
On Artificial Intelligence and Motivation

in Computer Graphics Education

Christian-A. Bohn Jan Oliver Steinbach

Wedel University of Applied Sciences
Feldstraße 143, D–22880 Wedel, FR Germany

Tel. +49(0)4103/804840, E-Mail: bo@fh-wedel.de

Abstract
When educating artificial intelligence topics in the field of computer graphics, it has always
been a challenge to generate a sufficient amount of motivation for driving students to investi-
gate concepts of artificial intelligence to greater detail. From our experiences, this can often
be achieved if students are forced to implement their knowledge in a playful manner, i.e, to
implement applications which focus on fascinating instead of ”serious” results.
This work presents a re-implementations of two problems which have successfully been solved
by Karl Sims in the early 1990s [Sim91, Sim94]. The approaches use genetic algorithms (GA)
since solutions are driven by adjusting a huge set of abstract parameters which users are hardly
capable of tuning it interactively. Despite the fact that the problems to be solved can hardly be
applied in real world, the results are very interesting and inspiring and emphasize the fascinating
idea behind it.
The two ideas were, first, the automatic invention of abstract creatures consisting of connected
rigid bodies, which are capable of swimming under water efficiently, and second, the automatic
creation of aesthetic pictures. Both approaches are driven by the representation of the problem
under consideration by a genetic string and to let them evolve trough a GA. The first is led by
a fitness function which judges from motion velocity, the second takes the user’s taste as fitness
criterion by letting him decide which evolutionary transformations are applied at which selection
of individuals (pictures) from the actual generation.
Apart from the original works, we present new aspects of solving the problems described above.
These aspects focus on the optimization of the original algorithms, on increasing their flexibility,
and on their adaption to actual hardware.

Keywords: genetic algorithm, computer graphics, evolutionary computation, animation, mod-
eling, articulated figures, rigid body animation, image processing, textures



1 Introduction

Genetic algorithms (GA) were proposed by
John Holland in the 1970s and they are based
on Darwin’s theory of the Survival of the
Fittest. GA are a useful tool for iteratively
finding near-optimal solutions within an ar-
bitrary search space [Mit99]. They are usu-
ally applied to search spaces of vast dimen-
sions where it is hardly possible to find the
optimal solution due to the huge complexity
of deterministic search algorithms.
In contrast to classical techniques which take
a start vector and modify its components ac-
cording to a certain gradient criterion, GA
take a set of random vectors, take them as
genom strings, and let them develop by sim-
ulating evolution as it happens in nature, i.e.,
mimicking recombination of a pairs of vectors
and mutation of singles.
The vital challenges in realizing a genetic al-
gorithm are, first, to find a suitable coding of
the problem under consideration as a string-
like data structure similar to a genome string
— the genotype. Second, from the genotype
the phenotype — the ”real” solution of the
problem — has to be developed which of-
ten can be a very time-consuming procedure
since usually millions of evolutionary trans-
formations have to be accomplished until a
valuable solution has been found. Third, like
in nature, a fitness function is required which
judges from the quality of a phenotype if an
element from the set of solutions should be
selected for procreation to the next genera-
tion. For a more detailed description of ge-
netic algorithms we recommend [Mit99].

In the following, we describe two re-imple-
mentations of two problems which have suc-
cessfully been solved by Karl Sims in the
early 1990s [Sim94, Sim91]. The first GA
(section 2) is on inventing virtual creatures
consisting of connected rigid bodies. The
GA invents a body topology of a creature to-
gether with the motion mechanism in a way
that it is capable of swimming in an under

water environment efficiently (fitness crite-
rion). The second GA approach (section 3.1)
works on genoms which carry mathematical
expressions from which procedural pictures
are calculated. The fitness criterion in this
case is represented by the user who interac-
tively selects individuals from the actual gen-
eration.

2 Evolved Articulated Figures

In this section, creatures are developed, i.e.,
their bodies which are sets of connected rigid
bodies together with a specific neural net-
work which controls a creature’s movements
through stimulating virtual muscles. Here,
movement is focussed on swimming effectively
in an underwater-environment in a simulated
three-dimensional physical world.
We developed our algorithm by using the lan-
guage Haskell [Hud00] which is a pure func-
tional programming language based on lazy
evaluation. Graphics output was realized us-
ing HOpenGl which is a Haskell binding for
OpenGL. Haskell allows the definition of com-
plex data structures in a very simple and el-
egant way which — together with its out-
standing ability of function composition —
makes it the first choice as an implementa-
tion language for this application.

