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not restricted to two-dimensional scenes only (p = 2). For an easier examinationHeckbert did valuable work concerning this simpli�cation strategy [2] and calledit radiosity in Flatland. The radiosity B located at a point y from the geometryS � Rp is determined by the receiving radiosity from all points x of the envi-ronment and weighted by a reection coe�cient �. E denotes the self-emittanceat y.The transfer of energy from point x to point y is weighted by the terms G andV . G(x;y) = cos�x cos�y=(2�r), de�nes the purely geometrical relationships inFlatland. The �x and �y are the angles between the edge xy of length r and thenormals of emitting and receiving edges. V is a visibility function which equalsone if x and y are mutually visible, otherwise zero. See [3, 4] for its physicalderivation.We de�ne the kernel, k, which describes in one term the purely geometricalproportion of equation (1) together with the reection properties.k(x;y) = �(x)G(x;y)V (x;y) (2)Solving the radiosity equation. Analytical solutions of (1) are only knownfor very speci�c simple geometries. For numerical calculation, there exist twodi�erent approaches:Monte Carlo methods and �nite elements methods (FEM).This work concentrates on FEMs which transform the radiosity equation intothe linear system 8i : bi = ei +X kijbj : (3)The coe�cients bi, ei, and kij are discrete coe�cients for an approximation ofB, E, and k from equations (1) and (2). As early radiosity approaches favored theintuitive view of discrete patches transferring energy through formfactors, theFEM provides a more general view in terms of n basis functions, Ni, weighted bycoe�cients bi which send energy through transfer coe�cients. The approximatedradiosity ~B is calculated by the accumulation of the radiosity basis functions,~B(x) = nXi=1 biNi(x):The n2 transfer coe�cients kij between each pair of basis functions Ni and Njare calculated as follows.kij = Z Z k(x;y)Nj(x)Ni(y)dx dy; i; j = 1; :::; n (4)To solve equation (3), several standard algorithms exist which in practice iter-atively 'propagate' the energy through the discrete approximation of k. Com-monly, they start with an initial energy distribution, b(0)i = R E(x)Ni(x)dx.2 MotivationNumerically solving the radiosity equation (1) requires a discretization of theradiosity function B and of the kernel function k to create a linear system. Onone hand, basis functions should be distributed as sparse as possible to keep theamount of computing resources small. On the other hand, a certain demanded ap-proximation accuracy requires an e�cient placement of basis functions in termsof accounting for higher variations in the kernel function with a better resolution.



Coherence. We denoted the radiosity and the kernel function as p- and 2p-dimensional functions respectively (x 2 Rp ). In fact, a realistic geometry de�-nition of virtual worlds commonly contains single discrete geometrical objects.These de�ne points on sub-spaces of Rp , like 2D-surfaces in 3D and 1D-edges in2D. Thus, radiosity is a (p � 1)-dimensional function and the kernel of dimen-sion 2(p � 1). Without occlusion e�ects, the kernel is smooth in the range of asingle pair of surfaces but commonly, at the transition to another pair, sharpboundaries arise in the kernel function. These boundaries do not appear if theinteraction between di�erent pairs of surfaces is 'similar'. For example, considertwo nearly equal surfaces which lie close together and send energy to anotherwhich is relatively far away.In the preceeding section, the basis functions of the kernel were de�ned as thetensor product basis of a pair of radiosity basis functions (equation (4)). Thesecommonly are generated for each separate pair of surfaces by default, and thus,the coherence of the whole kernel is not accounted for. This work concentrates onthe kernel basis functions directly on a level which abstracts from the geometricaldefault discretization by surfaces. The algorithm examines the kernel functionby considering only single kernel values ('rays'). Basis functions of the kernel arebuilt according to the distribution of rays, independently of single surfaces.Previous work. HR [5] andWR [6] detect coherence in the kernel between pairsof surfaces. They do not account for the whole kernel. This is crucial due to thefact that large geometries need an expensive initialization phase for creating atleast one basis function for each pair of surfaces.Smits et al. [7] and Sillion [8] propose algorithms which approximate coher-ence in the energy transfer by spatial coherence in the geometry de�nition. Theproblems are that spacial clusters of the surfaces do not necessarily correspondto clusters in the kernel, and that possibly spatial clusters may not exist due tothe chosen cluster criterion.3 The algorithmA function approximation model for the radiosity kernel is developed whichis based on the supervised growing cell structures (SGCS) approach [9]. It isderived from the �eld of arti�cial neural networks (ANN) and characterizedby the facility of learning a certain functionality based on presenting sets ofexamples ('rays') from the goal function (kernel). The �nal model serves as anapproximation of the kernel function. It is instantiated by a set of radial basisfunctions (RBF) [10], de�ned by its expanse and its center. The centers canbe seen as centers of clusters of light transfer. The RBFs serve as kernel basisfunction and its coe�cients as the discrete approximation coe�cients for thelinear system (equation (3)). The learning model adaptively �nds clusters inthe input space, and thus, it accounts e�ectively for the coherence in the kernelfunctions.The iterative learning scheme is based on three essential operations. NewRBFs are added according to the approximation accuracy, the centers of theRBFs are organized due to the cluster properties in the kernel, and samplesare selected from the geometry automatically directed by the algorithm itself toavoid redundant examination of the kernel function.



