A Parallel Approach to Hierarchical Radiosity *

Christian-A. Bohn |

German National Research Center
for Computer Science

Robert Garmann *

University of Dortmund
The Computer Graphics Group

Dept. Visualization and Media Systems Design Departement of Computer Science

Sankt Augustin, Germany

Abstract

A parallel algorithm solving the radiosity equation
is presented. It is based on the hierarchical ap-
proach (HR) [5] and realized on a massively parallel
supercomputer — the ConnectionMachine 5.

Our algorithm considers the HR approach as a
process that manipulates an huge graph structure.
Simulated annealing is used in the graph’s rearrang-
ing procedure to achieve a good work-balance and
nearly optimal communication costs.

The implementation shows a significant step to
facilitate the application of a radiosity solver, pro-
duced on one hand by the few user-support that
HR needs, on the other hand by the fast calcula-
tion times the parallel implementation offers. On
64 processors we obtained a speed-up of 8.4.

Keywords: Computer Graphics, Scientific Visual-
ization, Hierarchical, Radiosity, Rendering, Simu-
lation, Parallelization, Message Passing, Supercom-
puter, Architecture

1 Introduction

1.1 Global Illumination

An important challenge in the field of computing
pictures from three dimensional polygon data is the
simulation of the physics of the global light flow —
the global illumination. The essence is to find math-
ematical models which imitate the physics of light
accurately and deliver algorithms that are realizable
on recent computer technology.

The theory of algorithms concerning the global il-
lumination problem may be describted by the ren-

fe-mail: bohn@gmd.de

fe-mail: garmann@ls7.informatik.uni-dortmund.de

*published in the Proceedings of the Winter School
of Computer Graphics and Visualization ’95 (WSCG’95),
Plzen, Czech Republic

Dortmund, Germany

dering equation [7]. As this equation is too com-
plex to evaluate directly, certain elements need to
be neglected. This should lead to more tractable
formulations, providing models which nevertheless
are able to deliver adequate simulation results, like
realistic looking images.

One of these short cuts can be unified under the
class of radiosity approaches, developed in the last
ten years. They have basically in common that only
Lambertian diffuse reflection is taken into account.
The rendering equation, which defines the light flow
as a three-point relation is shortened to a two-point
type — ‘the reflected ray from an arbitrary point
doesn’t depend directly on the direction of the rays
received at this point’.

Solving the purely diffuse global illumination
problem means solving

B(z) = E(@) + p /S B()G(z,2')dA (1)

— the radiosity equation, where the outgoing in-
tensity B at a point z is defined from the integral
over the incoming energy leaving from all surfaces
S, multiplied by the diffuse reflection coefficient p at
this point. The integral is built from a term that ex-
presses the portion of light sent from another point
z' to z (@) multiplied by the outgoing intensity at
x'.
Calculating the equation is either done by Monte-
Carlo techniques or by discretizing the scene into n
finite elements [6]. Projecting the radiosity equa-
tion into a set of basis functions delivers a system
of linear equations. The coefficients of this system
(G) are based on the geometrical relationships of
the scene and determine the transport of light be-
tween elements [3]. The unknowns are nodal values
at each element, which define the resulting intensity
for these elements.

The selection of basis functions is one way of clas-
sifying the different methods developed for solving
the radiosity equation. For a rough classification,

see [4]. For a more specific explanation see [3], or
[2, 13].

1.2 Hierarchical Radiosity

Non-hierarchical radiosity approaches calculate the
flow of light by simulating its transport between all
the elements of the scene, qualified by the matrix G
from (1). For a number n of elements there are n?
interactions to be taken into account. The idea of
hierarchical radiosity is borrowed from the N-body
problem [5]. For example, consider two pairs of el-
ements that are positioned far away. As the four
components in G are nearly the same, they may
communicate through one common path. Their
components can be combined to one interaction, as
one block in the matrix G. The goal of hierarchical
radiosity is to recognize different levels of commu-
nication. The granularity of comunication of one
surface may vary over the different surfaces.

In the following the algorithm is discussed from a
practical point of view. For a more detailed expla-
nation in the sense of basis functions, see [4, 11].

