
A Neural Network BasedFinite Element Grid Generation Algorithmfor the Simulation of Light PropagationChristian-Arved Bohn 1Fraunhofer Institute for Media Communiation 2AbstratCalulating the transfer of light in three-dimensional virtual environments is aninevitable feature of modern omputer graphis systems. Usually it is aomplishedby a �nite element (FE) method where the three-dimensional surfaes of the senegeometry are ut into several sub-surfaes | a surfae meshing is generated.We present a new way of reating this surfae mesh: the internal strutures oftwo neural networks trained by sample surfae points and sample light rays areinterpreted as suh a mesh on whih the �nite element method is exeuted.The presented approah avoids several drawbaks arising with lassial meth-ods. The \neural meshing" outperforms standard tehniques in terms of memoryrequirements and auray. Additionally this work presents several novel ideas ofinterpreting a neural network skeleton in terms of a virtual three-dimensional geom-etry and as a representation of light energy propagating through a three-dimensionalpolygon-based sene.Key words: Computer graphis, arti�ial neural networks, realisti imagesynthesis, rendering, radiosity, �nite element method, growing ell strutures,self-organizing mapping
1 IntrodutionRealisti looking pitures of three-dimensional virtual environments are in-reasingly demanded in the �eld of omputer graphis. It has been shownthat omputing suh images ommonly requires the simulation of a physially1 bohn�imk.fraunhofer.de, http://viswiz.de/2 http://www.imk.fraunhofer.de/Preprint submitted to Elsevier Preprint 23 January 2002



adequate model of the ow of light. Due to the omplexity of suh a model[10℄, the radiosity tehnique [4℄ has been proposed aounting for an exerptof the overall phenomena of the physial light model. Radiosity simpli�es thegeneral sattering properties of surfaes to ideally di�use (Lambertian) ree-tion and emission. Due to its onvining results 3 , on the one hand, and dueto the moderate amount of omputing resoures required, on the other hand,radiosity has found broad aeptane in �elds like arhiteture, virtual reality,and �lm prodution.1.1 The Radiosity EquationMathematially, radiosity is denoted by the radiosity integral equationB(y) = E (y) + �(y) ZS G(x;y) B(x) dx (1)where x and y are three-dimensional points lying in the two-dimensional sur-fae spae S and whih are de�ned by a polygonal sene desription. Theradiosity value B(y) at a point y represents the light intensity 4 determinedby the weighted aumulation (integral in equation (1)) of the radiosity B(x)emitted from all points x in the sene geometry. The geometri termG(x;y) = os�x os�y� kx� yk2 �V (x;y) (2)desribes the geometri properties of the light transport from a point x toanother point y. It depends on the distane between the points and on theangles whih the normals at their loations with the onneting ray build(see �gure 1 and [13℄ for a detailed derivation of equation (2)). V is alledthe visibility term. Its value depends on the mutual visibility of two pointsand equals zero if the diret view between them is oluded by a sene objet,otherwise one. � is the reetane term whih determines the portion of lightwhih is absorbed at a reetion at a point y. � de�nes the olor (in this asea grey tone) of the partiular surfae. E is the self-emittane at eah point ofthe environment. It equals zero at surfae points whih are not light soures,otherwise it represents light emission and is greater than zero.3 see �gure 2 for example4 For simpliity, B is assumed being a one-dimensional intensity value, whih issuÆient for the desription of monohrome light. The transition to olors is om-monly aomplished by alulating three separate olor bands and aumulatingthe results. 2
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Fig. 1. The geometri term (eq. (2)) of the radiosity integral equation desribingthe di�use light reetion behavior between two points in a virtual environment.1.2 Finite Elements and the Radiosity EquationB , E , �, and G in equation (1) are ontinuous funtions de�ned on an in�nitenumber of points desribing the surfae domain. In suh ases, ommonly, a�nite element (FE) method is applied transforming the ontinuous funtionsinto approximations by disrete linear funtion bases. Due to the usually loalsupport of the base omponents this disretization is often termed meshing.The disretization usually originates at B in equation (1), whih is transformedinto an approximation B(x) = Pni=1 biNi(x). Here Ni are the n omponentsof the hosen funtion base, whih are loated on the surfaes of the senegeometry. If we also apply this sheme to E and �, then, equation (1) an beprojeted onto the funtion base N = (N1;N2 :::Nn) (see [2℄ for an expliitdesription) resulting in a linear systemb = e+Kb: (3)Here the vetors b and e ontain the oeÆients for eah of the aordingbase omponents and K is alled the disrete transport operator onsisting ofsingle transport oeÆientskij = ZS Ni(y)�(y) ZS G(x;y)Nj(x) dx dy; i; j = 1 ::: n: (4)Thus, with equation (3) we developed a disrete form of equation (1). A �niteset of oeÆients b distribute their energy through a �nite set of transfer3