Limitations. We would like to mention that this paper shows work in progress.We present a basic framework for an alternative representation of the radiositykernel. A discretization of the radiosity equation is shown for the two-dimensionalcase. The transfer of light, i.e., the solution of equation (3) will be matter offuture work. Thus, coherence originating in e�ects from the energy transfer isonly accounted for the self-emittance of the surfaces (E from equation (1)) sofar. The last section gives hints in how to go on for a completely iterative andadaptive radiosity solver.3.1 Arti�cial neural networksInstead of coding a program by hand, the functionality of an arti�cial neuralnetwork is trained by examples. The network �nds its own internal representationaccording to the underlying data distribution.ANNs consist of two basic elements. First, units (also called neurons) have thecapability of summing several input values and weighting them by a thresholding-function. Second, these units are connected in a graph-structure by weightedconnections which transport values between separate units and the network'sinput and output. Generally, the topology and the connection weights determinethe network's functionality and thus these are the parameters which are to bemodi�ed by a learning procedure.Basically, there exist two di�erent learning strategies, supervised in contrastto unsupervised learning. Supervised learning means to present input/outputpairs to the network. The connection weights of the network are modi�ed suchthat the output units approach the presented output better (steepest descend). Inunsupervised learning only the distribution of the input data is examined and theunits are modi�ed to represent the input space by reference vectors (clustering).Unsupervised learning is also known as self-organization, competitive learning,vector quantization, or dimensionality reduction.In our work, we are looking for an algorithm which combines these two prin-ciples since we have to analyze the input distribution in terms of 'similar' lighttransfer (clusters in the light transfer) and the kernel value for a certain clusterhas to be approximated concurrently. There are few hybrid algorithms (see [11])which are not suitable for this task, as both strategies are applied independently.To the author's knowledge, [9] is the �rst method which combines both strategiesin a homogeneous manner.3.2 Supervised growing cell structuresA SGCS network contains two layers. The �rst is instantiated by radial basisfunctions, the second accumulates each of the output (activations) of the RBFsto form the output vector (see left side of �gure 1). The network realizes afunction ~f : Rn ! Rm which serves as an approximation of a goal functionf : Rn ! Rm . Samples are drawn from f , which the network is trained with. Ateach state of the learning process, the network generalizes the function f overits input space to a certain accuracy.The network is trained by presenting input/output pairs (�; �) 2 (Rn �Rm).The unsupervised learning part is accomplished by moving the cells of the �rstlayer according to the input � to �nd centers of clusters in the input data. Con-currently, the second layer is adapted to deliver the intended output �. Moving



the RBFs is accomplished by accounting for a neighborhood relation betweenthe single cells, which is of prede�ned | but not �xed | dimensionality. Thisrelation creates an additional structural information on the training data. In ourcase, a two-dimensional map of clusters of light transfer is created. This will�nally enable the transfer of energy, since it relates the basis functions to thegeometrical relationships of the environment.
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Fig. 1. On the left side, an example SGCS network is outlined. The output con-nections are drawn for four input cells only. On the right side, a two-dimensionalexample goal function (a) is approximated (d). (b) and (c) show the sampleswhich are selected by the algorithm and the created network structure.The initial topology of the network is a set, A, of cells, connected in a k-dimensional structure by lateral connections. The only basic element is a k-dimensional simplex, i.e., for k = 2 this is a triangle. During a self-organizingprocess, new cells are added to A in a way that at each time this basic structureholds.Every cell c has attached an n-dimensional synaptic vector wc which is theposition of c in the input vector space V . A mapping �w : V ! A is de�ned as�w : V ! A; (� 2 V ) 7! (�w(�) 2 A);jjw�w(�) � �jj = minr2A jjwr � �jj; (5)with w the set of all synaptic vectors wc; c 2 A. �w(�) is called the winningor the best matching unit (BMU) for an input �.By equation (5), V is partitioned into a number of regions Fc (c 2 A), eachconsisting of the locations having the common nearest synaptic vector wc. Thisis known as Voronoi tessellation and the regions are denoted by Voronoi regions.We de�ne fc the k-dimensional Voronoi volume of a cell and approximate it byjFcj, fc � jFcj = lcl, with lc is the mean length of the l edges (the lateralconnections) emanating from a cell c. The length of an edge between two cellsi, j is de�ned as the Euclidian distance between their synaptic vectors li;j =jjwi �wj jj.