The matrix itself is not of interest, links (interac-
tions) between nodes of elements, which have effect
on groups of elements (the hierarchy), have to be
built. These links refer to blocks in the matrix G.
As an alternative to building up the matrix of all
elements, and to group its components into blocks,
the following method is presented, which creates
the links on the fly. The all over time- and space-
complexity is of order O(m) in common cases [5],
where m is the number of the final elements.

Algorithm
Consider elements with constant light intensity.

The effect of a patch j on another patch i with
sizes A;, A; can be approximated by the point-to-
disk formfactor F;; (equation 2) [12].

cosf; cosf;A;

F.=H.. -
e Ay}

2)

where the 6 are the angles between the element nor-
mals and the connections of their centers, with dis-
tance r;; (see figure 1). H;; determines the percent-
age of area j, which is visible to area i. The overall
effect of area j on area ¢ is built by multiplying F;;
by the outgoing energy from area j (B;).

Subdivision — In case of a large energy trans-
port (F;;B;) through one link, it should be replaced
by new links to compensate the error because of
a more accurate modeling of the light flow. Even
new elements may arise from this subdivision. The
essence of the hierarchical approach is that these
new patches don’t necessarily have to interact with

Figure 1: The Formfactor

all other elements in the scene. Only the links de-
termine where the light flow has to be taken into
account.

At the beginning of the whole algorithm each
patch may be connected to each other by interven-
ing links, if they are not occluded. Subdivision en-
larges this initial graph to a common graph with
patches and links as nodes and connections as in-
teractions between patches and links and between
the elements of the subdivision hierarchy of each
surface.

Simulation — Subdivision creates an element hi-
erarchy et each surface, a tree-like structure. The
simulation of the light through the links — the solv-
ing of the radiosity equation — requires following
transition through each element tree (push-pull). It
must be done after each propagation (shooting) of
energy from the patches before repropagating it into
the scene. Energy received at higher levels must be
led downwards through the tree, and added to the
passed elements. The same holds for energy com-
ing in at lower levels, which must be accumulated
up into higher levels.

These two steps (subdividing/simulation and
push-pull) have to be repeated until the system
converges, that is either the maximum of the trans-
ferred energy through the links (F;; B;), or the max-
imum energy propagated through the patch tree
falls below certain error boundaries BF, or B, resp.

Multigridding — The above process is started
again with a lower error boundary of the mentioned
energies. The solution calculated in the preceding
steps is used. The cycles are repeated until a global
minimum of F;; B; is reached. See figure 3.

2 Parallelization

2.1 Hardware

Parallelization of algorithms strongly depends on
the underlying hardware architecture. The Connec-
tionMachine 5 (ThinkingMachines Corp.) serves
for this work. The architecture is of the MIMD-

[ERsKe

network

sHsgs)

Figure 2: Hardware Architecture

processors

type (Multiple Instruction Multiple Data). Several
independent processors (SPARC 2) with own their
local memory (32 MBytes) work together. Commu-
nication is done by sending messages to specific or
all processing units (Message Passing). Application
of the message passing principle delivers a scheme,
that is easy adaptable to other MIMD computers.
The architecture is scalable up to 16384 processors.
For this work a 64 processors CM-5 was used.

The processors are organized into a tree structure
of connection nodes. The bandwidth of the network
is 5 MByte/sec at the leave nodes — the proces-
sors, and increases in the direction of the root node
(fattree). Thus, the architecture may be seen as
a network of fully connected processors with nearly
equal communication power on each connection (see
figure 2).

The CM-5 is connected to an Onyz workstation
(SiliconGraphics) which serves as front-end com-
puter for steering the CM-5 in the background, and
for displaying the scene and the calculated results.

2.2 The Algorithm

Parallelization on a MIMD architecture is achieved
by partitioning the given algorithm into indepen-
dent tasks, which are assigned to single processing
units. The purpose is, that all processors should
have a job at each time segment, none of them
should be idle anytime. Certain constraints have
to be taken into account, the limited local mem-
ory and the communication costs between tasks on
different processors.

We can think of the tasks as nodes of an undi-
rected graph. Communication between the tasks
is mimicked by the connections between the cor-
responding nodes. Nodes and connections are
weighted by the amount of time and the costs of
communication respectively to fulfill the whole job.

