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ABSTRACT

We present a new kind of representation of three-dimensional virtual geometries, which is realized
through the internal structure of an artificial neural network.

Based on this representation we propose an alternative to a finite element algorithm coming from
the field of computer graphics, termed radiosity, which calculates the global light flow in virtual
environments.

Like many finite element methods, radiosity adheres to the problem of finding an optimal meshing of
the domain under consideration. We leave this to the self-organization capabilities of an incremental
growing cell structures network. Sets of light rays are taken as training samples and generate a
topology of radial basis functions, which finally is interpreted as a “neural mesh” for a finite element
computation.
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INTRODUCTION

An important direction in the field of computer graphics focuses on the question: given a database
defining a set of three-dimensional virtual objects and light sources, which color would each virtual
surface point have if surfaces and light sources were real, and if the arrangement is observed from
a specific view point. In this context, color is not only determined by light sources, but also by
indirect illumination of light refracted from the objects in the environment.

Global illumination algorithms try to calculate this information by simulating the flow of light
due to its physical behavior formulated by two relationships — the bidirectional reflection distribu-
tion function (BRDF), on one hand, which describes the reflection properties of the objects’ surface
points, and the rendering equation, on the other hand [1], which defines the propagation of light
between separate instantiations of BRDFs.

The BRDF on a certain point is a four-dimensional function of the incident and reflected direc-
tion of light. Due to the amount of possible BRDF instantiations to guarantee an adequate result,
approximations of the BRDF and the rendering equation are required. One one hand, these approx-
imations should reduce the amount of computing power to a practicable level, on the other hand,
they have to be chosen carefully, since they reduce the accuracy of the results, i.e., they decrease
the quality of the generated pictures, in the sense that their degree of realism is diminished.

Radiosity algorithms are a widely accepted kind of those approximation methods, since they
deliver a good compromise between quality and required computing resources.



Fig. 1: The pictures to the right are photographs taken at the museum of architecture in Frankfurt,
those to the left are radiosity computer simulations of a museum model.

First, the surfaces’ BRDFs are simplified to just a coefficient p € R which defines how much energy
is absorbed regardless of the incoming and outgoing directions of light; its physical interpretation is
the limitation of the environment to ideal diffuse reflecting and emitting objects only. Second, the
light flow is approximated by a finite element method (FEM) which utilizes coherence in the light
transfer by computing “certain averages over similar light rays”. An illustrating result calculated
by a radiosity approach can be seen in figure 1.

Through the diffusely defined BRDF, the rendering equation is written as the radiosity integral
equation,

B(j) = B + /S K(7,§) B(@)d7, (1)
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B : R? — R denotes a continuous function which delivers the intensities' of points 7 € R? on the
surface set S defining the three-dimensional environment. The kernel operator K : R? x R? — R
describes the effects concerning the light transfer, which an emitter point # € R? bears on a
receiving point 4. It is defined by a physically determined light transfer function G : R? x R? — R,
¢z and ¢y are angles between the surface normals at ¥ and ¢ and the connecting line from & to ¥,
T3y is the distance between 7 and . V : R3 x R3 — {1,0} is called the wisibility term which delivers
the value 1 if Z and ¢ are mutually visible, i.e., not occluded by other objects, otherwise zero. The
reflection coefficient p (the diffuse BRDF) determines the amount of energy which is absorbed by
refraction on a surface point, and E : R® — R stands for the energy which a surface point emits in
case of being a light source.

To solve equation (1) it is considered a Fredholm integral equation of the second kind. The operator
K weighs and accumulates the radiosity B on the surfaces defining the amount of energy which
receives on the surface points from the whole geometry. Multiple applications of &, which can
be seen as multiple separate reflections of light on surfaces, deliver the finite Neumann series
B=(I+)} K" E which converges due to the definition of K.

For an approximate solution equation (1) is transformed into its FEM representation, commonly
done by cutting the surface domain § into N subpatches and assuming one value b;,7 = 1.. N as
an average intensity defined on the area of the corresponding patch. The continuous functions B,
E, and K change to their discrete approximations b;, e;, and k;;, i,7 = 1.. N, and the radiosity
integral equation (eq. 1) to its discrete summation 2

'The computation of one intensity value delivers monochrome results. To account for the whole spectrum, radiosity
approaches commonly calculate three different color bands separately and combine the results to a colored picture.