The supervised layer of the network is de�ned by one additional outputweight vector for each cell, vc 2 Rm ; c 2 A. The output of the network, � :Rn ! Rm , according to an input � is calculated as�(�) =Xc2AvcMc(�); with Mc(�) = exp(�jj� �wcjj2�2c ): (6)Mc is the output of a cell c (activation). �c is assigned to fc.If an I/O pair is presented to the network for training, the sets w and v withv = fvc; c 2 Ag are modi�ed such that w adapts to the input distribution bymoving cells in n-space. The vectors v are modi�ed to approach the intendedoutput value �. We de�ne the neighborhood Nc of a cell c as the set of directlyconnected cells. With the notation Xnew = Xold +�X , the adaption of the cellweights for each iteration cycle is done as follows.�ws = �b(� �ws); for the BMU s;�wb = �n(� �wb); 8b 2 Ns;�vc = �(� � �(�)) �Mc; 8c 2 A;with �b, �n, and � the learning parameters for the input weights of the BMU, itsneighbors, and the output weights, respectively.So far we described the standard SGCS approach. On the right side of �gure(1) the approximation of an example function can be observed. In the following,we rede�ne the resource term and add the resampling scheme.The resource term, � , is de�ned in a fashion similar to the L2 error measure.It consists of two components �cnt;c and �err;c. Consider the cell s as BMU. �err;sis incremented by the error which the network compared to the actual � delivers,��err;s = k� � �k2, �cnt;s is incremented by one. Concurrently for all cells c 2 A,the terms ��cnt;c = �� � �cnt;c and ��err;c = �� � �err;c are added, whichprovide the weighted mean value over a certain time. The �nal resource value iscalculated according to �c = �err;c=�cnt;c � jFcj. � is a 'forgetting-parameter' inorder to enable a weighted averaging over recent learning cycles.After a certain number � of iteration cycles the cell c with the largest �c isselected from A. Insertion of a new cell r is done in the middle of the longest edgeoriginating from c. This must keep the network structure homogeneous (onlysimplices of dimension k). For the implementation details and the accountingfor the modi�ed Voronoi regions, see [9].The resampling strategy. The central idea is the detection of regions in theinput space which are not su�ciently represented by training samples. A highresource term is taken as criterion for the need for new samples (similar to theneed for insertion of new cells). Thus, we de�ne a relation �� : (c 2 A)! fT; Fg,which determines, if a cell c is a critical cell (CC).�� (c) = (�c > ! � � ); c 2 A;with ! a threshold for being a high-resource cell and � the mean value of theresource terms of all cells from A.



For an input � 2 Rn , we de�ne the overall network activation, DA : Rn !R; DA (�) = Pc2AMc(�) which is the sum of the activations of all cells of thenetwork A, and a relation � : Rn ! fT; Fg which de�nes a logical value for thefact that an input � lies in the range of a network A.�A(�) = (DA(�) > ');with a threshold '.Further, we de�ne the sub-network of A which consists only of critical cellsas the term ACC , with ACC = fc; c 2 Aj�� (c)g.These de�nitions enable two essential predicates. First, an input � lies withina critical region of the network A if �ACC (�) is true. Second, an input � liesoutside of the range of the network if the term �A(�) returns false.Thus, a test sample � fed into the network exposes a place in the input spacewhich is not su�ciently approximated if the relation � : Rn ! fT; Fg; �(�) =�ACC (�) ^ :�A(�) returns the value true. In other words, �(�) indicates that �falls into a region of the network which is not well represented because it lieseither in a critical zone or at an exterior zone of the network. For the selectionof new samples, the input space is scanned by evaluating �. New samples arecreated and the kernel value calculated at locations where � returns true.The algorithm successively generates sets of sample I/O pairs, Sj 2 Rn�Rm :f(�i; �i)gj �i := f(�i); i = 1; :::; jSj j; j = f0; :::; q � 1g. The value q is the actualnumber of objects in the whole set of all samples S = fSjg; j = 0; :::; p � 1.The initial set S0 is taken from V completely randomly. All further sets arecalculated as described. The samples for training are selected from all sets fromS with equal probability.A new sample set is generated according to the uncertainty principle, i.e., ifthe ratio of the number of cells and the number of training samples,  = jAj=jSj,with jSj =Pp�1j=0 jSj j rises above a certain threshold  A;S . The whole algorithmis outlined in �gure 2 on the left side.Finally, we list some experimentally determined parameters which showeda robust behavior of the algorithm: �b = 0:01, �n = 0:001, � = 0:1, � = 0:05,� = 300, ! = 0:6, ' = 1,  A;S = 0:05.3.3 Approximating the kernelA one-dimensional parameterization of the geometry is chosen as described in[2] (see �gure (3)). By the parameters s and t we select two points on the edgesof the geometry. For training the SGCS with the kernel function, the naive waywould be to feed the parameters s and t, and the kernel value directly intothe network. Since the parametrization discards the geometrical relationshipbetween separate surfaces, clusters could be created at locations which are notsuitable to be represented by one reference interaction for the transfer of light.The parameters for the SGCS must somehow expose the geometrical propertiesof the kernel function.Thus, we introduce the function  : R2 ! Rn (generally,  : R2(p�1) !Rn ) which expands the parameters s and t to tuples (re-parametrization) whichshould implicitly contain the information to be examined. In this work, we setn = 4 and de�ne  such that it is composed of the four coordinates of the twopoints in Flatland de�ned by s and t.



