
 1

Compiling the Kohonen Feature Map
Into Computer Graphics Hardware

Florian Haar Christian-A. Bohn

Wedel University of Applied Sciences

Abstract

This work shows a novel kind of accelerating implementations of the Kohonen
feature map algorithm. The algorithm is adapted to match the functional features
of recent general purpose graphics processing hardware so that the newest
developments in graphics hardware design can be utilized to run this neural network
with a formidable speedup of up to 300%.

Keyword: Computer Graphics, Artificial Neural Networks, Kohonen Feature Map,
Unsupervised Learning, GPU Programming, Computer Graphics Hardware

1 Introduction

1.1 Computer Graphics Hardware and
Artificial Neural Networks

The non-deterministic nature of usual
artificial neural network (ANN) algorithms
often leads to excessive execution times
even for virtually simple problems. As
long as alternate algorithms with lower
complexity are not known, in some cases it
helps to have a hardware implementation
available and to take advantage just from
shorter execution times than a general
purpose CPU would be capable of. The
problem here is that — due to the
relatively few applications — there are
only few hardware boards available.
Moreover these mostly do not reflect the
current state-of-the-art in hardware design.
In contrast — in the computer graphics
(CG) area there are millions of users with
“need” for graphically elaborated games
and the associated computer graphics
hardware.
This market drives CG industry to
unprecedented short development cycles
each of them resulting in a tremendous
increase of graphics performance and
visualization quality.

While early graphics boards were
competent only of managing specialized
pixel oriented functions — i.e. filling
rectangular areas in display memory —
today’s graphics processing unit (GPU)
function sets have nearly the same
functional features as general CPUs.
Moreover, they are highly integrated,
extremely fast, massively parallel, and are
mostly inherited from latest hardware
design technologies, and — due to the
huge manufacturing quantities — they are
cheap.
It is obvious to try to utilize these graphics
boards for running algorithms which
are not directly connected to image
generation. Work which already was
accomplished includes the ray tracing
approach [1], physical simulation [2], even
more graphics unrelated applications like
linear algebra [3], robot motion planning
[4], cryptography [5], and also neural
networks [6].

Overview

This work presents several possibilities to
suit the Kohonen feature map (KFM) [7]
into graphics hardware giving a significant
competitive edge compared to the
execution on general purpose hardware. In

 2

the following, we explain our favourable
algorithm in detail and refer to alternate
implementations we have evaluated. Then
we present a performance analysis and
discuss results related to the prospective
development of graphics hardware.

2 Kohonen Feature Map through
Graphics Commands

2.1 The Kohonen Feature Map

The Kohonen feature map is one the most
prominent ANN algorithms, maybe
because it exposes robust learning
characteristics, a fascinating and efficient
principle of self organization, and an
intuitive kind of visualizing a neural
network’s training results. In recent
decades this resulted in a vast number of
applications and thousands of publications.
The Kohonen feature map can be seen as
set of n-dimensional reference units
(vectors).
A network training loop consists of
iteratively presenting n-dimensional
sample input vectors to the reference units.
Each time the best matching unit (BMU)
(the reference unit which is most similar
according to a certain distance measure) is
modified in a way that it slightly adapts to
the input — it is moved in n-dimensional
space into the direction of the input. The
KFM is organized in such a way that it
finally represents the input sample
distribution through the positions of its
reference cells in n-dimensional space.
Now the set can be used for clustering,
vector quantization and also
dimensionality reduction tasks.
Up to now, the approach is similar to
general k-means clustering but the KFM
offers another great feature by the fact that
reference vectors are organized as a regular
map. This creates an additional
neighbourhood relation between reference
cells and each time the training loop adapts
a BMU, also its neighbourhood is adapted
by a certain amount.
Thus, the virtually arbitrary map topology
is considered additionally while learning,

such that the learning sample set can be
seen as projected on to the two-
dimensional topology. In other words, the
KFM approach is capable of recognizing
clusters and inheriting a hidden topological
information from the learning sample set.
A typical application of the KFM is the
clustering of vectors of Fourier coefficients
of naturally spoken words in certain time
steps. Each resulting “phoneme” then
represents a position on the map, and a
whole spoken word generates a curve on
the map. This curve graphically
characterizes a spoken word appropriable
in speech recognition applications [8].
Altogether the Kohonen feature map
algorithm can be described by a few
mathematical terms as follows.
Given a set of m reference units kc

v ∈ Rn,
k = 1..m, the BMU bc

v concerning an input
training vector xv ∈ Rn is found by
bc
v

= argmin || xv - kc
v

 || ∀ k = 1..m.
After the BMU is known training of the
network is accomplished by
kc
v