Fig. 2. On the left hand side, the subdivided surfaes of a virtual model of theGerman Museum of Arhiteture in Frankfurt/Main, on the right hand side, theresulting radiosity simulation of the light distribution.oeÆients K. In ontrast, in equation (1) an in�nite number of intensitypoints B interat through an in�nite number of rays K . Finally, equation (3)enables us to solve the radiosity equation numerially by ommon iterationmethods for linear systems.Aording to the formulation in equation (4) and for the following onsider-ations we rewrite equation (1) like the general form of a Fredholm integralequation of the seond kindB(y) = E (y) + ZS K (x;y) B(x) dx (5)with the kernel K ombining all geometri relationships from equation (1).See �gure 2, for example. Here, the sene is subdivided into smaller subpathes.Considering the last paragraphs, in this ase the mentioned base omponentsare onstant box funtions with support limited to eah of the subpath bound-aries. A onstant olor value is assumed for eah of them | the oeÆientsb. This more intuitive view of avoiding the formal de�nition of base funtionshas been applied in many lassial approahes.1.3 Numerial Solution of the Radiosity EquationThe shape of equation (3) delivers a hint for a possible solution method |the alulation of the �nite Neumann seriesb = (I+ 1Xk=1K(k)) e (6)where the omponents of e are initialized with the emission energy of theaording surfaes projeted on the funtion base N. Intuitively, equation (6)4



an be evaluated by unfolding it into a reursion shemeb(0) = e; b(k+1) = e+Kb(k); k = 1 :::1 (7)whih onverges due to the spetral radius of (I�K) being less than one (seefor example [4℄, pgs. 110-111). Every new b(k) in equation (7) de�nes a furtherapproximation of the radiosity and replaes the b on the right side for thefollowing iterations. Eah evaluation of equation (7) | eah element of theNeumann series | an be seen as another reetion of the propagated light.This type of solution by a relaxation method is most ommon in the �eld ofradiosity sine general matrix inversion tehniques mostly fail due to the sizeof the linear system.1.4 MotivationGeometries oming from appliations like, for example, virtual reality nowa-days ontain up to 50000 polygons. To represent the olor shading on thesesurfaes adequately, they ommonly are subdivided into hundreds of smallerpathes eah, and thus, the solution of the linear system of equation (3) easilygoes beyond the sope of ommonly available omputing hardware.The subdivision algorithm is vital point in solving the radiosity equa-tion. The solution eÆieny, and moreover, the viability of a ompu-tation strongly depend on the eÆieny of the subdivision sheme.Subdivision eÆieny means the same like in general approximation tasks,namely, aounting for oherene of the underlying goal funtion | smoothloations require less support by base omponents than loations of high vari-ation (like sharply edged shadows in ase of radiosity). The invention of sub-division algorithms for radiosity is mainly hallenged by two issues:a) Default meshing. It is hardly possible to blast the boundaries of the senesurfaes, i.e., to de�ne radiosity base funtions with a larger support thanjust the area of one single polygon of the sene de�nition. Thus, ommonlythe initial number of transfer oeÆients kij (see equation (4)) equals thesquare of the number of polygons of the sene de�nition. This property isalled initial linking and it arises independently from the subsequent sub-division sheme.b) Sequening issue. Whereas the unknown radiosity | the olor shadingon the surfaes | should be available for an adequate disretization of thesene, the radiosity an only be alulated if this disretization of the senealready is available. 5



