
in Proc. of the 1997 IEEE Int. Conf. on Neural Networks (ICNN’97), Houston, 1997 1

An Incremental Unsupervised Learning Scheme
for Function Approximation

Christian-A. Bohn
German National Research Center for Information Technology

Sankt Augustin, Germany
bohn@gmd.de

Abstract

A new algorithm for general robust function approxima-
tion by an artificial neural network is presented. The ba-
sis for this work is Fritzke’s supervised growing cell struc-
tures approach which combines supervised and unsuper-
vised learning. It is extended by the capability of resam-
pling the function under examination automatically, and by
the definition of a new error measure which enables an ac-
curate approximation of arbitrary goal functions.

1. Introduction

In many applications, instead of calculating a function’s
exact value, it is sufficient to accept a rough, fast, and cheap
approximation, at a first glance, and then to decide whether
to increase accuracy by investing more computational re-
sources. In most of these cases, a functionalmodelis trained
by single test samples calculated from the function under
examination — the goal function.

The approximation model should be efficient in terms of
accounting for coherency in the goal function, i.e., its in-
ternal representation should focus on highly varying loca-
tions. The same holds for the selection of training samples.
Instead of drawing these arbitrarily, a resampling strategy
should be able to direct attention to locations of low ap-
proximation accuracy.

Fritzke’s supervised growing cell structuresalgorithm
(SGCS) [2] can be seen as an alternative to the classical
Kohonen self-organizing map(SOM) [4]. Both are able to
adapt their internal structure to the coherency in the input
space (clustering). SGCS are additionally suitable for be-
ing trained by supervision. Due to the combination of su-
pervised and unsupervised learning, it delivers the basis for
the development of theincremental supervised growing cell
structures(ISGCS) presented in this work.

In the following, we roughly explain the standard SGCS

approach. Then, we discuss our extensions: first, we mod-
ify the error measure (resource term) to enable general ap-
proximation of arbitrary goal functions, second, a method
for incremental resampling of the function space according
to the coherency and to the approximation accuracy of the
function values is presented. We prove the results by means
of several example experiments.

2. Supervised growing cell structures

2.1. Overview

An SGCS network contains two layers. The first is in-
stantiated by a set ofn-dimensionalradial basis functions
(RBF) [5], calledcells, the second accumulates each of the
outputactivationsof the RBFs to form them-dimensional
output vector of the network (see figure 1). It realizes a
function ~f : Rn ! Rm which serves as an approximation
of a goal functionf : Rn ! Rm . Samples are drawn fromf , which the network is trained with. At each state of the
learning process the network generalizes the functionf over
its input space to a certain accuracy.

An important feature of SGCS is the combination of su-
pervised and unsupervised learning through different learn-
ing strategies for the first and the second layers. The net-
work is trained by presenting input/output pairs(�; �) 2(Rn�Rm). The unsupervised part is accomplished by mov-
ing the cells of the first layer according to the input� to find
centers of clusters in the input data. Concurrently, the sec-
ond layer is adapted to deliver the intended output�.

Moving the RBFs accounts for an additional neighbor-
hood relation between the single cells. It creates a topolog-
ical structure of predefined dimensionalityk on the train-
ing data. In the two-dimensional case, the final network
of RBFs depicts amapof reference cells, similar to Koho-
nen’s self-organizing feature map. Generally, the network
consists of a mesh of predefined basic elements, such as tri-
angles, quadrilaterals, tetrahedrons, etc., according to the

best matching unit

n−dim input vector

lateral connections

output
connections

m−dim output vector

position in
input space

Figure 1. An example SGCS network.

underlyingk.
Each cell of the network contains aresource termwhich

holds particular information about the samples presented to
the network. It delivers local information about the train-
ing accuracy and is utilized to insert or to delete cells from
the network. The SGCS grows at locations with a high re-
source term and shrinks at places where the resource term
signalizes a sufficient approximation accuracy.

