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Abstract 

 
This work shows a novel kind of accelerating implementations of the Kohonen 
feature map algorithm. The algorithm is adapted to match the functional features 
of recent general purpose graphics processing hardware so that the newest 
developments in graphics hardware design can be utilized to run this neural network 
with a formidable speedup of up to 300%. 
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1 Introduction 
 
1.1 Computer Graphics Hardware and 
Artificial Neural Networks 
 
The non-deterministic nature of usual 
artificial neural network (ANN) algorithms 
often leads to excessive execution times 
even for virtually simple problems. As 
long as alternate algorithms with lower 
complexity are not known, in some cases it 
helps to have a hardware implementation 
available and to take advantage just from 
shorter execution times than a general 
purpose CPU would be capable of. The 
problem here is that — due to the 
relatively few applications — there are 
only few hardware boards available.  
Moreover these mostly do not reflect the 
current state-of-the-art in hardware design. 
In contrast — in the computer graphics 
(CG) area there are millions of users with 
“need” for graphically elaborated games 
and the associated computer graphics 
hardware. 
This market drives CG industry to 
unprecedented short development cycles 
each of them resulting in a tremendous 
increase of graphics performance and 
visualization quality. 

While early graphics boards were 
competent only of managing specialized 
pixel oriented functions — i.e. filling 
rectangular areas in display memory — 
today’s graphics processing unit (GPU) 
function sets have nearly the same 
functional features as general CPUs. 
Moreover, they are highly integrated, 
extremely fast, massively parallel, and are 
mostly inherited from latest hardware 
design technologies, and — due to the 
huge manufacturing quantities — they are 
cheap. 
It is obvious to try to utilize these graphics 
boards for running algorithms which 
are not directly connected to image 
generation. Work which already was 
accomplished includes the ray tracing 
approach [1], physical simulation [2], even 
more graphics unrelated applications like 
linear algebra [3], robot motion planning 
[4], cryptography [5], and also neural 
networks [6]. 
 
Overview 
 
This work presents several possibilities to 
suit the Kohonen feature map (KFM) [7] 
into graphics hardware giving a significant 
competitive edge compared to the 
execution on general purpose hardware. In 
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the following, we explain our favourable 
algorithm in detail and refer to alternate 
implementations we have evaluated. Then 
we present a performance analysis and 
discuss results related to the prospective 
development of graphics hardware. 
 
2 Kohonen Feature Map through 
Graphics Commands 
 
2.1 The Kohonen Feature Map 
 
The Kohonen feature map is one the most 
prominent ANN algorithms, maybe 
because it exposes robust learning 
characteristics, a fascinating and efficient 
principle of self organization, and an 
intuitive kind of visualizing a neural 
network’s training results. In recent 
decades this resulted in a vast number of 
applications and thousands of publications. 
The Kohonen feature map can be seen as 
set of n-dimensional reference units 
(vectors). 
A network training loop consists of 
iteratively presenting n-dimensional 
sample input vectors to the reference units. 
Each time the best matching unit (BMU) 
(the reference unit which is most similar 
according to a certain distance measure) is 
modified in a way that it slightly adapts to 
the input — it is moved in n-dimensional 
space into the direction of the input. The 
KFM is organized in such a way that it 
finally represents the input sample 
distribution through the positions of its 
reference cells in n-dimensional space. 
Now the set can be used for clustering, 
vector quantization and also 
dimensionality reduction tasks. 
Up to now, the approach is similar to 
general k-means clustering but the KFM 
offers another great feature by the fact that 
reference vectors are organized as a regular 
map. This creates an additional 
neighbourhood relation between reference 
cells and each time the training loop adapts 
a BMU, also its neighbourhood is adapted 
by a certain amount. 
Thus, the virtually arbitrary map topology 
is considered additionally while learning, 