2.1 Genotype

2.1.1 Creature Morphology

The morphology of a creature is represented
by a directed graph. Each node relates to
a rigid body element and these elements are
connected by joints forming the whole body
of the creature. The graph enables efficient
parent-child-relationships like recursion and
symmetry between rigid bodies. Recursion is
needed if a node element reoccurs as one of
its own children (like limbs of a snake). Sym-
metry is used to duplicate an element sym-
metrically (for pairs of legs, arms, etc.). This
enables reusing a rigid body without creating



Figure 1: Example for a snake-like creature
with two legs at the last limb. The topology
is realized by only two real object instantia-
tions with several links for each rigid body.

a new object for each instance (see Figure 1
for example).
We define two types of joints which connect
rigid bodies of the creature: rotational and
translational, each of them with one degree of
freedom. Each joint has a specific force coef-
ficient which determines if a symmetric chil-
dren is affected in the same or in the oppo-
site manner (by a positiv or a negativ value).
For example, two wings of a flying bird are
assumed to being moved similar and in the
same direction whereas legs of a walking mon-
key move in opposite directions.
The graph is implemented as an n-dimen-
sional tree where each node is a singleton.
Duplicated nodes (due to recursion or sym-
metry) are not copied. Instead, links are
realized as imported attributes which con-
tain information about children, recursion,
and symmetry. From the Haskell’s point of
view, a children’s attribute is a list of tu-
ples: children = [(id, pos)] with the po-
sition pos of a certain child and its identi-
fier id. The recursion attribute is defined as
recursion = [(pos, scale)] which virtually
copies the node to pos and scales it accord-
ing to a coefficient scale. Symmetry is de-
fined as symmetry = [(id, axis)] where axis

defines the rotation centrum which is used
to generate the symmetric, second element.
The advantage of this concept is that every
node to be transformed during evolution pro-
cesses has to be transformed only one time,
i.e., in this case, duplications are avoided.
Every node stores information about the type
of joint connection to the parent’s body. It
defines the joint’s position (relative to the
node’s center of mass), its type, its main axis

and the according force coefficients. Addi-
tionally each joint has a mobility term which
limits its movement to a certain amount, like
joints in nature are limited by its maximum
muscles extent.

2.1.2 Creature Control

Every body element has a nested local neu-
ral network which controls muscles affecting
the child elements. Additionally, there is one
central neural network which may seen as the
creature’s brain. The whole neural system
consists of three different node types: sen-
sors, effectors, and neurons. A sensor gathers
information from the environment and passes
it to neurons and effectors. A neuron repre-
sents a mathematical function with several
inputs (from sensors or neurons) and calcu-
lates one output value which can be used as
an input for other neurons or effectors. An
effector is used to directly control a muscle.
Its output corresponds to the force acting on
a specific joint.
Implementation of node communication uses
relative identifiers. Every node of a local
network is able to communicate with local
nodes or the nodes of the brain. In Haskell,
the communication channel relId is defined
as a tuple: relId = (morphId, controlId)
where morphId references a body node and
the controlId references a node of a neural
network, i.e., (−2, n) references the nth node
of the brain, (−1, n) the nth node of the par-
ents’ neural network, (0, n) the nth node of
the same neural network, and (m, n) refer-
ences the nth node of the neural network of
child m.
Using relative references has the advantage
that, when applying evolutional processes,
they do not necessarily need to be updated if
the children of a rigid body node change. Ad-
ditionally, since a neuron’s function is imple-
mented as NeuralFunc :: [Double] → Double,
it is independent from its number of inputs,
i.e., after an evolution step functions are still
valid even without an explicit adaption pro-
cess.



Figure 2: Example for recombination of two
parent graphs.