In the following we formally explain the general algo-
rithm limited to the features crucial for this work. For more
information see [2].

2.2. Network definition

The initial topology of the network is a set of cells,A,
connected in ak-dimensional structure by lateral connec-
tions. The only basic element is ak-dimensional simplex,
i.e., for k = 2, this is a triangle. During a self-organizing
process, new cells are added toA in a way that, at each time
step, this basic structure is maintained.

Every cellc has attached ann-dimensional synaptic vec-
tor ~wc which can be seen as the position ofc in the input
vector spaceV . A mapping�~w : V ! A is defined as�~w : V ! A; (� 2 V) 7! (�~w(�) 2 A);jj~w�~w(�) � �jj = minr2A jj~wr � �jj; (1)

with ~w the set of all synaptic vectors~wc; c 2 A. �~w(�)
is called thewinningor thebest matching unit(BMU) for
an input vector�. The BMU is the cell with the smallest
distance to�.

By equation (1)V is partitioned into a number of regionsFc (c 2 A), each consisting of locations with the common
nearest synaptic vector~wc. This is known asVoronoi tes-
sellation and the regions are denoted byVoronoi regions
[2]. We definefc the k-dimensional Voronoi volume of a

cell and approximate it byfc = lcl � jFcj, with lc is the
mean length of thel edges(the lateral connections) emanat-
ing from a cellc. The length of an edge between two cellsi andj is defined as the Euclidian distance between their
synaptic vectors,li;j = jj~wi � ~wj jj.

The supervised layer of the network is defined by one
output weight vector for each cell,~vc 2 Rm ; c 2 A. The
output of the network,� : Rn ! Rm , according to an input� is calculated as�(�) =Xc2A~vcMc(�);

with Mc(�) = exp(�jj� � ~wcjj2�2c):Mc is the output of a cellc (theactivation). �c is assigned
to fc.

We define the neighborhoodNc of a cellc as the set of
cells which are directly connected by lateral connections de-
termining thek-dimensional topology.

2.3. Training

If an I/O pair(�; �) is presented to the network for train-
ing, the sets~w and~v with ~v = f~vc; c 2 Ag are modi-
fied such that~w adapts to the input distribution by moving
cells inn-space, and the vectors~v are modified in order to
approach the intended output value�. With the notationX new = X old + �X , and considerings as a specific BMU,b as one of the direct neighbors ofs, andc as one arbitrary
cell of the networkA, the adaption of the cell weights for
each iteration cycle is done as follows.�~ws = �b(� � ~ws); for the BMUs;�~wb = �n(� � ~wb); 8b 2 Ns;�~vc = �(� � �(�)) �Mc; 8c 2 A;

with �b, �n, and� the learning parameters for the input
weights of the BMU, for its neighbors, and for the output
weights, respectively.

Every cell contains aresource term�c which tracks a
value for the actual approximation accuracy. For the classi-
cal GCS approach, the resource term of a specific cellc is
proposed in two fashions. First, counter-like as an approx-
imation of the local sample distribution presented during a
certain time, second, as some mean value of the error which
is generated by the succeeding samples. The first type is
used for realizing pure clustering, the second for supervised
learning.

The resource term for supervised training is defined as
the difference between the output of the network~� = �(�)

e)a) b) c) d)

Figure 2. (a) is the goal function to be approximated, (b-d) e xample network topologies trained with
the classical definition of the resource term, (e) the result from the new resource term definition.

and the intended output�. For one iteration step,�c of each
cell of the whole network is modified as follows.��s = k� � ~�k2; for the BMUs; (2)��c = �� � � (old)c ; 8c 2 A: (3)� is a predefined “forgetting” parameter which weighs
the influence of more recent iteration steps more strongly.

After a certain number� of iteration cycles, the cellc
with the largest�c is selected fromA, and insertion of a new
cell is done in the middle of the longest edge originating
from c.