such that the learning sample set can be 
seen as projected on to the two-
dimensional topology. In other words, the 
KFM approach is capable of recognizing 
clusters and inheriting a hidden topological 
information from the learning sample set. 
A typical application of the KFM is the  
clustering of vectors of Fourier coefficients 
of naturally spoken words in certain time 
steps. Each resulting “phoneme” then 
represents a position on the map, and a 
whole spoken word generates a curve on 
the map. This curve graphically 
characterizes a spoken word appropriable 
in speech recognition applications [8]. 
Altogether the Kohonen feature map 
algorithm can be described by a few 
mathematical terms as follows. 
Given a set of m reference units kc

v ∈  Rn,  
k = 1..m, the BMU bc

v concerning an input 
training vector xv  ∈  Rn is found by 
bc
v

= argmin || xv  - kc
v

 || ∀  k = 1..m. 
After the BMU is known training of the 
network is accomplished by 
kc
v

= kc
v

 + α  · hbk · ( x
v

- kc
v

) ∀  k = 1..m   (2.1) 
with α a learning parameter which 
decreases during network training and hbk a 
neighbourhood relation concerning the 2D 
map coordinates kr

v  ∈  R2 of a reference 
unit kc

v  defined like hbk = 



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else
if ,,,,

0
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with  η   defining the size of the 
neighbourhood. η  decreases during 
learning finally reaching a value of one for 
a neighbourhood set containing only the 
direct neighbours of the BMU. 
 
2.2 Principles of Computer Graphics 
Hardware 
 
“Graphics hardware is an efficient 
processor of images” [9] — and more 
generally, graphics hardware efficiently 
processes several streams of source to a 
stream of destination pixels from sets of 
images. The application program selects 
the source and destination images and the 



 3

generation of positions on these images 
from which the pixel streams are read. 
Creating these pixel coordinates is 
accomplished by mapping (pixel 
coordinate interpolation) in between 
geometrical entities (usually triangles). 
Roughly speaking, in this approach 
Fragment Shader Programs [10] define the 
combination function (mathematical 
operator) of source (first operand) and 
destination (second operand) pixel arrays 
(arrays of reference units). 
 
2.3 Adapting KFM to CG Hardware 
 
The KFM is stored in a RGBA texture map 
(neural texture map (NTM)) to allow the 
GPU fast access to the net units. Figure 1 
describes the organisation of this map. 
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Figure 1: Excerpt from the neural texture map 
showing four 14 dimensional units. Each unit with its 
own color distributed over the map’s texels. White 
texel components are filled with zero and do not 
belong to a unit. The unit’s components are 
arranged in ascending order  RGBA-RGBA-RGBA-
RG. 
 
Every n-dimensional unit U=(µ1, µ2,…,µn) 
occupies TperUnit = n / 4 rounded 
horizontally aligned texels. The unit’s 
components are assigned to a texel           
Ti = (µi*4, µi*4+1, µi*4+2, µi*4+3),  
with i = 0, …, TPerUnit-1.  
Empty components arising from unit 
dimensions which are not multiples of 4 
are ignored. 
 
The unit’s componental values are 
restricted to the value range [0..1]. The 
precision of the value range is based upon 
the number of bytes per color component.  
 
The input units are stored in a texture map 
(input texture map (ITM)) to support fast 

access and for blending purposes. The 
algorithm generates an ITM for every 
incoming input unit. The ITM organisation 
is identical to the NTM organisation except 
for the fact that all ITM units contain the 
same values, due to the generation of one 
ITM for every input unit.  
 
Every described algorithm in this paper is 
based on an orthographic projection where 
one logical unit is equivalent to one screen 
pixel.  
 
The horizontal and vertical dimension  
concerning the map topology  are specified 
Rx und Ry 
 
2.3.1 Feeding the GPU 
 
If the input units are known before training 
the KFM, the ITMs can be created in the 
first place. Otherwise the ITMs must be 
created at run time. This paper acts on the 
assumption that the ITMs are created at run 
time.  
We use the render to texture approach 
because this is the most efficient  kind of  
filling a texture on the local GPU memory 
[12]. 
 
Instead of drawing every input unit’s pixel 
one after another needing Rx * Ry * TPerUnit 
drawing steps, we draw one component to 
all units and mask out the non-concerning 
texel positions through using the stencil 
buffer technique. 
 