= kc
v

 + α · hbk · (x
v

- kc
v

) ∀ k = 1..m (2.1)
with α a learning parameter which
decreases during network training and hbk a
neighbourhood relation concerning the 2D
map coordinates kr

v ∈ R2 of a reference
unit kc

v defined like hbk =



 ≤−∧≤− ηη ykybxkxb rrrr

else
if ,,,,

0
1 vvvv

with η defining the size of the
neighbourhood. η decreases during
learning finally reaching a value of one for
a neighbourhood set containing only the
direct neighbours of the BMU.

2.2 Principles of Computer Graphics
Hardware

“Graphics hardware is an efficient
processor of images” [9] — and more
generally, graphics hardware efficiently
processes several streams of source to a
stream of destination pixels from sets of
images. The application program selects
the source and destination images and the

 3

generation of positions on these images
from which the pixel streams are read.
Creating these pixel coordinates is
accomplished by mapping (pixel
coordinate interpolation) in between
geometrical entities (usually triangles).
Roughly speaking, in this approach
Fragment Shader Programs [10] define the
combination function (mathematical
operator) of source (first operand) and
destination (second operand) pixel arrays
(arrays of reference units).

2.3 Adapting KFM to CG Hardware

The KFM is stored in a RGBA texture map
(neural texture map (NTM)) to allow the
GPU fast access to the net units. Figure 1
describes the organisation of this map.

x

y

R
G
B
A

Figure 1: Excerpt from the neural texture map
showing four 14 dimensional units. Each unit with its
own color distributed over the map’s texels. White
texel components are filled with zero and do not
belong to a unit. The unit’s components are
arranged in ascending order RGBA-RGBA-RGBA-
RG.

Every n-dimensional unit U=(µ1, µ2,…,µn)
occupies TperUnit = n / 4 rounded
horizontally aligned texels. The unit’s
components are assigned to a texel
Ti = (µi*4, µi*4+1, µi*4+2, µi*4+3),
with i = 0, …, TPerUnit-1.
Empty components arising from unit
dimensions which are not multiples of 4
are ignored.

The unit’s componental values are
restricted to the value range [0..1]. The
precision of the value range is based upon
the number of bytes per color component.

The input units are stored in a texture map
(input texture map (ITM)) to support fast

access and for blending purposes. The
algorithm generates an ITM for every
incoming input unit. The ITM organisation
is identical to the NTM organisation except
for the fact that all ITM units contain the
same values, due to the generation of one
ITM for every input unit.

Every described algorithm in this paper is
based on an orthographic projection where
one logical unit is equivalent to one screen
pixel.

The horizontal and vertical dimension
concerning the map topology are specified
Rx und Ry

2.3.1 Feeding the GPU

If the input units are known before training
the KFM, the ITMs can be created in the
first place. Otherwise the ITMs must be
created at run time. This paper acts on the
assumption that the ITMs are created at run
time.
We use the render to texture approach
because this is the most efficient kind of
filling a texture on the local GPU memory
[12].

Instead of drawing every input unit’s pixel
one after another needing Rx * Ry * TPerUnit
drawing steps, we draw one component to
all units and mask out the non-concerning
texel positions through using the stencil
buffer technique.

The ITM is generated at runtime drawing
TPerUnit rectangles of size Rx * Ry with
activated stencil test. The rectangle’s color
Ci depends on the input unit’s components
r = [λ0, λ1, ... , λn]T and can be displayed as
Ci=[λi*4, λi*4+1, λi*4+2, λi*4+3]T, with i = 0, ..,
TPerUnit-1. The stencil test must be updated
for every rectangle to accept only values
equal to i (see figure 3). This allows
drawing the component’s color only at the
associated position in the ITM.

 4

Activate stencil test

Loop i from 0 to TperUnit-1

Choose drawing color
Ci = (r[i*4],r[i*4+1],r[i*4+2],r[i*4+3])

Draw rectangle

Finish loop i

Force stencil test to accept
only values equal i

Figure 3: Flow chart of the “Generating the ITM”
algorithm. The ITM is generated by drawing TperUnit
rectangles with activated stencil test. The
rectangle’s color depends on the actually drawn
input unit’s components. Colors are only drawn if
the actually drawn component i equals the stencil
test values.