In case of insertion or deletion of cells, the network struc-
ture must be kept homogeneous (only simplices of dimen-
sionk), and the resource terms and weights must be mod-
ified in order to account for the modified Voronoi regions.
For implementation details see [2].

So far we have described the standard SGCS approach.
Our extensions are explained in the following. For clari-
fication, the next section is accompanied by practical ex-
amples, and, to ease visualization, we concentrate on two-
dimensional functions, although the presented algorithms
are not bounded ton; k = 2. If necessary, we give hints
for the adaption to higher dimensions.

3. Incremental supervised growing cell struc-
tures

3.1. A new resource term

Several experiments indicated that the definitions (2, 3)
are not suitable for approximating arbitrary functions, since
the error mainly depends on the sample distribution, i.e.,
the number of hits inside a specific Voronoi region. Even
our resampling strategy proposed in the next section will
run into problems with this resource term.

The Voronoi volume of the cells must additionally be
taken into account leading to a definition which looks simi-
lar to theLn error measure. In our experiments theL2 error

has been proven as to be very robust and we will refer to it,
only.

We redefine the resource term by two components�cnt;c
and �err;c. Consider the cells as BMU. �err;s is incre-
mented by the error which the network delivers compared
to the actual�. �cnt;s counts the samples which fall into
that Voronoi region,��err;s = k� � ~�k2;��cnt;s = 1:

Concurrently for all cellsc 2 A, the terms��cnt;c = �� � �cnt;c;��err;c = �� � �err;c
are added, which provide the weighted mean value over

a certain time period. The final resource value is calculated
according to �c = �err;c�cnt;c � jFcj; 8c 2 A: (4)

Examples. Figures (2b-d) show simple tests with the orig-
inal definition of the resource term from equations (2, 3).
The goal function is shown in figure (2a), drawn as grey-
scale picture. The input space is projected on the x- and y-
axis of the image. The brightness of a pixel is proportional
to the function value.

It can be observed (figures (2b-d)) that the generation of
cells is directed into regions of varying function values in
order to increase approximation accuracy. Using the clas-
sical error definition which does not consider the Voronoi
area, a high resource term is not essentially decreased, and,
in the worst case, the place of generation of new cells will
never leave these locations. Even in less critical cases, the
network structure is not well suited to represent the goal
function adequately.

The different results from figures (2b-d) are generated by
slightly modifying the learning parameters. This also shows

the low robustness of the classical error definition. The al-
gorithm totally collapses, if the proposed resampling algo-
rithm (presented in the next section) enforces a high sample
distribution in regions with low approximation accuracy.

In contrast to that, figure (2e) shows an example network
trained with the proposed error measure from equation (4).

3.2. Resampling

As depicted in the introduction, resampling should avoid
selecting too many initial samples from the goal functionf in order to circumvent undersampling which happens in
two cases: first, if the shape of the goal function is more
complicated than the number of local samples can expose
(uncertainty principle), second, the goal function generally
contains sharp boundaries which separate areas where the
input is defined from those where no function values exist.
Due to the fact that cells representing a lower sample distri-
bution tend to be pulled into regions of a higher distribution,
these ’exterior’ locations in general are not sufficiently rep-
resented by the final network topology. In the following, we
call the first kindcritical regions(CR), the secondexterior
regions(XR).

The proposed resampling algorithm selects new samples
from the goal function to directedly increase the sample dis-
tribution at the CRs and the XRs.

Assuming that CRs can be identified through a high cell
resource value, and that XRs are equivalent to the regions of
the function space which lie “outside” of the actual network
expansion, we define the resampling strategy as follows.