With lassial radiosity approahes the above topis are well-known. This workproposes a workaround like follows:a) The diret referene to the sene de�nition, i.e., to single polygons will beavoided, and instead, a sampling based algorithm examines the funtionsto be approximated. An additional representation of the surfae topology,whih is not attahed to the originating polygons is developed.b) In order to develop an eÆient approximation model the sequening issuepostulates to regard the light ow (the term KB (eq. (5))) as a whole andnot the radiosity B separately, from whih a surfae disretization is derived.In ontrast to the latter item, lassial radiosity approahes do not regard thelight ow KB in the �rst plae. Instead, they fous on the surfae geometryby developing a radiosity base without aounting for the light ow whihvirtually is responsible for the partiular meshing requirements.The reason is self-evident: ideally aounting for KB is hardly possible if thegeometri de�nition of surfaes must be regarded. The existene of polygonshinders the appliation of well-known eÆient mathematial approximationmethods for analyzing KB diretly, and thus, it prohibits a ompletely freeexamination of the light transfer relationships.Considering these issues, we propose a self-organizing algorithm whihsmoothly adapts to the problem under onsideration without a pre-de�ned subdivision topology and without stiking to single surfaes.The algorithm is haraterized by a uently adapting set of neuralnetworks, whih automatially draws samples (points and rays) fromthe sene desription and whih grows to a �nal \neural mesh" onwhih the FE alulations are exeuted.Previous work. In lassial radiosity (CR) [8℄ an arbitrary base on the sur-faes is reated \by hand" (subdivision into subpathes). Sine the subdivisiondoes not regard the �nal (not yet known) intensity bleeding, a ommon aidhas been to estimate 5 the solution B and to develop the meshing aordingly.Progressive radiosity approahes (PR) [3℄ like they have been implemented inmany ommerially available software pakages ompute diret shadows 6 fromwhih an initial disretization is derived. Hierarhial radiosity approahes(HR) [9℄ are the most promising attempts up to now. They start with a oarsedisretization of the surfae domain, and then, re�ne pathes depending onthe partiular size of the aording transfer oeÆients.5 intuitively, with the knowledge of an experiened user6 shadows generated by the diret emission of the light soures6



2 A Neural Network Model for Solving the Radiosity Equation2.1 Inremental Supervised Growing Cell StruturesThis work utilizes the inremental supervised growing ell strutures (ISGCS)approah presented in [1℄ and based on [6℄ (see also [7℄). It is regarded aspei� sort of general arti�ial neural network whih an eÆiently be usedfor lustering and funtion approximation tasks.In this work, one ISGCS serves as an approximation model of the radiositykernel K (eq. (5)) and delivers the required light ow disretization whih wehave been asking for in the previous setion. Additionally, a further ISGCStaken as disretization (meshing) of the geometry is utilized for the represen-tation of the radiosity itself.An ISGCS an be seen as an extended Kohonen Self-Organizing Feature Map(SOM) [11℄ whih is well-known in the �eld of general ompetitive learningusing arti�ial neural networks.Competitive Learning | the basi priniple of ompetitive learning ren-ders an algorithm whih adapts a set of n-dimensional referene vetors 7 toa signi�antly bigger set of n-dimensional training samples in a way that thedistribution of the referene vetors math the sample distribution in the n-dimensional spae. For example, a ulmination of input samples at ertainregions in the input spae (lusters) an be notied by a similar ulminationof referene ells.A plain iteration method aomplishes the following: samples of the trainingset are randomly presented to the set of randomly distributed referene ells.Eah time the best mathing referene ell (the \best mathing unit" (BMU))| the ell whih is most similar to the input, i.e., whih lies at the smallestEulidian distane | is determined. Then, this ell is moved into the diretionof the input aording to a ertain moving strength parameter.The proess is repeated several times while steadily dereasing the movingstrength. Finally, the result is a set of referene units whih, �rst, are au-mulated at those loations where the training sample distribution is high, andseond, eah of whih mimis a kind of \average vetor" of its surroundingtraining samples.Prinipally, ompetitive learning is applied in most iterative lustering ap-7 ommonly alled referene units in the �eld of neural networks or referene ellsin the growing ells area 7