Instead of tasks one may assign data items to the
graph’s nodes. Then every single task is mapped to
a specific data item. For the parallelization of the
HR algorithm we assign the scene’s patches and the
links to single nodes of a graph. The connections
include the subdivision hierarchies of each surface.

{0} input BF_low

{1} initialize_graph()

{2} set BF_e = BF_low

{3} repeat

{4} repeat

{5} if (graph not balanced)
{6} graph_balance()

{7} repeat

{8} if (link BF > BF_e)
{9} subdivide_link()
{10} add_new_links_to_graph()
{11} else

{12} do_link()

{13} until (all links are done)
{14} push_pull()

{15} render ()

{16} until (converged)

{17} decrease BF_e

{18} until (BF_e < BF_low)

Figure 3: The Algorithm

Besides, every link is connected to its two corre-
sponding patches.

We map the task of subdividing a link and the
task of shooting energy along some link to the link’s
data item. The push-pull operation on a single
patch is mapped to the patch’s data item.

Now the HR algorithm can be thought of as a ma-

nipulation of a graph. The execution performance
depends on the actual distribution of the graph’s
nodes over the processors. For an efficient compu-
tation, tasks must be shared equally on the proces-
sors, the communication rate should be kept as low
as possible. So the weights of the nodes must be
equalized, while the weights of connections must be
minimized. Formalization of this problem is well
known as the graph-partitioning-problem (GPP).
Let’s define the following terminology:
A surface or blocker is a geometrical element which
appears in the initial scene. A patch is a unit on
which the simulation bases — energy is simulated
by its effect on other patches. A patchtree is built
from a surface and contains patches. From the
toppatch, the root, grow the the subdivided patches
(elements). The elements of the patchree (the sub-
division hierarchy for one surface) are connected by
branches. The flow of light from one patch to an-
other is led through a link.

Figure 3 shows the whole algorithm. In the fol-
lowing a detailed look on the various stages is done.

2.2.1 Graph Initialization {1}

From n surfaces, which define the geometry of the
scene, O(n?) inital interactions (links) are com-
puted and connected to the corresponding patches.
The links are distributed equally on the single pro-

cessors. Each processor contains a list of the sur-
faces. This garuantees fast access for visibility cal-
culations between elements later on. A subset of
the blockers (a candidate list) is stored for each link,
and a formfactor estimation is done.

2.2.2 Subdivision, Shooting {7..13}

If BF of a link is too strong, it needs to be sub-
divided. Four new links and four new patches are
created. The old link is deleted. The patch with
the larger area is subdivided, if its area is above
a certain boundary A.. Subdivision may be de-
manded repeatedly until BF' reaches a low limit
BF_e. To minimize communication between proces-
sors, the new elements are stored locally until the
final subdivision hierarchy for a patch is reached.
Then do_1ink() does the shooting of the energy
through the final links.

Information for a local task may lie on other
processors. These can be the patch geometry for
subdividing the links and patches, the energy after
propagation through links, or the element hierarchy,
which has to be updated for a local patch. Data re-
quests are sent to get these informations.

Data requests — Sending and receiving data from
other processing units requires a large amount of
time. The processors should not wait for a com-
munication result. Consequently the whole algo-
rithm is divided into subtasks, which can be com-
pletely executed without getting further informa-
tion from other units. All data from other proces-
sors is fetched before their start by sending requests
to other units. In this time the subtask is stored on
a local stack until the data has been received, and
other jobs can be started. A scheduler manages the
local stack and calls subtasks depending on incom-
ing messages and using the local subgraph.

Scheduling — Let’s define the following subtasks:
task test judges on the refine-decision of a link,
refine performs the subdivision of a link. the task
interact exchanges energy between two patches.
Communication is provided by the task search,
which looks for the location of data and sends re-
quests to other processors, if needed. fetch catches
data arrived from other units and assigns them to
its local requester. If the information is complete,
it starts the task, which was waiting for it.

For communication count the request-, answer-
and store-tasks. There are two approaches for de-
termining the priority of executing them, the pro-
ductive and the economical way. The first one
strives for fast execution on the processors and
tries to do the request-messages first. The second
one manages the store- and answer-messages first,

which almost update local data, such that stacks
are tidied, and messages in the network are lim-
ited. The size of the local stacks are the criterion
for switching between the two approaches.