2.2 Evolution of the Genotype

2.2.1 Recombination

A child arises from combining the genotype
of a pair of parent graphs. Recombination
combines topological elements of the crea-
ture body as well as their behavior. First, all
nodes of the parents’ graphs are numbered
according to an LR traversal. Then two ran-
dom values n and m are chosen and the first
n nodes of the first parent are taken while
the first n nodes of the second are dropped.
The taken nodes become the first part of the
child. After that m nodes of the second par-
ent are taken and m nodes of the first are
dropped.
This process continues until no nodes are left.
Every taken node is inserted at the same po-
sition in the child graph like it had in the par-
ent graph in order to guarantee that a child
of the root element remains child of this el-
ement, i.e., a leg remains a leg (see Figure 2
for an example).
After this, validity of the new creatures’ ref-
erences are proven. Children related attri-
butes of a body node have to be modified
if the number of child nodes has changed.
Since these attributes are lists, elements can
simply be removed or added. New list ele-
ments are created at random constrained by
an additional validity check.

2.2.2 Mutation

For each element in the body, probability
terms for mutation are defined. According to
them an element is either, first, deleted, sec-
ond, a child is added, or, third, the element is
modified. Whenever an element is removed
all references to them are also deleted. Modi-
fication of an elements’ attributes are divided
into the following six individual steps: mod-
ification of

1. joint axis and joint position,

2. body size,

3. joint mobility,

4. force coefficient,

5. recursion, and

6. symmetry.

Each of them underlies certain restrictions,
i.e., a predefined list of valid values are taken
for mutation only.

2.3 Phenotype

The morphology of the phenotype consists of
an n-dimensional tree of rigid bodies. In the
first step of the transformation of the geno-
type to the phenotype, the genotype tree is
expanded, i.e., every virtual node is instanti-
ated by (copied to) a real object.
The neural network is implemented as a list
together with a map storing the state of each
element of the network during simulation of
the creature’s movements. Thus, at each key
frame a phenotype of a creature is generated
by, first, the traversal of the tree and second,
by concurrently reading the state parameters
from the map.



Figure 3: An animation sequence (time in-
creases from left to right) of a creature gen-
erated by the presented GA approach.

2.4 Fitness Function

The amount of fitness of a creature is de-
termined by its velocity when moving un-
der water. The simulation is based on the
articulated body method [Fea87] which cal-
culates joint accelerations based on position,
velocity and external forces on a body. The
new positions and velocities of each body el-
ement are calculated by using the Runge-
Kutta-Nyström integration technique [Dan02].
Collision detection is realized using object
oriented bounding boxes [Par02].

3 Genetic Pictures

In our second example of ”playing with ge-
netic algorithms”, we developed a technique
to generate very complex, visually aesthetic
two-dimensional procedural images.
The main point in our work is that the ac-
cording procedures are generated by an evo-
lutionary process where the fitness function
is realized by the interaction of a user through
a graphical user interface (GUI). The user se-
lects pictures from a generation which ”look
nice” and these are used to create the next
generation.
We implement this technique on a usual PC
running a C++ development environment.
From our point of view, using C++, i.e., us-
ing its pointer mechanism, is the only pos-
sibility for implementing such an approach
efficiently. We give some hints for proving
this statement in the following. Also, in con-
trast to existing implementations, we chose
an object-oriented approach where each chro-

Figure 4: A genom evolving by head rota-
tion.

mosome is a single object connected through
pointers to other elements of the genotype.
Because of that and the strict distinction be-
tween genotype (data keeping) and pheno-
type (data analysis) we are able to keep any
modification of the genome on a constant
level through all generations.

3.1 Genotype

The genotype describes the whole genetic in-
formation of an individual, whereas the phe-
notype is the visual appearance of shape, col-
or and pattern determined by the genotype.
The genotype is represented by a genome
consisting of several chromosome strings with
constant length. Single chromosomes within
these strings are instantiated by mathema-
tical expressions as trees of different shapes
and sizes. A chromosome is the smallest unit
of the genetic code and consists of opera-
tions (function with n ∈ N0 arguments) or
constant values like constants, pixels posi-
tions, color codes, a pixel map, or gradients).
We limit procedure types to being constant
factors (ZeroArgChrom), one-argument oper-
ations (OneArgChrom), or two-argument op-
erations (TwoArgChrom). Examples related
to the number of parameters are

– ZeroArgChrom: constant values,
noise-, turbulence-, or ramp generators,

– OneArgChrom: absolute, sine, cosine,
swirl transformation,

– TwoArgChrom: plus, modulo, xor, warp-
swirl transformation.