(a) (b) () (d)Fig. 3. Pitures (a-) show the growing of a two-dimensional ISGCS whih is trainedby three-dimensional points lying in 3D spae. Image (d) is generated by trainingthrough a non-uniform sample distribution.proahes, like for example k-means lustering or the Linde-Buzo-Gray algo-rithm [12℄. For an overview of the fundamental literature see [5℄.SOM | a SOM adds an additional topologial onstraint at the generalompetitive learning rule. Like in the latter, iterations start with a randomdistribution of referene ells, but in ontrast, now the ells are onneted byan additional k-dimensional topology | in ase of k = 2 this topology formsa two-dimensional mesh. During adaption of the referene ells regarding thesample distribution, this mesh is also aounted for in a way that neighboringreferene units are moved similarly but with a strength lower than that of thebest mathing ell. It leads to the rise of a map representing a kind of orderingof the referene ells, and herewith, an ordering of the training samples itself.In �gure 3, for example, a two-dimensional map is shown in (d), whih adaptsto a (not visible) sample distribution in 3D spae. In the lower right quarter,the partiular sample distribution is higher than in the rest of the displayedsquare. This property is aounted for by a higher granularity of the shownnetwork.ISGCS | general ompetitive learning strategies and spei�ally the SOMalgorithm are based on a prede�ned set of initial ells whih are to be adaptedto a ertain sample distribution. In ontrast, the ISGCS does not onsist ofa prede�ned set, moreover, it starts with one minimal element and grows toa network of elements. This makes it more exible onerning the underlyingsample struture. To partiularize further di�erenes:� The ISGCS topology is not �xed | it grows from an initial n-dimensionalsimplex to a network of simplies and it may shrink if the underlying datais represented redundantly. Figure 3 shows the growth of a typial ISGCSstruture. Figure 4 exposes the training of a three-dimensional sample setdistributed in a way desribing two separate, ube-wise point lusters. Itan be seen that the network deletes superuous parts of its topology at8



(a) (b) ()Fig. 4. Training (from (a) to ()) of two separate 3D point lusters (drawn in image(a)). The network adapts to the sample distribution during training and the networkells vanish at plaes where the sample distribution is suÆiently low.those loations where samples do not exist.� The ISGCS is apable of resampling the goal funtion aording to a ertainlearning riterion. The resampling feature an be observed in the resultssetion of this work.� The ISGCS training is a ombination of supervised and unsupervised learn-ing | the sample distribution and the goal funtion approximation au-ray determines the network growth and the above mentioned resamplingproess.After training, the resulting model is a grown set of units with lateral onne-tions forming a network of simplies of a ertain dimension. For example, inase of a two-dimensional topology, simplies are triangles.Eah of the network verties arries a Gaussian radial basis funtion (Gaus-sian RBF) whih altogether de�ne a linear funtion base approximating thetraining goal funtion. An example for the approximation apability is shownin �gure 11.For the realization of the ISGCS method, additionally a ounter is attahed toeah of the ISGCS ells, whih stores the number of seletions of the partiularell as a best mathing unit together with the approximation error at thatell ompared to the training goal funtion. Regarding this ounter | alledresoure term | new elements are introdued into the mesh in a way that thebasi simplex struture holds. For a detailed desription see [1℄.2.2 Radiosity on Growing Cell StruturesSee �gure 5 for an overview of the basi sheme of this work. On the right handside (pitures A and B), an example geometry is shown | a \eiling path"9
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Fig. 5. Overview of the omplete approah.as light soure whih emits light on a \oor path". Our approah trains twoneural networks, the �rst one is harged with learning sample rays (pitureA) of the light ow, the seond one iterates on the rays' end points (pitureB) to reate a neural surfae topology. Samples are generated randomly atthe start of the algorithm. During the iterations, new rays are seleted by theISGCS' resampling feature aording to the model's approximation auray.The enter of the algorithm is a permanently growing set of samples.Pitures C and D expose the resulting networks, the kernel network and theshading network, respetively. The shading network approximates the geom-etry through its training with three-dimensional point samples, the kernelnetwork approximates the light ow by examining emission-weighted, six-di-mensional rays.Sine the surfae domain is two-dimensional, the shading network is a two-di-mensional ISGCS. The kernel network approximates the spae of all possiblerays between two points on a two-dimensional surfae domain. Thus, we traina four-dimensional kernel network. Nevertheless, for visualization purposes in�gure 5, we draw a three-dimensional ISGCS as kernel network.The internal representations of the two networks deliver the required dis-retization of the radiosity integral equation. The adaptive disretization pro-ess of the kernel and the surfae network is interonneted and thus guaran-tees the ontinuous adaption of the surfae meshing regarding the omputedlight phenomena. After a ertain number of training steps, a Gaussian linearfuntion base is formed on the shading network topology (piture E) and thelight energy is propagated through the kernel network struture by alulating10



