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ow in virtualenvironments.Like many �nite element methods, radiosity adheres to the problem of �nding an optimal meshing ofthe domain under consideration. We leave this to the self-organization capabilities of an incrementalgrowing cell structures network. Sets of light rays are taken as training samples and generate atopology of radial basis functions, which �nally is interpreted as a \neural mesh" for a �nite elementcomputation.KEYWORDSArti�cial neural networks, incremental growing cell structures, radial basis functions, self organi-zation, computer graphics, global illumination, radiosity, rendering.INTRODUCTIONAn important direction in the �eld of computer graphics focuses on the question: given a databasede�ning a set of three-dimensional virtual objects and light sources, which color would each virtualsurface point have if surfaces and light sources were real, and if the arrangement is observed froma speci�c view point. In this context, color is not only determined by light sources, but also byindirect illumination of light refracted from the objects in the environment.Global illumination algorithms try to calculate this information by simulating the 
ow of lightdue to its physical behavior formulated by two relationships | the bidirectional re
ection distribu-tion function (BRDF), on one hand, which describes the re
ection properties of the objects' surfacepoints, and the rendering equation, on the other hand [1], which de�nes the propagation of lightbetween separate instantiations of BRDFs.The BRDF on a certain point is a four-dimensional function of the incident and re
ected direc-tion of light. Due to the amount of possible BRDF instantiations to guarantee an adequate result,approximations of the BRDF and the rendering equation are required. One one hand, these approx-imations should reduce the amount of computing power to a practicable level, on the other hand,they have to be chosen carefully, since they reduce the accuracy of the results, i.e., they decreasethe quality of the generated pictures, in the sense that their degree of realism is diminished.Radiosity algorithms are a widely accepted kind of those approximation methods, since theydeliver a good compromise between quality and required computing resources.



Fig. 1: The pictures to the right are photographs taken at the museum of architecture in Frankfurt,those to the left are radiosity computer simulations of a museum model.First, the surfaces' BRDFs are simpli�ed to just a coe�cient � 2 R which de�nes how much energyis absorbed regardless of the incoming and outgoing directions of light; its physical interpretation isthe limitation of the environment to ideal di�use re
ecting and emitting objects only. Second, thelight 
ow is approximated by a �nite element method (FEM) which utilizes coherence in the lighttransfer by computing \certain averages over similar light rays". An illustrating result calculatedby a radiosity approach can be seen in �gure 1.Through the di�usely de�ned BRDF, the rendering equation is written as the radiosity integralequation, B(~y) = E(~y) + ZS K(~x; ~y)B(~x)d~x; (1)with K = � �G � V; and G(~x; ~y) = cos�~x cos�~y�r2~x~y : (2)B : R3 ! R denotes a continuous function which delivers the intensities1 of points ~y 2 R3 on thesurface set S de�ning the three-dimensional environment. The kernel operator K : R3 � R3 ! Rdescribes the e�ects concerning the light transfer, which an emitter point ~x 2 R3 bears on areceiving point ~y. It is de�ned by a physically determined light transfer function G : R3 �R3 ! R,�~x and �~y are angles between the surface normals at ~x and ~y and the connecting line from ~x to ~y,r~x~y is the distance between ~x and ~y. V : R3�R3 ! f1; 0g is called the visibility term which deliversthe value 1 if ~x and ~y are mutually visible, i.e., not occluded by other objects, otherwise zero. There
ection coe�cient � (the di�use BRDF) determines the amount of energy which is absorbed byrefraction on a surface point, and E : R3 ! R stands for the energy which a surface point emits incase of being a light source.To solve equation (1) it is considered a Fredholm integral equation of the second kind. The operatorK weighs and accumulates the radiosity B on the surfaces de�ning the amount of energy whichreceives on the surface points from the whole geometry. Multiple applications of K, which canbe seen as multiple separate re
ections of light on surfaces, deliver the �nite Neumann seriesB = (I +PlKl)E which converges due to the de�nition of K.For an approximate solution equation (1) is transformed into its FEM representation, commonlydone by cutting the surface domain S into N subpatches and assuming one value bi; i = 1 :: N asan average intensity de�ned on the area of the corresponding patch. The continuous functions B,E, and K change to their discrete approximations bi, ei, and kij; i; j = 1 :: N , and the radiosityintegral equation (eq. 1) to its discrete summation 21The computation of one intensity value delivers monochrome results. To account for the whole spectrum, radiosityapproaches commonly calculate three di�erent color bands separately and combine the results to a colored picture.2FEM and radiosity approaches commonly split the domain under consideration into a set of certain base functions.Thus, a subpatch with constant radiosity can be seen as box base function over the range of the subpatch. Regardinggeneral bases, radiosity approaches can be considered from a more principal view, i.e., higher order bases [2] can beapplied to reduce the number of coe�cients, since they account for the color bleeding with its shape. Also hierarchicalbases have successfully been used [3]. To keep this work comprehensive, we limit our considerations to just examiningcoe�cients.