2.2.3 Push-Pull {14}

After the subdivision is done all BF' have values be-
low BF, and shooting is done once. To repeat this
task, the energies have to be propagated through
the patch hierarchies.

To update the energy in between a patchtree, it
has to be traversed in deepest-descent order. While
one processor is working on a certain local part of
the tree, it could happen that it has to wait for the
complete traversal of another lower subtree which
is localized on another processor. As there are most
likely more subtrees than processors, deadlocks may
arise, if a requested subtree again lies on the same
processor. To avoid those deadlocks and to achieve
higher performance again we use the principle of
data requests and scheduling.

Data Requests — If data from another processor
is needed to manage a task, a request is sent. In-
stead of waiting, the task is put to a local stack and
other tasks are started, like starting traversals of
different hierarchies. The work on each surface hi-
erarchy can be seen as building Euler-circles, where
single segments are done on different processors.

Scheduling — There are the following principle
tasks which can be finished without further com-
munication if the data is available:

push-messages ask for a traversal of a subtree on an-
other processor. If patches of this subtree are locally
existent, they are moved on the wait-for-push-stack.
If a traversal is completed, the result is stored on the
wait-for-pull-stack and a pull-message is sent to the
requesting processor The priority of pull-messages
and and wait-for-pull-tasks is the highest, because
“open” Euler-circles should be finished as fast as
possible. This delimits the number of messages in
network.

2.2.4 Relaxing the inner loop

While application of the algorithm from figure 3 it
could be observed that the rigid scheme of the in-
ner loop ({4..16}) interferes with fast convergence.
The reason for repeated execution of the inner loop
with decreasing values of BF_e is the avoidance of
very unbalanced graphs and the acceleration of the
convergence of the simulation. But, starting with
many patches to refine, at the end there are only
few links that don’t fulfill the BF criterion; this
prevents fast convergence of the whole algorithm.

So, BF, is decreased on the fly if the follow-
ing conditions hold: The number of links that are
newly generated goes beyond a certain threshold
and the maximum intensity change during step {14}
is below a certain Bj,,, which in turn is greater
than B_e. The loop condition in {16} changes to
(approx. converged), so BF, is decreased faster.
An additional condition (converged) in step {18}
will ensure overall strict convergence.

2.2.5 Graph Balance {5,6}

During subdivision the graph is modified, and its
assignment on the processor network may not be
optimal for the execution of the algorithm. As this
problem is very complex to solve, some simplifica-
tions are introduced.

e Let’s assume that a good graph at a certain
time is also a sufficient solution for an efficient
continuation of the algorithm.

¢ As mentioned, finding a balanced graph is of
the same complexity as the GPP problem, a
suboptimal solution must suffice.

GPP — the Problem — Given is a graph G =
(V, E) with connection weights a,., € IR(J)r and node
weights g, € IRg . The problem is to find a disjoint
partition of V into p subsets Vi ...V}, such that

1
C=3 P

1<i<p

3)

is minimized and Wy = .- = W,, holds. C;j is the
sum of the connection weights between V; and all
other V., and W; is the sum of the node weights in
Vi;. As we want an approximation of the optimal
solution, the equality of the W; may be subsided to

(4)

Recall that the V; and the connection weights cor-
respond with the amount of work in the processing
units and the costs of communication respectively.

Wim...xW,

GPP — the Solution — A combination of sim-
ulated annealing [9] and clustering is used in this
work. The equation

7Z = lrglasxp (aC; + (1 —)W)

()
which is a built by combination of (3) and (4) to one
term, must be minimized by simulated anealing. «
is the relative importance of a good balancing com-
pared with cheap communication. Depending on

the size of the graph to be calculated on, a cluster-
ing precedes the simulated annealing. It is accom-
plished in the following manner: Starting at arbi-
trary nodes the graph is traversed on connections
with maximum weight. All passed nodes are added
to one cluster until a certain boundary is reached.
The resulting clusters are connected by the sum of
their connection weights, node weights of a cluster
are the sum of the inner node weights. Now, simu-
lated annealing is first applied on the new clustered
graph.