2.3.2 Determining the difference
between Input and Net Units

Since we are only interested in the
comparison of Euclidean distances, we can
alternatively compare the sum of the
absolute differences of the single unit
components avoiding costly calculation of
the square and square root.
The sum over a whole vector is calculated
by first accumulating the differences over
one pixel, i.e. 4 vector components, and
then taking the sum of all intermediate
results.

Is xv the input unit and jkr

v the net unit at
the position (j, k) in the KFM the
Euclidean distance Djk for that unit is
calculated:

Djk(x, rjk) = ∑
=

TperUnit

i 0
EV(xi, (rjk)i),

with xi = [λi*4, λi*4+1, λi*4+2, λi*4+3]T ,

ri = [αi*4, αi*4+1, αi*4+2, αi*4+3]T,

j = 0, …, R_x and k = 0, …, R_y.

The following algorithm is executed in a
fragment shader (see figure 4). By drawing
a rectangle with dimension Rx * Ry the
fragment shader is called once for every
unit. One execution of the shader
calculates the distance for each texel/pixel
component and accumulates them locally.
Figure 5 demonstrates the association
between the pixels and the NTM units after
executing the fragment shader algorithm.

Loop i from 0 to TperUnit-1

Ev = abs(texel(txcoord.x+i,txcoord.y,ITM)-
(texel(txcoord.x+i,txcoord.y,NTM)

D = D + Ev.r + Ev.g + Ev.b + Ev.a

Finish loop i

Normalize D

Figure 4: Flow chart of the difference-determining
algorithm. The algorithm is executed in a fragment
shader. Looping through all pixels of a unit admits
the calculating of the separated Euclidean
distances. Normalizing D is necessary to stay inside
the pixel buffer’s values range.

x

y

R
G
B
A

y

x

R
G
B
A

pixel buffer

texture map

Figure 5: The distance for every unit is saved in one
pixel in the pixel buffer after executing the above
discussed algorithm.

 5

Alternative solutions. We tested
alternative algorithms using blending or
the accumulation buffer to subtract the
differences and a fragment shader to
compute the sum of all differences. Further
each algorithm was combined with an
accumulation buffer to compute the sum
within a CPU loop and not within the
fragment shader; normalizing the vectors
after each iteration step using the
accumulation buffer.

2.3.3 Finding the Best Matching Unit

After calculating the distances between the
input and net units it is necessary to find
the position of the unit with the smallest
distance to the input.
The fastest way to find the minimum value
is to write Rx * Ry vertices at the same x,y-
coordinate with the distance as negative z-
coordinate. Enabling depth test forces the
GPU to sort the incoming vertices by their
z-coordinate.
Additionally the color of each vertex is set
to the position of the actually considered
distance in the KFM. So after drawing all
vertices the pixel’s red and green color
components at the previous used x,y-
coordinate contain the x- and y-position of
the BMU in the KFM. Eventually it is
necessary to adjust the value’s range of the
considered distance position to the color
component’s value range. Figure 6 shows a
flow chart of this algorithm.

Before drawing the vertices the computed
distances must be read from the pixel
buffer into CPU memory.

Alternative solutions. The biggest
problem of this algorithm is the
performance loss due to the copy
procedure. An alternative solution would
be to bind the pixel buffer to a texture; then
using a vertex shader to read and draw the
distances from the texture. This solution
has not been tested because this paper is
based on the nVidia Cg 2.0 language
which does not support texture access for
vertex shader.

Read pixels from pixel buffer
to distance

Loop x from 0 to Rx
Loop y from 0 to Ry

Draw pixel at position (0, 0, -distance[x,y])
with color = (x,y,0)

Finish Loop y
Finish Loop x

Read pixel at position (0, 0)

Enable depth test

Figure 6: Flow chart of the “Finding the BMU”
algorithm. After reading the pixel buffer into CPU
memory (distance) a vertex for every distance value
is drawn with activated depth test. By adding the
considered distance position in the KFM (x,y) as
color, the pixel read at the end of the algorithm
contains the BMU’s position in the KFM in the red
and green color components.

2.3.4 Training the Map

Training a unit is achieved through
applying formula 2.1 to every texel Ti

NTM
of the NTM and Ti

ITM of the ITM, with i
= 0, .., TPerNeuron:

Ti

NTM(t+1)=Ti
NTM(t)+α(t) ·hbk(t) · [Ti

ITM(t)–Ti
NTM(t)]

Since every Ti

* on the right side of the
equation is equivalent with a texture access
we convert the formula to reduce texture
accesses:

Ti

NTM(t+1)=
(1-α(t) ·hbk(t)) Ti

NTM(t) + α(t) ·hbk(t) ·Ti
ITM(t).

