In order
to accomplish these steps, several times the
FB-data must be written into textures for a
later reuse by the fragment shaders (FG).

Framebuffer as temporary data storage

The Framebuffer is the global memory for
the GPU parts of the algorithm. It is parti-
tioned in order to hold all the different data
types needed. In Figure 7 there are four in-
dividuals, two parents and children respec-
tively. The crossover points are stored next
to the children’s chromosome strings.

Depending on the location on the FB the
pixel data represents different information
(see Figure 8). The FB data format is
RGBA, whereas each color component holds
8 bit. The fitness pixels store the area that
the GT occupies within three bytes of mem-
ory. The widths and heights of the texture-
objects are each stored within 2 bytes to



Figure 9: Copying parents to their new po-
sitions, e.g. parents pairs 1+4, 1+2. Parent
3 will be deleted.

allow for bigger texture sizes than just 255
× 255.

For mutation three random values are
needed, which are stored in the RGB part of
a pixel. A gene stores the texture-id by one
byte supporting a maximum of 255 texture-
objects.

Shader main program

The GPU operates through a fragment
shader program on the FB. Practically spo-
ken, pixels are drawn to the FB and in ad-
vance to blending the source and the desti-
nation, a fragment program is executed for
each fragment to be drawn. The main pro-
gram has to lock a certain region of the
framebuffer for these purposes. All opera-
tions are generally realized by reading the
FB into a texture, and drawing with that
texture again into the FB. Thus, a shader
program is executed once by each pixel-

Figure 10: One Point Crossover without
protection. Gene A is double occupied.

blend operation. Operands mostly are tex-
tures and the FB receives intermediate re-
sults which can be reused by reading it back
into a texture.

3.3 Realization of the Genetic Operations

Best fit

Parent selection is computed on the CPU
using tournament selection [1] where any of
the possible parents compete against each
other and the one with the best fitness is se-
lected. Tournament selection is fast and its
focus on the fitness value is not too strong.
This avoids yielding local minima in search
space. Once chosen parents are reordered
in the FB by the CPU (see Figure 9). Su-
perfluous parents get overwritten. Since the
parents of a new generation are the children
of the last generation, they initially reside
in the child-section.

Crossover

Crossover is the crucial part of the process.
Many of our first attempts in developing
this algorithm delivered poor results con-
cerning execution speed. Thus, we intro-
duce a new approach capable of outperform-
ing the CPU as follows.

Consider the texture-ids in each individ-
ual’s chromosome string being unique and
a solution provides each texture-id once.
Now, simple crossover — like being used for
binary chromosome strings — is not reason-
able (see Figure 10). To address this prob-
lem, first all genes to be set are tested if they
already exist in the child’s solution. This
can hardly be accomplished efficiently with
the GPU. Here, a CPU attempt is faster.

For no left-shifting in the GPU approach,
an easier and more efficient solution can be
implemented. While in case of left-shifting
the sequence of texture-ids is important in
a chromosome-string, this is irrelevant for
not left-shifting (see Figure 11) — thus they
can simply be ordered by the texture-id. In
this case, a simple crossover approach can
be used without information loss (see Fig-



Figure 11: Different order of textures within
a column, providing the same sized large
texture.

ure 12) allowing for a better overall perfor-
mance of the GPU approach. A shader pro-
gram just needs to read the crossover points
from the FB (using a texture) and to deter-
mine the parent from which a gene has to
be taken for writing it into the child’s chro-
mosome string.

Mutation

During mutation, the horizontal flag might
be set and the column in which the texture
resides might be changed.

To determine if mutation of each of these
two pieces of data should occur two random
values are needed. To choose a new col-
umn in the case of mutation, a third ran-
dom value is needed. These random values
are stored in every pixel in the appropriate
section in the FB (see Figure 7).

A shader reads the random values and re-
sets the child’s gene in case of mutation.

Figure 12: Texture-id’s are set in ascending
order.

Figure 13: The column calculation section is
set next to the parents section in the frame-
buffer.

Setting the column has to be restricted
to ensure that there are only few empty
columns. Although empty columns do not
affect the size of the GT (they are ignored)
they may yield to flat GTs which might in-
dicate a poor solution. Thus the randomly
chosen column number is restricted to be-
ing not greater than the actual maximum
column obtained from the associated fitness
pixel (see Figure 8).

The random values in the FB have to be
generated in every generation cycle.

Fitness

While a naive shader approach is only ca-
pable of calculating the fitness for very few
texture-objects, this approach allows for
computing the fitness of more than 255 tex-
tures.

Due to shader restrictions, parts of the
calculation have to be evacuated into the
FB (see Figure 13), two shader programs
are needed for the computation. The first
shader program calculates the widths and
heights of all columns of a solution and
stores these values in the columns section.
The second shader program then calculates
the size of the GT using the columns’ widths
and heights computed by the first shader.
The shader also stores the maximum col-
umn number in the “fitness-pixel” needed
by the mutation.



Figure 14: Results for 30 texture-objects
without left-shifting. Curves from top to
button T1: NC+NM, T2: GC+NM, T3:
NC+GM, T4: GC+G

4 Results

4.1 Quality of GA Solutions

Even in the case of vast search spaces the SO
approach yields very good solutions in short
time — either with or without left-shifting
the textures.