the integrals from equation (4) on the networks of Gaussians.Thereafter, the solution of one reetion of light is alulated through thesurfae base model (see piture F) and the result is used to adapt the emittedenergy B(x) and to adjust the training sample set. This bak-oupling ofthe results of one integration to adjust the sample set relates to the lassialiterative solution of equation (3) by alulating further elements of the �niteNeumann series (eq. (6)). Without the adjustment of the training sample set,only the �rst element of the series would be the result.Propagating the energy whereas onstantly adapting the surfae mesh-ing, mainly fousing on an approximation model of the light ow andnot only the surfae funtion, and using an eÆient neural networkapproximation model are the main ideas of this approah and resultin the eÆieny of the proposed solution method.2.3 Radiosity Light Transfer through Growing Cell StruturesThe following setion gives an impression of how the radiosity equation an betranslated to neural network strutures. The detailed algorithm an be derivedfrom these steps or be read in the original work [2℄.Consider the ISGCS representation of the radiosity kernel through a linearfuntion base 	 = Pzm=1 vm 
m(x;y) of z six-dimensional Gaussian RBFswith Gaussian base omponents 
m and their oeÆients vm determinedthrough the ISGCS training. x and y are two points in the sene geome-try. The training set onsists of randomly drawn sample rays of the geometry,whih are weighted by the energy emitted from the surfae at the rays' startingpoints. The radiosity equation is onverted toB(y) = E (y) + ZS 	(x;y) dxand by projetion to the radiosity base N it beomes a linear system likeb = e+ 24*N(y) ZS 	(x;y) dx+35with single lines bi = ei + ZS Ni(y)ZS 	(x;y) dx dy; i = 1 ::: n:11
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Fig. 6. Parameterization of the integration points x and y on two triangles (sim-plies) of the shading network to alulate the transfer oeÆient of two Gaussians,�i(rp);�j(rq), entered at wp and wq.The shading network is trained onurrently by sample ray end points anddelivers the n Gaussian base omponents with oeÆientsbi = ei + ZS Ni(y)ZS 	(x;y) nXj=1 bjNj dx dy; i = 1 ::: n:This leads to \transfer oeÆients"kpqo = ZZS �p(x) �q(y) 
o(x;y) dx dy; p; q; o = 1 ::: n (8)where �p and �q are Gaussian RBFs of the shading network and 
o a Gaussianomponent of the kernel network. After orthonormalization of the surfae basewe extrat the last step on the way to the �nal solution by onsidering twoomponents �p and �q entered at the orresponding ell enters wp and wq.The integration is aomplished over all pairs of triangles of the approximategeometry de�ned by the shading network (see �gure 6 as an example geometry)leading to kpqo = ZZS �p�q 
o dx dy = X1�k;l�M ZSk ZSl �p �q 
o dx dy (9)where M is the number of triangles of the shading network. One suh pair isdenoted by subsripts k and l in �gure 6 and bounded by the verties wk0,12



wk00, wk000, and wl0, wl00, wl000, respetively. For integration, we assume twopoints x on Sk and y on Sl and de�ne a two-dimensional parameterizationx;y : R2 ! R3 of both triangles,x(s; t) = (1� s� t)wk0 + swk00 + twk000; with s+ t � 1;y(u; v) = (1� u� v)wl0 + uwl00 + vwl000; with u+ v � 1:The distanes rp; rq : R2 ! R of x and y from the enters wp and wq,respetively, an be written asrp(s; t) = kwp � x(s; t)k; and rq(u; v) = kwq � y(u; v)k; (10)and the distane ro : R4 ! R of the onatenation (x;y) 2 R6 from the enterwo 2 R6 of the kernel Gaussian 
o isro(s; t; u; v) = qr2p(s; t) + r2q(u; v): (11)Replaing equations (10) and (11) at equation (9) leads to the integralkpqo = X1�k;l�n ZSk ZSl �p �q 
o dx dy =X1�k;l�n 1Z0 1�vZ0 1Z0 1�tZ0 e�dp�2r2p e�dq�2r2q e�do�2r2o�x�s � �x�t  �y�u � �y�v  ds dt du dvwhere the onstant Jpqokl = �x�s � �x�t  �y�u � �y�v  an be drawn out of theintegral, resulting in a term of the formkpqo = X1�k;l�nJpqokl 1Z0 1�vZ0 1Z0 1�tZ0 eP2(s;t;u;v) ds dt du dv (12)
with a polynomial P2(s; t; u; v) = As2+B t2+C u2+Dv2+E s+F t+Gu+H v + I st+ J uv +K. 13