Consider a relation�� : (c 2 A) ! fT; Fg, which
determines, if a cellc is a critical cell (CC), i.e., if it is
located in a critical region of the function input space,�� (c) = (�c > ! � �); c 2 A;

with ! a threshold for being a high-resource cell and�
the mean value of the resource terms of all cells. Further, we
define thesub-networkof A which consists only of critical
cells by the termACC ,ACC = fc; c 2 Aj�� (c)g;

and the relation “inside of the range of a set of cells”,� : Rn ! fT; Fg,�A(�) = (DA(�) > '); (5)

with DA : Rn ! R; DA(�) =Xc2AMc(�); (6)

with a threshold', and the overallnetwork activationDA, the sum of the activations of all cells of networkA.

Definitions (5, 6) enable two essential predicates. First,
an input� lies within a critical region of a particular net-
work,A, if �ACC (�) returns true. Second,� lies outside of
the range of the whole network if the term�A(�) returns
false.

If a test sample� fed into the network exposes one
of these cases — if the function� with � : Rn !fT; Fg; �(�) = �ACC (�) _ :�A(�) is true — then the in-
put space around� is assumed being not sufficiently repre-
sented by the network topology, and resampling will take
place there.

The resampling step scans the whole input space by eval-
uating�. At places where� succeeds, new samples are cre-
ated and added to the actual training sets.

The algorithm successively generates sets of sample I/O
pairs, Sj 2 Rn � Rm : f(�i; �i)gj �i := f(�i); i =1; :::; jSj j; j = f0; :::; p�1g. p is the actual number of sam-
ple sets in the set of all samplesS = fSjg; j = 0; :::; p� 1.
The initial setS0 is taken fromV completely at random.
All further sets are calculated as described. For training the
network, samples are selected from all setsS with equal
probability.

Finally, we need to know,whena new resample step has
to be triggered. Comparable to the uncertainty principle,
we define the ratio of the number of cells and the number of
training samples as criterion for an undersampling through
the actual amount of cells. If = jAj=jSj, with jSj =Pp�1j=0 jSj j, rises above a certain threshold A;S a new set
of samples is generated. The complete algorithm is outlined
in figure 3.Create initial sample set S0 randomly, set # sample sets p = 1.Set the counter �c := �.Select i; j randomly, present (�i; �i) 2 Sj to the net.Adapt the cell weights according to (�i; �i).if �c = 0 insert a cell, set �c := �, else decrement �c.repeat until #cells=#samples exceeds A;S .add a new I/O set Sp+1 to S, increment p.repeat

Figure 3. The extended ISGCS algorithm.

Examples. Figure 4 shows training results for the goal
function from figure (2a), withn = 2;m = 1, created using
the proposed resampling scheme. Figure (4a) is the approx-
imated function delivered by the network. A difference to
the goal function is hardly noticeable. The approximation
error is below 5% (L2).

e)d)c)b)a)

Figure 4. (a) is the approximation of the function from figure (2a), (b) the sample distribution gen-
erated during training by 5-10 resampling steps. Figure (d) is the network structure, and (e) the
approximation of the goal function from (c). (b) and (d) expo se the sample and the cell distributions
according to the coherency in the goal function.

Figure (4b) presents the corresponding sample distribu-
tion which arose after several (less than 10) resampling
steps. It clearly marks regions in the goal function input
space which are more difficult to approximate with a bigger
amount of samples. Even the exterior zones are resampled
several times in order to avoid a network growing without
considering the function boundaries.

Figure (4c) shows a different goal function. Its final net-
work structure can be seen in figure (4d) and the approxima-
tion in figure (4e). It can be observed that the distribution of
cells behaves the same way as the distribution of samples.
Sharp boundaries with low coherency of the function values
are represented by more cells than “smooth” locations.

For completeness, we list some example parameters used
in the presented training tests:�b = 0:01, �n = 0:001, � =0:1, � = 0:05, � = 300, ! = 0:6, ' = 1, A;S = 0:05.

3.3. Attaching cells at function boundaries

In the preceeding section, we presented a counteragent
to avoid an insufficient representation by the network ap-
proximation in exterior regions of the goal function. This
section deals with another way to account for this, based on
the user’s knowledge of the function boundaries.