The ITM is generated at runtime drawing 
TPerUnit rectangles of size Rx * Ry with 
activated stencil test. The rectangle’s color 
Ci depends on the input unit’s components 
r = [ λ0, λ1, ... , λn]T and can be displayed as  
Ci=[λi*4, λi*4+1, λi*4+2, λi*4+3]T, with i = 0, .., 
TPerUnit-1. The stencil test must be updated 
for every rectangle to accept only values 
equal to i (see figure 3). This allows 
drawing the component’s color only at the 
associated position in the ITM. 
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Activate stencil test 

Loop i from 0 to TperUnit-1

Choose drawing color
Ci = (r[i*4],r[i*4+1],r[i*4+2],r[i*4+3])

Draw rectangle

Finish loop i

Force stencil test to accept
only values equal i

 
 

Figure 3: Flow chart of the “Generating the ITM” 
algorithm. The ITM is generated by drawing TperUnit 
rectangles with activated stencil test. The 
rectangle’s color depends on the actually drawn 
input unit’s components. Colors are only drawn if 
the actually drawn component i equals the stencil 
test values.  
 
2.3.2 Determining the difference 
between Input and Net Units 
 
Since we are only interested in the 
comparison of Euclidean distances, we can 
alternatively compare  the sum of the 
absolute differences of the single unit 
components avoiding costly calculation of 
the square and square root. 
The sum  over a whole vector is calculated 
by first accumulating the differences over 
one pixel, i.e. 4 vector components, and 
then taking the sum of all intermediate 
results. 
 
Is xv  the input unit and jkr

v  the net unit at 
the position (j, k) in the KFM the 
Euclidean distance Djk for that unit is 
calculated: 
 

Djk( x, rjk) =  ∑
=

TperUnit

i 0
EV( xi, (rjk)i), 

with  xi = [ λi*4, λi*4+1, λi*4+2, λi*4+3]T ,  

ri = [ αi*4, αi*4+1, αi*4+2, αi*4+3]T,  

j = 0, …, R_x and k = 0, …, R_y.  

 

The following algorithm is executed in a 
fragment shader (see figure 4). By drawing 
a rectangle with dimension Rx * Ry the 
fragment shader is called once for every 
unit. One execution of the shader 
calculates the distance for each texel/pixel 
component and accumulates them locally. 
Figure 5 demonstrates the association 
between the pixels and the NTM units after 
executing the fragment shader algorithm.   
 

Loop i from 0 to TperUnit-1

Ev = abs(texel(txcoord.x+i,txcoord.y,ITM)-
(texel(txcoord.x+i,txcoord.y,NTM)

D = D + Ev.r + Ev.g + Ev.b + Ev.a

Finish loop i

Normalize D
 

 
Figure 4: Flow chart of the difference-determining 
algorithm. The algorithm is executed in a fragment 
shader. Looping through all pixels of a unit admits 
the calculating of the separated Euclidean 
distances. Normalizing D is necessary to stay inside 
the pixel buffer’s values range. 
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Figure 5: The distance for every unit is saved in one 
pixel in the pixel buffer after executing the above 
discussed algorithm. 
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Alternative solutions. We tested  
alternative algorithms using blending or 
the accumulation buffer to subtract the 
differences and a fragment shader to 
compute the sum of all differences. Further 
each algorithm was combined with an 
accumulation buffer to compute the sum 
within a CPU loop and not within the 
fragment shader; normalizing the vectors 
after each iteration step using the 
accumulation buffer.  
 
2.3.3 Finding the Best Matching Unit 
 
After calculating the distances between the 
input and net units it is necessary to find 
the position of the unit with the  smallest 
distance to the input. 
The fastest way to find the minimum value 
is to write Rx * Ry vertices at the same x,y-
coordinate with the distance as negative z-
coordinate. Enabling depth test forces the 
GPU to sort the incoming vertices by their 
z-coordinate.  
Additionally the color of each vertex is set 
to the position of the actually considered 
distance in the KFM. So after drawing all 
vertices the pixel’s red and green color 
components at the previous used x,y-
coordinate contain the x- and y-position of 
the BMU in the KFM. Eventually it is 
necessary to adjust the value’s range of the 
considered distance position to the color 
component’s value range. Figure 6 shows a 
flow chart of this algorithm.  
 