2FEM and radiosity approaches commonly split the domain under consideration into a set of certain base functions.
Thus, a subpatch with constant radiosity can be seen as boz base function over the range of the subpatch. Regarding
general bases, radiosity approaches can be considered from a more principal view, i.e., higher order bases [2] can be
applied to reduce the number of coefficients, since they account for the color bleeding with its shape. Also hierarchical
bases have successfully been used [3]. To keep this work comprehensive, we limit our considerations to just examining
coefficients.
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Thus, the transfer function changes to separate transfer coefficients k;; which are calculated by
numerical integration (eq. 4) over the expansion of each pair of patches,

kij Z//K(f,ﬁ) dZ dij, i,j=1.N. (4)

To solve equation (3) a great variety of relazation methods can be applied such as Jacobi, or
Gauss-Seidel iteration. Detailed information can be found in [4, 5].

CHALLENGE

Finding an efficient FEM representation for radiosity is driven by the search for an adequate FEM
meshing, i.e., the number, the location, and the size of the subpatches to be generated have to be
determined. This is crucial, since the number of subpatches, N, commonly equals several thousands
and leads to O(N?) coefficients k;; (eq. 4). The amount of memory and computing resources
to calculate and to memorize these coefficient is generally the limitation of almost all radiosity
approaches. Thus, the primal aim should be to keep the number of coefficients k;; as small as
possible, in other words, to find an approximation of the operator K by discrete coefficients which
is as little redundant as possible.

Generally, the coherence of K has to be detected and utilized for an approximation model which
additionally is suitable to be transformed into a system like equation (3) for a numerical solution
of equation (1).

Classical radiosity approaches mostly deal with the problem that the development of such an
approximation is driven by regarding the geometrical definition of separate surfaces. A pair of
surfaces defines a subspace of the domain of I, and thus, a coherence analysis is limited locally
to each pair of these separate subspaces. The reason for this narrow coherence analysis is the
difficulty to find an analytical model which is capable of handling sets of separate geometrical
defined surfaces.

Since common virtual geometries contain several thousands of surfaces, and thus, several millions
of default partitions of K, the coherence analysis through classical radiosity approaches turned out
to be inefficient in that sense. Consider, for example, two walls defined each by a hundred of small
patches. Although its effect concerning the light transfer is quite unique, the kernel approximation
will consist of 10000 default coefficients.

The following algorithm transforms three-dimensional geometrical data into a representation suit-
able for a general coherence analysis.

ALGORITHM

Analyzing coherence commonly leads to the term self-organizing artificial neural networks. Due to
its inherent learning capabilities which are superior in analyzing systems that can not, or hardly
be modeled analytically, we apply a recent development in this area, the incremental supervised
growing cell structures (ISGCS) [6]. It is derived from Fritzke’s supervised growing cell structures
(SGCS) [7] which can be seen as an alternative to the classical Kohonen self-organizing map (SOM)
[8]. Both are able to adapt their internal structure to the distribution of input samples (clustering).
SGCS are also suitable for being trained by supervision. They have been extended by the ISGCS
approach which is additionally capable of automatically resampling the input domain according to
the approximation accuracy and the clustering task [6], and of accounting for the coherence of a
continuous goal function.

We approximate the light transfer operator I by an ISGCS trained by sample instantiations of
K — single six-dimensional “rays” (start and endpoints #, i € R?). The output of the network is
supervised by the according function value of K. During training, the domain of possible rays is
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Fig. 2: A two-dimensional goal function (a), the approximation by a two-dimensional ISGCS (d),
its topology (b) and sample distribution (c).

resampled to increase the sample distribution at locations of highly varying light transfer (impor-
tance sampling). After training, the ISGCS deliver an approximation model for . Due to the
self-organization facilities of the ISGCS the efficiency of the resulting model is nearly optimal.
The internal network structure is a set of radial basis functions (RBF) which are created through
a self-organizing evolutionary growth process. The RBFs, located at six-dimensional centers of ray
clusters from the input domain, can be seen as reference rays and are interpreted as coefficients k;;
(eq. 4). 3 In the following we roughly explain the general features of growing cell structures.