De�ne the network dimensionality and the learning parameters.Create the initial sample set S0 randomly, initialize S, set thenumber of sample sets p = 1.Set the counter �c := �.Choose i; j randomly, such that Sj 2 S and i < jSj j,and present (�i; �i) from Sj to the network.Adapt the cell weights according to (�i; �i).if �c = 0 insert a cell and set �c := �, else decrement �crepeat until #cells=#samples exceeds  A;S .create a new I/O set Sp+1, by directed resampling,add it to S, and increment p.repeat

goal function

Fig. 2. The extended basic algorithm for the SGCS network, and a runningexample which shows growing and the adaptive function approximation of thegoal function.The output which the network should learn, � 2 R, is set to the kernelfunction value multiplied by the emitting energy of the surface, the '�rst shot'of energy (according to the initialization of the linear system (3)). We set theemitting energies of surfaces which are not de�ned as emitters to a small valueto have a situation like after a few iteration cycles of the simulation of the energyow.The SGCS is fed with the I/O pairs ((s; t); �). These are calculated from thegeometry de�nition in the classical manner by checking rays against all surfacesand calculating the kernel value. The �rst set is calculated randomly, all furtherautomatically through the SGCS to account only for those zones which are notsu�ciently examined.The complete functional description of the approximated kernel ~k : R2 ! Ris de�ned by the concatenation of the two functions,  : R2 ! Rn and the SGCS,� : Rn ! R, ~k =  � �(s; t); 0 � s; t < 1:� consists of the set of z basis functions, Mi; i = 1; :::; z. The approximatedkernel value � is calculated as described in equation (6). The output weights ofeach cell, vi 2 R; i = 1; :::; z, which connect the output layer of the SGCS areconsidered as the transfer coe�cients according to a kernel basis function Mi.4 ResultsFigure 3 shows an example Flatland geometry (a), and the kernel function (b).The blocker is not included into the parametrization. (d) is an approximationthrough the SGCS, and (c) exposes the centers of the RBFs. For the visualization
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1Fig. 3. An example Flatland geometry (a), the kernel (b), the distribution ofthe basis functions (c), and the kernel approximation (d).in 2D (c), the four-dimensional reference vectors are re-projected according totheir average parameters s and t for the selected samples.It can be observed that the resolution of the basis functions depends on thevariation in the kernel. The sharp curves in the kernel function, arising from thee�ect of the blocker (arrows in (d)), are represented by more RBFs than thesmooth areas. Even for a small energy transfer the coherence is higher (lowerarrows in (d)), and thus fewer RBFs are placed by the SGCS.We tested the clustering and the iterative facilities with a large geometry.The edges of the example Flatland geometry were subdivided into 1000 equallyspaced edges.The resulting cell distribution was the same like in the unsubdi-vided case. This is evident, due to the fact that the network sees nearly thesame information (sample rays). The convergency of the whole algorithm wasthe same, in contrast to HR which would generate 106 default basis functions toget the �rst approximation. Even the approximation accuracy (L2 error) of theSGCS were about 50% higher compared with a HR approach and for an equalnumber of basis functions (about 400 in this case).The comparison of the number of samples between the GCR approach andHR is questionable, since the relationship between accuracy and the number ofsamples in the HR approach has to be examined further. We can state, that theratio of the number of cells and the number of samples is about 20. We get asimilar number of sample shots in HR if we use also 20 samples to determinewhether to descend a level in the hierarchy (oracle). Thus, the number of samplesdoes not di�er in a fundamental manner.5 SummaryWe proposed a method which represents the radiosity kernel, even for hugegeometries with few basis functions. By accounting for the coherence in theglobal kernel function, the �nal representation is very sparse. Thus the well-known problem of initial linking which creates default basis functions for eachpair of surfaces could be avoided.The representation by the model is completely adaptive, which means thatthe algorithm behaves robustly in case of slightly changing geometry or lightingconditions. This delivers also a promising outlook on an incremental radiosityapproach.
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