Before drawing the vertices the computed 
distances must be read from the pixel 
buffer into CPU memory.  
 
Alternative solutions. The biggest 
problem of this algorithm is the 
performance loss due to the copy 
procedure. An alternative solution would 
be to bind the pixel buffer to a texture; then 
using a vertex shader to read and draw the 
distances from the texture. This solution 
has not been tested because this paper is 
based on the nVidia Cg 2.0 language 
which does not support texture access for 
vertex shader.  

Read pixels from pixel buffer
to distance 

Loop x from 0 to Rx
Loop y from 0 to Ry

Draw pixel at position (0, 0, -distance[x,y])
with color = (x,y,0)

Finish Loop y
Finish Loop x

Read pixel at position (0, 0)

Enable depth test

 
 

Figure 6: Flow chart of the “Finding the BMU” 
algorithm. After reading the pixel buffer into CPU 
memory (distance) a vertex for every distance value 
is drawn with activated depth test. By adding the 
considered distance position in the KFM (x,y) as 
color, the pixel read at the end of the algorithm 
contains the BMU’s position in the KFM in the red 
and green color components. 
 
2.3.4 Training the Map 
 
Training a unit is achieved through 
applying formula 2.1 to every texel Ti

NTM 
of the NTM  and Ti

ITM  of the ITM, with i 
= 0, .., TPerNeuron: 
 
Ti

NTM(t+1)=Ti
NTM(t)+α(t) ·hbk(t) · [Ti

ITM(t)–Ti
NTM(t)] 

 
Since every Ti

* on the right side of the 
equation is equivalent with a texture access 
we convert the formula to reduce texture 
accesses: 
 
Ti

NTM(t+1)= 
(1-α(t) ·hbk(t)) Ti

NTM(t) + α(t) ·hbk(t) ·Ti
ITM(t). 

 
The training is accomplished by texture 
blending, followed by copying the blended 
pixel within the neighbourhood into the 
NTM (see figure 7).  
Multiplying the two texture maps with the 
factors (1-α(t)·hbk(t)) and α(t)·hbk(t) happens 
during drawing, combining the textures’ 
colors multiplicative with the polygon 
surface color, which has to be set to  
(1-α(t) )·hbk(t)) or α(t)·hbk(t) respectively.  
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Using blending with an additive blend 
function and blend factors of one for both 
texture maps completes the training of the 
map.  
Afterwards the neighbourhood region is 
copied from the pixel buffer to the same 
position into the NTM. 
 

Multiply NTM colors with the color 
(1-alpha,1-alpha,1-alpha,1-alpha)

Draw NTM

Activate blending

Multiply ITM colors with the color 
(alpha, alpha, alpha, alpha)

Draw ITM

Copy pixels within the neighborhood into the NTM
 

Figure 7: Flow chart of the „Training the Map“ 
algorithm. Multiplication of the textures’ colors with 
the factors happens during drawing. An additive 
blend function and blend factors of one are applied 
to both textures. 
 
Alternative solutions. Training of the map 
can also be solved using the accumulation 
buffer or fragment shader. Additionally we 
have tried to train only the neighbourhood 
by calculating its texture offset with the 
CPU prior computing the algorithms.  
 
3. Results 
 
3.1 Performance 
 
We compare execution times for 
“Determining the difference between Input 
and Net Units”, “Finding the Best 
Matching Unit” and “Training the map” to 
alternate solutions mentioned in this work 
including a pure CPU implementation of 
the algorithm. 
 