The training is accomplished by texture
blending, followed by copying the blended
pixel within the neighbourhood into the
NTM (see figure 7).
Multiplying the two texture maps with the
factors (1-α(t)·hbk(t)) and α(t)·hbk(t) happens
during drawing, combining the textures’
colors multiplicative with the polygon
surface color, which has to be set to
(1-α(t))·hbk(t)) or α(t)·hbk(t) respectively.

 6

Using blending with an additive blend
function and blend factors of one for both
texture maps completes the training of the
map.
Afterwards the neighbourhood region is
copied from the pixel buffer to the same
position into the NTM.

Multiply NTM colors with the color
(1-alpha,1-alpha,1-alpha,1-alpha)

Draw NTM

Activate blending

Multiply ITM colors with the color
(alpha, alpha, alpha, alpha)

Draw ITM

Copy pixels within the neighborhood into the NTM

Figure 7: Flow chart of the „Training the Map“
algorithm. Multiplication of the textures’ colors with
the factors happens during drawing. An additive
blend function and blend factors of one are applied
to both textures.

Alternative solutions. Training of the map
can also be solved using the accumulation
buffer or fragment shader. Additionally we
have tried to train only the neighbourhood
by calculating its texture offset with the
CPU prior computing the algorithms.

3. Results

3.1 Performance

We compare execution times for
“Determining the difference between Input
and Net Units”, “Finding the Best
Matching Unit” and “Training the map” to
alternate solutions mentioned in this work
including a pure CPU implementation of
the algorithm.

The execution times are levied for 1500
iteration steps for 10*10 40 dimensional
units. The algorithms were executed on a

Pentium4 2Ghz with nVidia GeForce 6800
and Windows XP. Measurements are
accomplished several times and are mean
values of the output of the ANSI-C clock()
function.
The algorithm names used within the
diagrams provide information about the
used GPU features (shader = fragment
shader, accum = accumulation buffer,
blend = blending). A ‘+’ between
algorithms indicates serial usage, a ‘|’
parallel usage.

Determining the difference between
Input and Net Units

Figure 8 exposes the times for calculating
the difference between vectors and it
exposes that the pure shader based
algorithm clearly shows the best results.

1,21

1,76 1,781,83

2,362,37

1,0

1,2

1,4

1,6

1,8

2,0

2,2

2,4

2,6

Shader Shader +
Accum

Accum |
Shader

Accum |
Shader +
Accum

Blend |
Shader

Blend |
Shader +
Accum

Algorithms

Ti
m

e
in

 s

Figure 8: Required times for 1500 iteration steps
determining the differences between input units and
net units for a KFM with 10*10 40 dimensional units
sorted by algorithm. The algorithms’ order stays the
same for other KFM measures.

The ranking of the algorithms stays the
same for any size of the KFMs.
Because of the loop which calculates the
sum of the components of each unit, the
algorithm becomes slower for bigger units
than for more units while keeping the
required texture size the same.

The bigger the KFM the smaller the
difference between the shader algorithms
(shader, shader+accum) and the
accumulation buffer and blending
algorithms. But the pure shader
implementation’s speed is not reached for
reasonable KFM measures.

 7

Finding the Best Matching Unit

Figure 9 illustrates the required times for
finding the BMU. The ranking of the
algorithms stays the same for smaller
KFMs with the blending algorithm always
as fastest algorithm.
These algorithms are also faster when
calculated for more units with less
dimensions than the other way round
expecting the same NTM measure. This
happens due to the fewer number of pixels
which must be copied into the NTM after
adjusting the net units. With a 3x3
neighbourhood a NTM with TPerUnit=1 has
to update 3*3=9 pixels, while a NTM with
TPerUnit=2 has to update 3*3*2=18 pixels.

0,33 0,34

0,47 0,48

0,36

0,26 0,27

0,0

0,1

0,2

0,3

0,4

0,5

0,6

Shader Shader |
CPU

Accum Accum |
CPU

Blend Blend |
CPU

ShaderIF

Algorithms

Ti
m

e
in

 s

Figure 9: Required times for 1500 iteration steps
finding the BMU for a KFM with 10*10 40
dimensional units sorted by algorithm. The
algorithms’ order stays the same for other KFM
measures.