Incremental supervised growing cell structures

An ISGCS network contains two layers. The first is instantiated by a set of n-dimensional radial
basis functions called cells, the second accumulates each of the output activations of the RBFs to
form the m-dimensional output vector of the network. It realizes a function f : R" — R™ which
serves as an approximation of a goal function f : R® — R™. At each state of the training process
the network generalizes the function f over its input space to a certain accuracy.

An important feature of SGCS is the combination of supervised and unsupervised learning through
different learning strategies for the first and the second layers. The network is trained by presenting
input/output pairs (£,¢) € (R” x R™). The unsupervised part is accomplished by moving the cells
of the first layer according to the input £ to find centers of clusters in the input data. Concurrently,
the second layer is adapted to deliver the intended output (.

Moving the RBFs also accounts for a neighborhood relation between the single cells. It creates a
topological structure of predefined dimensionality k£ on the training data. In the two-dimensional
case, the final network of RBF's depicts a map of reference cells, similar to Kohonen’s self-organizing
feature map. Generally, the network consists of a mesh of predefined basic elements, such as
triangles, quadrilaterals, tetrahedrons, etc., according to the underlying k.

Each cell of the network contains a resource term which holds particular information about the
samples presented to the network. It delivers a local compound information about the training
accuracy and sample distribution, and it is utilized to insert or to delete cells from the network.
The ISGCS grows at locations with a high resource term and shrinks at places where the resource
term signalizes a sufficient approximation accuracy.

In the ISGCS approach, the resource term is also used for a resampling strategy. Resampling
should avoid selecting too many initial samples from the goal function f in order to circumvent
undersampling at locations where the goal function’s shape is highly varying. A high resource
term shows a low local approximation accuracy, i.e., a locally insufficient representation by training
samples (low coherence of the goal function). Resampling is done by randomly generating new
input samples which are evaluated only if they lie in a high resource term place and added to the
training sample set. For detailed explanations see [7, 9, 6, 10].

Figure 2 shows an example two-dimensional network trained with a two-dimensional goal function
(fig. 2a). The network structure (fig. 2b) and sample distribution (fig. 2c) clearly accounts for the
coherence of the goal function, and the network delivers the approximation in figure 2d.

3The interpretation as coefficients requires some further considerations neglected in this work. See [9] for details.
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Fig. 3: (a) shows a two-dimensional exemplary geometry, figure (b) visualizes the light transfer
goal function K, (d) its approximation by the ISGCS and (c) the final distribution of RBFs.

RESULTS

Due to a convenient visualization, in the following we refer to two-dimensional geometries. Surfaces
change to one-dimensional lines defined in a two-dimensional space. The geometrical term G (eq.
2) changes to G(Z, %) = cos ¢z cos ¢/ (2mrzy). The network consists of four-dimensional reference
RBF's which cluster four-dimensional rays between a pair of two-dimensional points.

Figure 3a shows a two-dimensional geometry defined by four lines. A visualization of the kernel
operator K can be seen in figure 3b. Start and end points (Z, 7/ € R?) of one ray are drawn according
to the one-dimensional axes. The position of a point is determined by a reparameterization on the
one-dimensional line space of the geometry. In this parameterization, the edges of the scene are
represented by consecutive sub-intervals of the interval [0,1]. A parameter value x € [0, 1] uniquely
identifies an edge and a point on it. A pair of points as required for the kernel is given by two
parameter values s and ¢. Thus the kernel can be considered a real function over the unit square
in the s-t-coordinate system. The assignment of the edges to intervals is arbitrary.

The kernel is weighted by the emitter’s energy, shown through the darker area at the upper right of
figure 3b. Here, one can also observe the bright fissure which comes from the effect of the blocker
in figure 3a.