wp� rpx srp (wo;1; wo;2)fp npto �qFig. 7. The Flatland geometry for integration. Only the upper part of a kernelreferene ray is shown.2.4 Analytial Derivation of the Light TransferEquation (12) ould be alulated numerially, similar to almost all lassialapproahes. Nevertheless, in this work we propose a symboli solution by uti-lizing the partiular integration properties of Gaussians if they are integratedto in�nity.For that we need to aount for two onstraints onerning the struture of theshading network, i.e., the struture of the geometry de�ned by the shading net-work. First, the shading network has to be \suÆiently at" suh that we geta unique integration domain at the aording Gaussians. In fat, we easily anmake this assumption for pratial ases like proven in [2℄. Seond, Gaussianswhih partiipate in the symboli, in�nite integration must not be loated atboundaries of surfaes, sine in that ase, integration must be stopped at theboundaries. Thus, we integrate the border Gaussians numerially and the restwhih is the majority symbolially. This solution does not hange the overallomplexity of the algorithm, and pratial tests have proven not to inreasethe omputation time signi�antly.The assumption of an in�nite integration domain leads to the following ana-lytial derivation. See �gure 7, we assume �p and �q being one-dimensionalfuntions. The geometry onsists of lines instead of surfaes. The kernel is atwo-dimensional funtion, sine rays begin and end at points on lines. Thisway of thinking is lassially termed \Radiosity in Flatland" and has beenproven to be very useful in the development of radiosity methods. Herewith,�rst the lower dimensional, less omplex Flatland solution is reated, whihthen is transposed to three dimensions. In the following we utilize this kind oftransfer also.Consider parameters s and t are the distane arguments of the funtions �p14



and �q, respetively. The parameter r of the partiular kernel Gaussian isderived from x and y through s and t and from the reformulation of thedistane r of the kernel RBF enter wor = r2p + r2q with r2fp;qg = f 2fp;qg + fs; tg2 � 2fs; tgffp;qg � sin�fp;qg:The �fp;qg are the angles between \surfae" normals nfp;qg and the vetorsfp = wp � (wo;1; wo;2) and fq = wq � (wo;3; wo;4) with ffp;qg = kffp;qgk, and fpand fq are vetors de�ned by the enters of the surfae RBF and the top andbottom of the kernel RBF enter (ray), respetively.Inserting the radii from above as parameters of �p, �q, and 
o in the two-di-mensional form of equation (9) deliverskpqo = ZZR eP2(s;t) ds dt (13)with a polynomial P2(s; t) = �Ap s2 � Aq t2 + Bp s + Bq t � C, and thesubstitutions Afp;qg = do�2 + dfp;qg�2, Bfp;qg = do�2 � ffp;qg � sin�fp;qg, andC = do�2 � (f 2p + f 2q ).With RR exp (�As2 +Bs� C) ds = exp (B24A�C)p�pA , equation (13) an be rewrit-ten as kpqo = exp ( B2p4Ap + B2q4Aq � C) �qApqAq : (14)Swithing bak to three-dimensional geometries is idential to integratingtwie over s and t with di�erent parameters but the same oeÆients Afp;qg,Bfp;qg, and C. Thus, the non-onstant arguments of the exponential funtionin the solution (eq. (14)) are doubled and the oeÆients squared, leading tothe following analytial solution.kpqo = ZZR2 eP2(s;t) ds dt = exp ( B2p2Ap + B2q2Aq � C) �2ApAq (15)
3 ResultsFigure 8 shows a simple example geometry. It is built from a oor surfae,a wall, and a eiling, the latter serves as light soure. On the left hand side,15



Fig. 8. A simple example sene. From left to right, the reated surfae network, thesample distribution, and the �nal radiosity result are shown.the reated shading network is shown whih is used as the FE meshing. Inthe middle, the generated sample set is exposed. It an be observed that thesample distribution aounts for the �nal olor shading on the surfaes. Thelatter is displayed on the right hand side of �gure 8.In �gure 9 two blokers are inserted in the light ow from the eiling, whihgenerate sharp shadow edges. On the left hand side, the initial sene geometryis exposed, in the middle, the shading network whih is reated during thetraining phase, and on the right hand side, the �nal intensity distributiongenerated by the eiling light soure and the two light blokers.The diagrams in �gure 10 show error plots of the kernel approximation a-uray of the presented approah, growing ells radiosity (GCR), for the ge-ometries of �gures 8 and 9. The error is ompared to a lassial method |hierarhial radiosity. The horizontal axes display the granularity of the twoapproximation models | they expose the number of funtion base ompo-nents and it an be observed that the error is signi�antly lower than that ofthe lassial HR method.Figure 11 ompares the two kernel approximation models. On the left handside (pitures (a) and (b)), results of the hierarhial radiosity approah, on