Figure 5: Structure of a single chromosome
string with head size of 2.

Each chromosome string consists of a head
and a tail whereas the overall length of the
tail is t = h ∗ (n − 1) + 1 with h the length
of the head and n the number of arguments
of the chromosome with the highest num-
ber of arguments (see Figure 5). The head
may contain TwoArgChrom, OneArgChrom (n-
ArgChrom), as well as ZeroArgChrom whereas
the tail must contain ZeroArgChrom exclu-
sively. Chromosome strings are implicitly rep-
resented by ring lists.
Sims’ original technique is based on evalu-
ating and mutating symbolic expressions re-
turning a calculated color for each pixel co-
ordinate (x, y). In contrast, we decided to
formulate all imaging operations as functions
over the whole image by mapping scalar-,
vector-values, or pixel maps to a unique im-
age class.
Each genome may consist of part-evaluation
trees (chromosomes) of any size, shape and
complexity which contain unused nodes (see
Figure 6). Such evaluation trees arise from
the evolutionary process of dividing and reor-
ganizing chromosomes like they were strings
without any internal semantics.
Unused information in a chromosome string
does not influence the actual phenotype but
it may influence later generations if it be-

Figure 6: Example of a partial evaluation
tree where the outer right chromosome is un-
used.

Figure 7: An entire genome with a head size
of two and three chromosome strings. The
string on the top carries two PreHeader chro-
mosomes which both are active, in the mid-
dle and on the bottom, two partial chromo-
some strings are exposed, the lowest of them
is completely inactive.

comes an active part of a chromosome string
(”coding chromosomes”, see Figure 6).
Individual chromosome strings are connected
by a so-called PreHeader, which is a ring con-
sisting of head chromosomes (the root tree
of the genome). The chromosomes of the
PreHeader can be seen as another ring which
contains all chromosome strings belonging to
a certain genome (see Figure 7).

3.2 Phenotype

The phenotype is the result of a walk through
the genome’s expression tree, beginning with
the root, i.e., evaluating the functional term
which the tree defines. Like in nature, indi-
viduals vary in shape, color, and pattern only
due to the order and structure of the chromo-
somes. Each evaluated chromosome returns
either a scalar (grey scale value), a vector
(RGB value), or a matrix (pixel map). To
guarantee validity of the input parameters
of a certain function, all functions are de-
fined in a way that they deliver a data type
which equals the most complex type of its in-
put data. Thus, a function of a matrix and
a scalar delivers a matrix, whereas a vector
and a scalar as inputs results in a vector as



output.

3.3 Evolution of the Genotype

3.3.1 Mutation

Mutation generates new genotypes from a
single selected parent by either rearranging
the order of chromosomes or by substitution
of one or more chromosomes in a randomly
chosen chromosome string. Since our fitness
function is represented by the user, he will
decide about the genom which will mutate
and how it will change its chromosomes. The
user can chose one of the following opera-
tions.

– Transposition: Two randomly selec-
ted chromosomes within one chromo-
some string (without the root) are ei-
ther interchanged or the first chromo-
some is replaced by a clone of the sec-
ond chromosome. To maintain consis-
tency of the resulting strings both se-
lected chromosomes must remain either
part of the head or of the tail.

– Root Transposition: The first chro-
mosome of a selected chromosome string
(root) is replaced either by a second
randomly selected chromosome of the
head of the same string or by a clone
of the second chromosome.

– Substitution: A randomly selected
chromosome of a chromosome string is
replaced by a another randomly gener-
ated chromosome according to the first
chromosomes’ location (head or tail).

– Head/Tail Rotation: A chromosome
string is separated into two individual
strings of only head and of only tail
chromosomes. Then, one of these is ro-
tated several times in advance to put-
ting both together again forming a sin-
gle chromosome string.

Figure 8: Substitution followed by a tail ro-
tation.

3.3.2 Recombination

Recombination obtains a new genotype from
two user-selected parents’ genotypes and it
results in two child individuals with mixed
genetic information from both parents. Here,
the user may chose between three different
ways of recombination as follows.

– Crossover: One position inside of a
pair of chromosome strings is chosen
which divides both chromosome strings
in a head and a tail part. Then, head
and tail of the two strings are inter-
changed. The two newly generated chro-
mosome strings inherit features of both
parent strings. To avoid emphasizing
properties of one parent, crossover can
be repeated with a different head and
tail separation.