8j : bj = ej + NXi=1 kijbi: (3)Thus, the transfer function changes to separate transfer coe�cients kij which are calculated bynumerical integration (eq. 4) over the expansion of each pair of patches,kij = ZZ K(~x; ~y) d~x d~y; i; j = 1 :: N: (4)To solve equation (3) a great variety of relaxation methods can be applied such as Jacobi, orGauss-Seidel iteration. Detailed information can be found in [4, 5].CHALLENGEFinding an e�cient FEM representation for radiosity is driven by the search for an adequate FEMmeshing, i.e., the number, the location, and the size of the subpatches to be generated have to bedetermined. This is crucial, since the number of subpatches, N , commonly equals several thousandsand leads to O(N2) coe�cients kij (eq. 4). The amount of memory and computing resourcesto calculate and to memorize these coe�cient is generally the limitation of almost all radiosityapproaches. Thus, the primal aim should be to keep the number of coe�cients kij as small aspossible, in other words, to �nd an approximation of the operator K by discrete coe�cients whichis as little redundant as possible.Generally, the coherence of K has to be detected and utilized for an approximation model whichadditionally is suitable to be transformed into a system like equation (3) for a numerical solutionof equation (1).Classical radiosity approaches mostly deal with the problem that the development of such anapproximation is driven by regarding the geometrical de�nition of separate surfaces. A pair ofsurfaces de�nes a subspace of the domain of K, and thus, a coherence analysis is limited locallyto each pair of these separate subspaces. The reason for this narrow coherence analysis is thedi�culty to �nd an analytical model which is capable of handling sets of separate geometricalde�ned surfaces.Since common virtual geometries contain several thousands of surfaces, and thus, several millionsof default partitions of K, the coherence analysis through classical radiosity approaches turned outto be ine�cient in that sense. Consider, for example, two walls de�ned each by a hundred of smallpatches. Although its e�ect concerning the light transfer is quite unique, the kernel approximationwill consist of 10000 default coe�cients.The following algorithm transforms three-dimensional geometrical data into a representation suit-able for a general coherence analysis.ALGORITHMAnalyzing coherence commonly leads to the term self-organizing arti�cial neural networks. Due toits inherent learning capabilities which are superior in analyzing systems that can not, or hardlybe modeled analytically, we apply a recent development in this area, the incremental supervisedgrowing cell structures (ISGCS) [6]. It is derived from Fritzke's supervised growing cell structures(SGCS) [7] which can be seen as an alternative to the classical Kohonen self-organizing map (SOM)[8]. Both are able to adapt their internal structure to the distribution of input samples (clustering).SGCS are also suitable for being trained by supervision. They have been extended by the ISGCSapproach which is additionally capable of automatically resampling the input domain according tothe approximation accuracy and the clustering task [6], and of accounting for the coherence of acontinuous goal function.We approximate the light transfer operator K by an ISGCS trained by sample instantiations ofK | single six-dimensional \rays" (start and endpoints ~x; ~y 2 R3 ). The output of the network issupervised by the according function value of K. During training, the domain of possible rays is



d)a) c)b)Fig. 2: A two-dimensional goal function (a), the approximation by a two-dimensional ISGCS (d),its topology (b) and sample distribution (c).resampled to increase the sample distribution at locations of highly varying light transfer (impor-tance sampling). After training, the ISGCS deliver an approximation model for K. Due to theself-organization facilities of the ISGCS the e�ciency of the resulting model is nearly optimal.The internal network structure is a set of radial basis functions (RBF) which are created througha self-organizing evolutionary growth process. The RBFs, located at six-dimensional centers of rayclusters from the input domain, can be seen as reference rays and are interpreted as coe�cients kij(eq. 4). 3 In the following we roughly explain the general features of growing cell structures.Incremental supervised growing cell structuresAn ISGCS network contains two layers. The �rst is instantiated by a set of n-dimensional radialbasis functions called cells, the second accumulates each of the output activations of the RBFs toform the m-dimensional output vector of the network. It realizes a function ~f : Rn ! Rm whichserves as an approximation of a goal function f : Rn ! Rm . At each state of the training processthe network generalizes the function f over its input space to a certain accuracy.An important feature of SGCS is the combination of supervised and unsupervised learning throughdi�erent learning strategies for the �rst and the second layers. The network is trained by presentinginput/output pairs (�; �) 2 (Rn �Rm ). The unsupervised part is accomplished by moving the cellsof the �rst layer according to the input � to �nd centers of clusters in the input data. Concurrently,the second layer is adapted to deliver the intended output �.Moving the RBFs also accounts for a neighborhood relation between the single cells. It creates atopological structure of prede�ned dimensionality k on the training data. In the two-dimensionalcase, the �nal network of RBFs depicts a map of reference cells, similar to Kohonen's self-organizingfeature map. Generally, the network consists of a mesh of prede�ned basic elements, such astriangles, quadrilaterals, tetrahedrons, etc., according to the underlying k.Each cell of the network contains a resource term which holds particular information about thesamples presented to the network. It delivers a local compound information about the trainingaccuracy and sample distribution, and it is utilized to insert or to delete cells from the network.The ISGCS grows at locations with a high resource term and shrinks at places where the resourceterm signalizes a su�cient approximation accuracy.In the ISGCS approach, the resource term is also used for a resampling strategy. Resamplingshould avoid selecting too many initial samples from the goal function f in order to circumventundersampling at locations where the goal function's shape is highly varying. A high resourceterm shows a low local approximation accuracy, i.e., a locally insu�cient representation by trainingsamples (low coherence of the goal function). Resampling is done by randomly generating newinput samples which are evaluated only if they lie in a high resource term place and added to thetraining sample set. For detailed explanations see [7, 9, 6, 10].Figure 2 shows an example two-dimensional network trained with a two-dimensional goal function(�g. 2a). The network structure (�g. 2b) and sample distribution (�g. 2c) clearly accounts for thecoherence of the goal function, and the network delivers the approximation in �gure 2d.3The interpretation as coe�cients requires some further considerations neglected in this work. See [9] for details.