In contrast to defining an initial network (one simplex)
at random, boundary cells are selected which have a fixed
position, and which are connected to one central cell. Thus,
the iteration starts with a network which spans the whole
function space.

For the presented two-dimensional functions, the initial
cells are placed at the corners of the rectangle defined by
the goal function expanse. The training process begins with
four triangles.

The boundary cells take part only in the unsupervised
training of the output weight vectors. That means, they are
marked as fixed and do not move according to the input sam-
ples. Cells which are inserted at boundary edges must be
signed to behave the same way. Boundary edges are clearly

denoted by the fact that the two attached cells are marked as
fixed.

Generally, this scheme is valid for any dimensionk of
the ISGCS by initially connecting groups ofk neighboring
boundary cells with a center cell forming ak-dimensional
simplex. It should be mentioned that problems may arise if
the initial boundaries have a complicated shape. This leads
to inconsistent simplex shapes, and thus, to a lower robust-
ness of the training process.

Examples. Figure 5 shows two example networks which
are calculated by applying the complete ISGCS algorithm.
It can clearly be observed that the networks span the whole
function range.

Figure (5a) and (5b) are the network structure and the ap-
proximation of the example function from figure (2a). Fig-
ures (5c-e) show the results from learning the function from
figure (4c).

Consider the accurate representation of high varying
function locations by a higher amount of samples and cells.
Difficulties in the representation of boundary regions are
now completely avoided (see the representation of the small
square at the bottom of figures (4e) and (5e)). Even the in-
creased sample distributions at the boundaries vanish (fig-
ure (5d)) since the network is forced to take care of these
regions through the fixed boundary cells.

4. Summary

We have described an extension to the classical grow-
ing cell structures approach by Fritzke [2], which enables
the approximation of arbitrary goal functions by an iterative
learning scheme.

The presented incremental supervised growing cell struc-
tures (ISGCS) deliver a method which is capable of resam-
pling the goal function under examination automatically.
This essentially reduces the amount of samples needed for
an accurate training, since the method selects samples only

e)b) c) d)a)

Figure 5. (a-e) show results from the complete ISGCS algorit hm. (a) is the network topology for
the goal function from figure (2a), (b) its approximation. (c) is the final network structure for the
approximation of the function from figure (4c), (d) its sampl e distribution, and (e) the approximation.
Consider the representations at the boundaries in (e) compa red to (4e) (the square at the bottom of
(e) and that from figure (4e)), and the reduced amount of gener ated samples (figure (d)).

from locations which expose a lack of approximation accu-
racy due to a lower coherency of the function values.

To enable this feature we also modified the error resource
term of the classical SGCS according to theLn error norm.

The robustness and the efficiency of the algorithm have
been shown by several examples, and the algorithm has suc-
cessfully been applied in [1].

Subject of future work will be extensive testing of higher
network dimensions and the adaption of the algorithm to
recent approaches like [3].

References

[1] C.-A. Bohn. Efficiently representing the radiosity kernel
through learning. In X. Pueyo and P. Schröder, editors,Ren-
dering Techniques ’96, pages 123–132, Wien, Austria, 1996.
Springer-Verlag Wien New York.

[2] B. Fritzke. Growing cell structures - a self-organizingnet-
work for unsupervised and supervised learning. Technical
Report ICSI TR-93-026, International Computer Science In-
stitute, Berkeley, CA, May 1993.

[3] B. Fritzke. Incremental learning of local linear mappings. In
Proceedings of the ICANN-95, Paris, France, 1995.

[4] T. Kohonen. Self-organized formation of topologicallycorrect
feature maps.Biological Cybernetics, 43, pages 59–99, 1982.

[5] J. Moody and C. Darken. Fast learning in networks of locally-
tuned processing units. Technical Report YALEU/DCS/RR-
654, Dept. of Computer Science, Yale University, New Haven,
CT, 1989.