Four different combinations were tested
using the CPU approach: greedy (G) or
normal (N) versions for crossover (C) and
mutation (M). Greedy algorithms calculate

Figure 15: Number of identical individu-
als after 50 generations for test cases with
and without left-shifting (L). Population
size of 20. T1: NC+NM, T2: GC+NM,
T3: NC+GM, T4: GC+GM

Figure 16: Results of the space optimiza-
tion: lower pictures show the left-shifted ap-
proach. On the lower right, a bad solution
for 20 textures can be seen. On the lower
left, a good solution for 20 textures. On the
upper right, a bad solution for 30 textures.
On the upper left, a good solution for 30
textures. Good solutions are calculated af-
ter few generations.

possible solutions during the process of mu-
tation or crossover by choosing the genes
which actually lead to the best fitness. As
Figure 14 exposes, the SO is capable of find-
ing a good solution after less than 50 gen-
erations with an arbitrary configuration of
30 texture-objects (search space of 30 ob-
jects). The left-shifting approach generally
achieved the same results.

The greedy approaches, especially when
left-shifting of textures is allowed, were not
capable to escape local optima easily (see
Figure 15). To address this problem, twins
are deleted during the process and then re-
placed by new individuals.

Figure 16 exposes some typical texture
packages generated by the presented ap-
proach.



Figure 17: Performance comparison be-
tween GPU and CPU approaches. GPU II:
Improved approach, can compute more than
200 texture-objects. GPU III: Improvement
of GPU II approach. GPU IV: like GPU III
but using optimal crossover approach. CPU
I: normal CPU approach. CPU II: CPU ap-
proach using optimized crossover.

4.2 Performance on the GPU

Test hardware was a Pentium IV processor
with 2GHz clock rate and 768 MB RAM
under Windows XP using a GeForce 6800
GT graphics board with 128 MB RAM, 16
pixel pipelines at 400 MHz clock rate.

The GPU approach clearly outperforms
the CPU implementation. Different SO ap-
proaches using the GPU are compared with
two CPU versions in Figure 17. CPU I de-
notes the normal CPU approach, CPU II
the CPU approach using optimal crossover.
The GPU approaches differ in the way
the shaders were programmed for mutation,
crossover, and fitness calculation. Early
approaches were only capable to compute
8 texture-objects (GPU I). GPU II and
III approaches can compute 200 and more
texture-objects by out-housing computation
to other shaders. The GPU IV approach is
capable to outperform the CPU approaches

by using the optimal crossover attempt.
It becomes faster than the CPU versions
when more than 40 texture-objects are un-
der consideration, although the difference is
marginal (about 0.2 ms). When comput-
ing 100 and more texture-objects the GPU
IV clearly leaves the CPU versions behind.
Using 200 texture-objects, the GPU IV ver-
sion is almost twice as fast as the CPU I
approach and about three thirds faster than
the CPU II approach.

To sum up, although GPU versions I-III
are not capable of running faster than the
CPU versions, GPU IV version outperforms
both CPU versions in cases with more than
40 objects under consideration.

5 Summary

Our approach exposes the following: First,
we showed that it is easily possible to build a
tool capable of automatically and efficiently
packing many granular textures into one
large. It helps modelers in freely building
virtual scenes without caring for efficient us-
age of texture memory. The results of the
space optimization are like one knows from
common CPU-based implementations. Also
on the GPU, the algorithms run fast, ro-
bust, and yield very good local minima.

Second, we proved that general graphics
processing units’ inherent parallelism can be
exploited to accelerate genetic algorithms.
Only for cases where the number of textures
is very small — the search space is very com-
pact — the usual CPU implementation still
remain faster than those on a GPU.

Like in almost all approaches which try to
adapt general numerical problems to general
graphics processing hardware, we separated
the algorithm into several stand-alone parts
(shader programs) executed independently
on the GPU, whereas the transfer between
them is done by the CPU.



References

[1] M. Mitchell. An Introduction to Genetic
Algorithms. MIT Press, 1999.

[2] T. J. Purcell, I. Buck, W. R. Mark,
and P. Hanrahan. Ray Tracing on Pro-
grammable Graphics Hardware. In SIG-
GRAPH ’02: Proc. 29. Conf. on Com-
puter Graphics and Interactive Tech-
niques, pages 703–712. ACM, 2002.

[3] M. J. Harris, W. V. Baxter, T. Scheuer-
mann, and A. Lastra. Simulation
of Cloud Dynamics on Graphics
Hardware. In HWWS ’03: Proc.
ACM/EUROGRAPHICS Conf. on
Graphics Hardware, pages 92–101.
Eurographics Association, 2003.

[4] J. Krüger and R. Westermann. Linear
Algebra Operators for GPU Implemen-
tation of Numerical Algorithms. ACM
Trans. Graph., 22(3):908–916, 2003.

[5] J. Lengyel, M. Reichert, B. R. Don-
ald, and D. P. Greenberg. Real-
Time Robot Motion Planning using Ras-
terizing Computer Graphics Hardware.
In SIGGRAPH ’90: Proc. 17. Conf.
on Computer Graphics and Interactive
Techniques, pages 327–335. ACM, 1990.

[6] J. Eyles, S. Molnar, J. Poulton,
T. Greer, A. Lastra, N. England,
and L. Westover. Pixelflow: the
realization. In HWWS ’97: Proc.
ACM/EUROGRAPHICS Workshop on
Graphics Hardware, pages 57–68. ACM,
1997.

[7] C.-A. Bohn. Kohonen Feature Mapping
through Graphics Hardware. In Paul P.
Wang, editor, Proc. JCIS’98, volume II,
pages 64–67. ACM, 1998.

[8] F. Haar and C.-A. Bohn. Compiling
the Kohonen Feature Map into Com-
puter Graphics Hardware. In Proc. 8.
Int. Conf. on Computer Graphics Appli-
cations and Artificial Intelligence. ACM,
2005.