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Fig. 3: (a) shows a two-dimensional exemplary geometry, �gure (b) visualizes the light transfergoal function K, (d) its approximation by the ISGCS and (c) the �nal distribution of RBFs.RESULTSDue to a convenient visualization, in the following we refer to two-dimensional geometries. Surfaceschange to one-dimensional lines de�ned in a two-dimensional space. The geometrical term G (eq.2) changes to G(~x; ~y) = cos�~x cos�~y=(2�r~x~y). The network consists of four-dimensional referenceRBFs which cluster four-dimensional rays between a pair of two-dimensional points.Figure 3a shows a two-dimensional geometry de�ned by four lines. A visualization of the kerneloperator K can be seen in �gure 3b. Start and end points (~x; ~y 2 R2) of one ray are drawn accordingto the one-dimensional axes. The position of a point is determined by a reparameterization on theone-dimensional line space of the geometry. In this parameterization, the edges of the scene arerepresented by consecutive sub-intervals of the interval [0; 1]. A parameter value x 2 [0; 1] uniquelyidenti�es an edge and a point on it. A pair of points as required for the kernel is given by twoparameter values s and t. Thus the kernel can be considered a real function over the unit squarein the s-t-coordinate system. The assignment of the edges to intervals is arbitrary.The kernel is weighted by the emitter's energy, shown through the darker area at the upper right of�gure 3b. Here, one can also observe the bright �ssure which comes from the e�ect of the blockerin �gure 3a.The approximation of the kernel goal function through the ISGCS can be seen in �gure 3d. Thedistribution of RBFs is plotted in �gure 3c. It is clearly shown that the distribution of RBFs isstrongly related to the kernel coherence and thus e�cient. The distribution of RBFs is generatedindependently of the real geometry, i.e., even in case of having several hundreds of surfaces de�n-ing the principle four lines from �gure 3a | a very common case for modeling programs | thedistribution of RBFs and the approximation accuracy would be equal. The approximation doesnot depend on the geometry de�nition due to the examination of the geometry by single rays.Coherence is detected without accounting for surface boundaries.Figure 4a shows a result from the simulation of one re
ection through the radiosity equation. Inthe foreground the analytically calculated kernel K is used, in the background the ISGCS approxi-mation. For the visualization a two-dimensional geometry is spread to three dimensions by creatingareas with a constant z-component from the two-dimensional lines. Blockers are marked by thegrey frames in front of the surfaces and generate the shadow e�ects on the surfaces.Figures 4b,c show a three-dimensional geometry, computed by a six-dimensional ISGCS. The lightsource is not displayed. The black frame stands for the blocker which causes the shadow on thewall. Figure 4b is calculated by the analytical kernel, �gure 4c by the ISGCS approximation.CONCLUSIONWe have presented a new e�cient representation of three-dimensional geometrical environments byan incremental supervised growing cell structures network.The representation is designed to optimize the solution of the radiosity method which calculates theglobal illumination of virtual three-dimensional environments. Basically, radiosity is a �nite elementproblem, and we explained how the proposed representation can be interpreted as the according�nite element meshing. This enables the detection of global coherences of the light transfer, which



c)b)a)Fig. 4: The kernel approximation applied to calculate the light transfer. (a) shows a two-dimensional scene spread to three-dimensions (four-dimensional ISGCS input), in the foregroundthe analytically calculated shading, in the background the geometry calculated with the ISGCSapproximation. (b) and (c) show the same for a three-dimensional scene (six-dimensional ISGCSinput). Light sources are not displayed. Blockers are marked by a frame in the foreground.is a problem of classical radiosity approaches since they only account for the coherence of the lighttransfer between single surfaces.This approach leads to a very compact representation of the global light 
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