1,61 1,951,60

11,67

2,33 2,961,92

0,08

5,23

2,33

0

2

4

6

8

10

12

14

4x4 16D 10x10 40D 20x20 40D 30x30 40D 40x40 50D

KFM measures

Ti
m

e
in

 s

GPU
CPU

Figure 10: Required times for 1500 iteration steps
performing the complete Kohonen algorithm for four
different KFM measures using the discussed GPU
algorithm and a fast CPU algorithm.

Finally we compare the discussed GPU
algorithm with a fast CPU algorithm. Like
Figure 10 shows the CPU algorithm is

much faster if calculating unusual small
KFMs than the GPU algorithm, but the
difference shrinks with increasing KFM
size. For 20*20 units with 40 components
our approach clearly outperforms the CPU
implementation, and this proves the idea of
our approach.
Generally we can state that the GPU-
algorithm runs significantly faster than the
usual CPU implementation. Only for cases
where the networks become unusual small
the communication between GPU and CPU
takes the main part of the computation and
thus performance shrinks.

4 Summary and Future Work

We presented a novel way for
implementing the Kohonen Feature Map
algorithm on a common computer graphics
acceleration board. Our main idea is to
profit from a massively parallel hardware
design which CG boards share with the
characteristics of the KFM algorithm.

Our results clearly proved our idea. We
reached a speed-up of about 300% for a
40x40 KFM with 40-dimensional reference
units.

We showed that the performance of our
approach significantly depends on the
network size. While uncommon small
networks are not capable of profiting from
using the GPU, normal sized networks
run notable faster, and the further
increasing network sizes leads to even
greater acceleration factors.

Future Work

With a typical development cycle of six
months for graphics cards, which mostly
leads to completely new functional
extensions of actual hardware, the potential
of future work is obviously huge.
Our main goal is to reduce the accesses
between GPU and CPU as far as possible
by migrating the algorithm completely
onto the graphics card.

 8

This might be possible soon, since several
innovations are already announced by the
industry (i.e. “accessing the texture from
the vertex shader”).

References

[1] Timothy J. Purcell, Ian Buck, William
R. Mark, and Pat Hanrahan. Ray tracing
on programmable graphics hardware. In
SIGGRAPH ’02: Proceedings of the 29th
annual conference on Computer graphics
and interactive techniques, pages 703–712.
ACM Press, 2002.
[2] Mark J. Harris, William V. Baxter,
Thorsten Scheuermann, and Anselmo
Lastra. Simulation of cloud dynamics on
graphics hardware. In HWWS ’03:
Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pages
92–101. Eurographics Association, 2003.
[3] Jens Krüger and Rüdiger Westermann.
Linear algebra operators for gpu
implementation of numerical algorithms.
ACM Trans. Graph., 22(3):908–916, 2003.
[4] Jed Lengyel, Mark Reichert, Bruce R.
Donald, and Donald P. Greenberg. Real-
time robot motion planning using
rasterizing computer graphics hardware. In
SIGGRAPH ’90: Proceedings of the 17th
annual conference on Computer graphics
and interactive techniques, pages 327–335.
ACM Press, 1990.
[5] John Eyles, Steven Molnar, John
Poulton, Trey Greer, Anselmo Lastra, Nick
England, and Lee Westover. Pixelflow: the
realization. In HWWS ’97: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS
workshop on Graphics hardware, pages
57–68. ACM Press, 1997.
[6] Christian-A. Bohn. Kohonen feature
mapping through graphics hardware. In
Paul P. Wang, editor, Proc. JCIS’98,
volume II, pages 64–67. Association for
Intelligent Machinery, Inc, 1998.
[7] T. Kohonen. Self-organized formation
of topologically correct feature maps. In J.
W. Shavlik and T. G. Dietterich, editors,
Readings in Machine Learning, pages 326–
336. Kaufmann, San Mateo, CA, 1990.

[8] A. K. Jain, M. N. Murty, and P. J.
Flynn. Data clustering: a review. ACM
Comput. Surv., 31(3):264–323, 1999.
[9] Mark J. Harris, Greg Coombe, Thorsten
Scheuermann, and Anselmo Lastra.
Physically-based visual simulation on
graphics hardware. In HWWS ’02:
Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware,
pages 109–118. Eurographics Association,
2002.
[10] Randima Fernando, Mark J. Kilgard.
The Cg Tutorial. Addison-Wesley, 2003.
[11] T. Kohonen. Self-Organizing Maps.
Springer, 1997.
[12] Chris Wynn. OpenGL Render-to-
Texture. nVidia Paper.
www.developer.nvidia.com/attach/6725.