The approximation of the kernel goal function through the ISGCS can be seen in figure 3d. The
distribution of RBF's is plotted in figure 3c. It is clearly shown that the distribution of RBFs is
strongly related to the kernel coherence and thus efficient. The distribution of RBFs is generated
independently of the real geometry, i.e., even in case of having several hundreds of surfaces defin-
ing the principle four lines from figure 3a — a very common case for modeling programs — the
distribution of RBFs and the approximation accuracy would be equal. The approximation does
not depend on the geometry definition due to the examination of the geometry by single rays.
Coherence is detected without accounting for surface boundaries.

Figure 4a shows a result from the simulation of one reflection through the radiosity equation. In
the foreground the analytically calculated kernel K is used, in the background the ISGCS approxi-
mation. For the visualization a two-dimensional geometry is spread to three dimensions by creating
areas with a constant z-component from the two-dimensional lines. Blockers are marked by the
grey frames in front of the surfaces and generate the shadow effects on the surfaces.

Figures 4b,c show a three-dimensional geometry, computed by a six-dimensional ISGCS. The light
source is not displayed. The black frame stands for the blocker which causes the shadow on the
wall. Figure 4b is calculated by the analytical kernel, figure 4c¢ by the ISGCS approximation.

CONCLUSION

We have presented a new efficient representation of three-dimensional geometrical environments by
an incremental supervised growing cell structures network.

The representation is designed to optimize the solution of the radiosity method which calculates the
global illumination of virtual three-dimensional environments. Basically, radiosity is a finite element
problem, and we explained how the proposed representation can be interpreted as the according
finite element meshing. This enables the detection of global coherences of the light transfer, which
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Fig. 4: The kernel approximation applied to calculate the light transfer. (a) shows a two-
dimensional scene spread to three-dimensions (four-dimensional ISGCS input), in the foreground
the analytically calculated shading, in the background the geometry calculated with the ISGCS
approximation. (b) and (¢) show the same for a three-dimensional scene (six-dimensional ISGCS
input). Light sources are not displayed. Blockers are marked by a frame in the foreground.

is a problem of classical radiosity approaches since they only account for the coherence of the light
transfer between single surfaces.

This approach leads to a very compact representation of the global light flow and enables a fast
calculation of huge three-dimensional environments due to the finite element meshing through a
“neural mesh”.

REFERENCES

[1] James T. Kajiya. The rendering equation. In David C. Evans and Russell J. Athay, editors,
Computer Graphics (SIGGRAPH ’86 Proceedings), volume 20, pages 143-150, August 1986.

[2] Harold R. Zatz. Galerkin radiosity: A higher order solution method for global illumination.
In Computer Graphics Proceedings, Annual Conference Series, 1993, pages 213-220, 1993.

[3] Steven J. Gortler, Peter Schroder, Michael F. Cohen, and Pat Hanrahan. Wavelet radiosity.
In Computer Graphics Proceedings, Annual Conference Series, 1993, pages 221-230, 1993.

[4] Michael F. Cohen and John R. Wallace. Radiosity and Realistic Image Synthesis. Academic
Press Professional, San Diego, CA, 1993.

[5] Frangois Sillion and Claude Puech. Radiosity and Global Illumination. Morgan Kaufmann,
San Francisco, 1994.

[6] Christian-A. Bohn. An incremental unsupervised learning scheme for function approximation.
In Proceedings of the International Conference on Neural Networks (ICNN’97), Houston, June
1997.

[7] Bernd Fritzke. Growing cell structures - a self-organizing network for unsupervised and super-
vised learning. Technical Report ICSI TR-93-026, International Computer Science Institute,
Berkeley, CA, May 1993.

[8] Teuvo Kohonen. Self-organized formation of topologically correct feature maps. Biological
Cybernetics, 43, pages 59-99, 1982.

[9] Christian-A. Bohn. Efficiently representing the radiosity kernel through learning. In Xavier
Pueyo and Peter Schroder, editors, Rendering Techniques ’96, pages 123-132, Wien, Austria,
1996. Springer-Verlag Wien.

[10] Christian-A. Bohn. Finite element mesh generation using growing cell structures networks. In
Proceedings of the International Conference on Engineering Applications of Neural Networks
(EANN °97), Stockholm, June 1997.