– Random Copy: Two individual chro-
mosomes at arbitrary positions in each
chromosome string are selected and co-
pied into the child’s chromosome string.

– Random Interpolation: Two chro-
mosomes are selected from two strings

Figure 9: Head rotation followed by transpo-
sition.



Figure 10: The GUI for choosing mutation
or recombination.

and linearly interpolated, where the in-
terpolation parameter is determined at
random.

3.4 Fitness Function

The program was written using the Qt-library
as user interface. Figure 10 shows a screen
shot of the GUI which enables the user to act
as the fitness function of the evolution.

Figure 11: Random copy between the pair
of images on the left resulting in the right
column of pictures.

4 Results and Summary

We presented two implementations which ex-
pose the fascinating facilities typical in most
GA approaches.

4.1 Evolved Articulated Figures

In section 2, a system is described that gen-
erates three-dimensional creatures which are
able to swim under water. This process is to-
tally autonomous. No user efforts are needed.
The presented data structure for describing
the genotype provides virtually unlimited pos-
sibilities concerning variations of body shape
and behavior. Figure 3 shows a creature which
was developed by the presented GA. Four key
frames of a swimming animation are exposed.
Further experiments led to several interesting
results concerning the facilities of the GA.
Although the algorithm runs automatically it
seems to be strongly depending on the user’s
initial parameter settings. For example, a
vital parameter is the ratio of crossover and
mutation operations. On the one hand, fre-
quent usage of mutation should support fast
development of complex topologies and be-
haviors, but, on the other hand, this tends
to destroy complex patterns of behavior.
Another parameter that has huge influence
on getting satisfying results is the probabil-
ity of modifying elements during mutation.
Whereas varying only a few values has a lit-
tle effect on the evolution, modifying many
can stop evolution by destroying reasonable
development progresses. Thus, creatures of
a new population are usually not more suc-
cessful than its predecessors.
Other fascinating discoveries arise from the
kind of the GA’s handling of programming
mistakes in the physical simulation. Block-
ing mobility of joints lead, for example, to
creatures which use their legs like propellers.
Concerning future work, there are various
possibilities for improvement of the presented
system. Most important seems to be the
implementation of more complex joint types
with more than one degree of freedom. For



Figure 12: One point crossover between the
two images on the left resulting in the images
on the right. Only the phenotype of the lower
picture is modified.

example, with the actual implementation cre-
atures are hardly able to move with constant
velocity since body elements that generate
repulsion forces can not be rotated for re-
ducing dragging when pulling them back.

4.2 Genetic Pictures

Figures 4 through 13 expose some pheno-
types generated by the approach from section
3.1. Although these images cannot be seen
as a prove of the genetic operations, some
picture seem to expose a connection between
the phenotype and the evolutionary transfor-
mations.
The described techniques of storing, repre-
senting and manipulating genetic informa-
tion for procedural texture generation allows
for a wide variety of unique individuals on
a high level of possible image characteris-
tics. The flexible mechanism of chromosome
strings which form separate partial evalua-
tion trees capable of being arranged and com-
bined to more complex structures, enables
simple extensibility by new modification rou-
tines and chromosomes.

Figure 13: On the right, two interpolations
between the left pair of images.

4 References

[Dan02] Jürgen Dankert. Numerische meth-
oden. World Wide Web, 2002.
Hamburg University.

[Fea87] Roy Featherstone. Robot Dynamics
Algorithms. Kluwer Academic Pub-
lishers, Norwell, 1987.

[Hud00] Paul Hudak. The Haskell School of
Expression. Cambridge University
Press, Cambridge, 2000.

[Mit99] M. Mitchell. An introduction to ge-
netic algorithms. 1999.

[Par02] Rick Parent. Computer Animation.
Morgan Kaufmann Publishers, San
Francisc, 2002.

[Sim91] K. Sims. Artificial evolution of
computer graphics. ACM SIG-
GRAPH ’91 Conference Proceed-
ings, 25(4):319–328, 1991.

[Sim94] K. Sims. Evolving virtual creatures.
Computer Graphics, Annual Con-
ference Series, siggraph, pages 15–
22, 1994.