Simulated annealing tries to minimize the cost
function (5). It is accomplished by generating new
configurations of the problem (new graphs) and cal-
culating its expense. Depending on these costs a
configuration may be accepted or not. The crite-
rion for acceptance is important. The Metropolis-
algorithm [10] even allows for acceptance of worse
solutions with a probability that is decreased over
the whole process — the annealing.

The implementation in parallel is done by com-
puting new configurations on each single processor.
The information of the graph is placed on each pro-
cessor in a coded (compressed) form. The units
work indepently for a certain time, and decide the
acceptance of new configurations by their own. Af-
ter this sequence a certain processor selects one so-
lution from all existing solutions. This is sent to all
other processors and defines new common configu-
rations on which the processes continue their search
[1].

The graph balancing is only executed if there is
need for it. To become aware of this, the cost func-
tion could be calculated, but this is too expensive;
instead the idle time of the processors in steps {14}
and {7..13} is choosen for the criterion, if the graph
is balanced or not.

2.2.6 Rendering {15}

Rendering means sending the computation results
to the front-end workstation. This makes sense af-
ter each new calculation of the scene. New results
can be inspected at an early state and the user has
an intermediate impression. If the overall compu-
tation converges, the rendering quality increases.

2.3 Application, Tests, Results

Tests were done with a fixed set of parameters. Two
sample scenes were choosen. One of them is called
room the other floor. room contains 27 surfaces,
floor is built from combining 12 rooms. See figures
4 and 5.

For the test case the room gets 3300 elements and
23200 links. See table 1 for initial results. The re-

)

—1

Figure 4: “room” (27 polygons)

oV Ay | S —
\ﬁgﬁ@gﬁ"\“~?/
VW T

o

;
I
1

)

e

N

Figure 5: “floor” (289 polygons)

//\

1/

=

time (seconds)
init push- | sim.
proc. | graph | refine | pull ann. | sum
1 6 354 14 0 374
2 4 404 13 0 421
4 2 362 11 12 377
8 2 209 9 17 238
16 2 130 5 14 151
32 3 85 4 22 114
64 6 74 4 60 144

Table 1: time for calculatimg “room” up to 3300
elements and 23200 links

time (seconds)
init push- | sim.

proc. | graph | refine | pull ann. | sum
1 1134 | 1278 | 61 0 2473
2 644 1567 | 36 0 2247
4 349 1145 | 22 20 1536
8 189 508 11 25 733
16 110 392 9 25 536
32 68 271 7 32 378
64 53 170 6 67 296

Table 2: time for calculatimg “floor” up to 6380
elements and 56400 links

finement of the graph needs the most time. The
push-pull phase can nearly be neglected. The op-
timization of the graph (simulated annealing) be-
comes expensive if the number of processors is in-
creased.

We got better results for the floor-scene. The
time needed for the different phases is shown in
table 2. Especially the initialization of the graph
works well for this bigger scene.

Figure 6 shows the speed-up of the graph refine-
ment in floor. Figure 7 shows the speedup of the
sum of all calculation phases. That the acceleration
is not linear to the number of processors illustrates
that communication is the most time critical action.

With the massive communication costs in mind,
we sought the optimal distribution of a graph’s
nodes over the processors. We examined the
graph of the “room”-scene with 3300 elements af-
ter the calculation was completed. A very cautious
parametrized version of the simulated annealing al-
gorithm was applied to the graph. It turned out
that the resulting assignment of nodes of the graph
to processors, which required much more calcula-
tion time than the “normal” parametrized algo-
rithm, hardly exceeded the quality of the graph’s
distribution before this rearranging. So we think of
our graph balance algorithm as an almost optimal
algorithm.

Il

124 & 16 2 64
prozessors p
Figure 6: speed-up for the graph refinement in
“ﬂoor”
8t L
TP

T 124 8 16 2 64
processors p

Figure 7: speed-up for “foor” (all phases)

3 Conclusion

Hierarchical Radiosity works on a huge tree-like
data structure. This kind of algorithm seems to
be one of the most difficult problems for execution
on a MIMD computer, because of its non-local data
distribution. A lot of communication is needed and
slows the process down.