The execution times are levied for 1500 
iteration steps for 10*10 40 dimensional 
units. The algorithms were executed on a 

Pentium4 2Ghz with nVidia GeForce 6800 
and Windows XP. Measurements are 
accomplished several times and are mean 
values of the output of the ANSI-C clock() 
function.  
The algorithm names used within the 
diagrams provide information about the 
used GPU features (shader = fragment 
shader, accum = accumulation buffer, 
blend = blending). A ‘+’ between 
algorithms indicates serial usage, a ‘|’ 
parallel usage. 
 
Determining the difference between 
Input and Net Units 
 
Figure 8 exposes the times for calculating 
the difference between vectors and it 
exposes that the pure shader based 
algorithm clearly shows the best results. 
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Figure 8: Required times for 1500 iteration steps 
determining the differences between input units and 
net units for a KFM with 10*10 40 dimensional units 
sorted by algorithm. The algorithms’ order stays the 
same for other KFM measures.  
 
The ranking of the algorithms stays the 
same for any size of the KFMs.  
Because of the loop which calculates the 
sum of the components of each unit, the 
algorithm becomes  slower for bigger units 
than for more units while keeping the 
required texture size the same. 
 
The bigger the KFM the smaller the 
difference between the shader algorithms 
(shader, shader+accum) and the 
accumulation buffer and blending 
algorithms. But the pure shader 
implementation’s speed is not reached for 
reasonable KFM measures. 
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Finding the Best Matching Unit 
 
Figure 9 illustrates the required times for 
finding the BMU. The ranking of the 
algorithms stays the same for smaller 
KFMs with the blending algorithm always 
as fastest algorithm.  
These algorithms are also faster when 
calculated for more units with less 
dimensions than the other way round 
expecting the same NTM measure. This 
happens due to the fewer number of pixels 
which must be copied into the NTM after 
adjusting the net units. With a 3x3 
neighbourhood a NTM with TPerUnit=1 has 
to update 3*3=9 pixels, while a NTM with 
TPerUnit=2 has to update 3*3*2=18 pixels. 
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Figure 9: Required times for 1500 iteration steps 
finding the BMU for a KFM with 10*10 40 
dimensional units sorted by algorithm. The 
algorithms’ order stays the same for other KFM 
measures.  
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Figure 10: Required times for 1500 iteration steps 
performing the complete Kohonen algorithm for four 
different KFM measures using the discussed GPU 
algorithm and a fast CPU algorithm. 
 
 
Finally we compare the discussed GPU 
algorithm with a fast CPU algorithm. Like 
Figure 10 shows the CPU algorithm is 

much faster if calculating unusual small  
KFMs than the GPU algorithm, but the 
difference shrinks with increasing KFM 
size. For  20*20 units with 40 components 
our approach clearly outperforms the CPU 
implementation, and this proves the idea of 
our approach.  
Generally we can state that the GPU-
algorithm runs significantly faster than the 
usual CPU implementation. Only for cases 
where the networks become unusual small 
the communication between GPU and CPU   
takes the main part of the computation and 
thus performance shrinks. 
 
 
4 Summary and Future Work 
 
We presented a novel way  for   
implementing the Kohonen Feature Map 
algorithm on a common computer graphics 
acceleration board. Our main idea is to 
profit from a massively parallel hardware 
design which CG boards share with the 
characteristics of the KFM algorithm. 
 
Our results clearly proved  our idea. We 
reached a speed-up of about 300% for a 
40x40 KFM with 40-dimensional reference 
units.  
 
We showed that the performance of our 
approach significantly depends on the 
network size.  While uncommon small 
networks are not capable of profiting from 
using the  GPU, normal sized networks  
run notable faster, and the further 
increasing network sizes leads to even 
greater  acceleration factors.  
 
Future Work  
 
With a typical development cycle of six 
months for graphics cards, which mostly 
leads to completely new functional 
extensions of actual hardware, the potential 
of future work is obviously huge.  
Our main goal is to reduce the accesses 
between GPU and CPU as far as possible 
by migrating the algorithm completely 
onto the graphics card. 



 8

This might be possible soon, since several 
innovations are already announced by the 
industry (i.e. “accessing the texture from 
the vertex shader”). 
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