Making communication independent from the
computational tasks by storing tasks that need to
wait for data, while executing another job is one im-
portant criterion for getting an efficient implemen-
tation, as shown in this work. Another enhance-
ment is proven by redistributing the task-graph on
the processors after arriving at a certain job un-
equality on the single processing units. Simulated
annealing does this to minimize the communication,
while equalizing the amount of work on each pro-
Cessor.

The developed algorithm is scalable by simply
adding processing units to the underlying hardware
architecture. Although acceleration doesn’t corre-
spond in a linear way to the number of processors, a
significant increase has been proven, which delivers
a fast solution of the HR problem. Together with a
high-end graphics workstation, a good practicabil-
ity of HR is achieved.

Figures 8, 9, 10, 11 show a more complex sce-
nario. The initial geometry contained about 4000
polygons. Calculation produced about 939 000 links
and 30 000 elements and took about 104 minutes on
64 processors.

Future work — The massive communication costs
in mind and the experience, that our balance algo-
rithm can be thought of as nearly optimal under the
restriction of equal workload, duplication of data
seems to be reasonable. Any node of the graph on
a particular processor i, that is heavy-connected to
i’s and to a single other processor’s j nodes may
be copied (not moved) to j during the balance al-
gorithm, since moving the node again leads to high
communication costs. A deterministic heuristic op-
timization algorithm like [8] could be adapted for
this purpose. Of course this strategy will reach
memory limits quickly for very complex scenes, so
care must be taken at the decision between dupli-
cation and displacement.

Acknowledgement — We would like to thank
Heinrich Miiller for his valuable comments, Georg
Pietrek and Michael Pietsch for their work on the
front-end renderer, and Andreas Bleicher who was
strongly involved in modeling and rendering sample
scenarios.

References

[1] Aarts EH L, de Bont F M J, Habers E H A, van
Laarhoven P J M: “Parallel Implementations
of the Statistical Cooling Algorithm”, North
Holland INTEGRATION, the VLSI journal, 4,
1986.

[2] Cohen M F, Greenberg D P: “The Hemi-
Cube: A Radiosity Solution for Complex Envi-
ronment” Computer Graphics 19, 3, July 1985.

[3] Cohen F C, Wallace J R: “Radiosity and Re-
alistic Image Synthesis” Academic Press, Inc.,
Cambridge, Massachusetts, 1993.

[4] Gortler S, Schréder P, Cohen M F, Hanrahan P.
“Wavelet Radiosity” Computer Graphics (SIG-
GRAPH proceedings ’93), July 1993.

[5] Hanrahan P, Salzman D, Aupperle L: “A Rapid
Hierarchical Radiosity Algorithm”, Computer
Graphics (SIGGRAPH proceedings '91), July
1991.

[6] Heckbert P S, Winget J M: “Finite Element
Methods for Global Illumination”, Tech. Report
UCP/CSD 91/643, Computer Science Division
(EECS), University of Berkeley, July 1991.

[7] Kajiya J T: “The Rendering Equation”, Com-
puter Graphics (SIGGRAPH proceedings ’86),
August 1986.

[8] Kernighan B W, Lin S: “An efficient heuristic
procedure for partitioning graphs”, The Bell
System Technical Journal), February 1970.

[9] Kirkpatrick S, Gelatt Jr. C D, Vecchi M P: “Op-
timization by Simulated Annealing”, Science,
220, May 1983.

[10] Metropolis W, Rosenbluth A, Rosenbluth M,
Teller A, Teller E: “Equation of State Calcula-
tions by Fast Computing Machines”, J. Chem.
Phys., 1953.

[11] Schroder P, Gortler S J, Cohen M F, Hanra-
han P: “Wayvelet Projections for Radiosity”,
Proc. Fourth FEurographics Workshop on Ren-
dering, Eurographics, June 1993.

[12] Wallace J R, Elmquist K A, Haines E A: “A
Ray Tracing Algorithm for Progressive Radios-
ity”, Computer Graphics (SIGGRAPH proceed-
ings ’89), July 1989.

[13] Zatz H R: “Galerkin Radiosity: A Higher-
order Solution Method for Global Illumination”,
Computer Graphics (SIGGRAPH proceedings
'93), August 1993.

Figure 8:

Figure 9: The German Museum of Architecture in Frankfurt/Main

Figure 10:

Figure 11: Inside the German Museum of Architecture in Frankfurt/Main

10