Fig. 9. A simple example sene with two light blokers reating sharp shadows. Fromleft to right, the sene geometry, the network, and the omputed result.16
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GCRFig. 10. Approximation auray of the kernel model of the two geometries from �g-ures 8 and 9 | this work (GCR) if ompared to the hierarhial radiosity approah(HR). The horizontal axes show the granularity of the approximation models, i.e.,the number of base funtion omponents.the right hand side (pitures () and (d)), results of the GCR approah ofthis work is exposed. Pitures (a) and () show the di�erent disretizations,pitures (b) and (d) the kernel approximation harateristis.4 ConlusionWe present an approah for alulating the ow of light in virtual three-dimen-sional geometries by using a sheme of two self-organizing neural networks. Itoutperforms lassial methods in several ways and presents a bunh of novel,unommon ideas outlined as follows.� A neural network is interpreted as a virtual, geometri sene desription.Vie versa, a �nite element method is realized using the internal represen-tations of two neural networks as an FE mesh.� The light ow is analyzed diretly, whih has not been aomplished in
(a) (b) () (d)Fig. 11. Images (a) and (b) show the distribution of base funtion omponents andthe kernel approximation for the lassial HR radiosity approah for an exampleFlatland geometry. Images () and (d) expose the same approximation task by aISGCS | the points in piture () are enters of the Gaussian radial base funtions.17



earlier radiosity approahes and whih leads to an outstanding eÆient rep-resentation of the approximation model.� The presented work is ompletely independent from the desription of thesene geometry | the �nite element mesh is not onstrained by the polygongeometry whih is a vital disadvantage of lassial radiosity approahes.In the author's opinion, the main attration of the presented method is its self-organizing nature | by iteratively adjusting a set of neural networks, an FEmesh is generated apable of being used to solve this work's partiular FE task.Meshing whih ommonly is the most diÆult task in similar approahes hasompletely been left to neural networks, and thus, the approah is able to pro�tfrom the typial outstanding neural network failities of analyzing arbitrarydata distributions. It results in an eÆient meshing and in signi�antly lowererror rates if ompared to lassial methods.Referenes[1℄ Christian-A. Bohn. An inremental unsupervised learning sheme forfuntion approximation. In Proeedings of the 1997 IEEE InternationalConferene on Neural Networks, volume 3, pages 1792{1797, Pisataway,NJ, June 1997.[2℄ Christian-A. Bohn. Radiosity on Evolving Networks. In�x, Sankt Au-gustin, Germany, April 2000. Dissertationen zur Computergraphik, ISBN3-89838-603-1.[3℄ Mihael F. Cohen, Shenhang Eri Chen, John R. Wallae, and Donald P.Greenberg. A progressive re�nement approah to fast radiosity imagegeneration. In John Dill, editor, Computer Graphis (SIGGRAPH '88Proeedings), volume 22, pages 75{84, August 1988.[4℄ Mihael F. Cohen and John R. Wallae. Radiosity and Realisti ImageSynthesis. Aademi Press Professional, San Diego, CA, 1993.[5℄ B. S. Duran and P. L. Odell. Cluster Analysis ( A Survey ), volume100 of Leture Notes in Eonomis and Mathematial Systems. Springer,Berlin/New York, 1974.[6℄ Bernd Fritzke. Growing ell strutures - a self-organizing network forunsupervised and supervised learning. Tehnial Report ICSI TR-93-026, International Computer Siene Institute, Berkeley, CA, May 1993.http://pikas.inf.tu-dresden.de/�fritzke/papers/fritzke.tr93-26.ps.gz.[7℄ Bernd Fritzke. Inremental learning of loal linear mappings. In Proeed-ings of the ICANN-95, Paris, Frane, 1995.[8℄ Cindy M. Goral, Kenneth E. Torrane, Donald P. Greenberg, and BennettBattaile. Modelling the interation of light between di�use surfaes. InComputer Graphis (SIGGRAPH '84 Proeedings), volume 18, pages 212{22, July 1984. 18



[9℄ Pat Hanrahan, David Salzman, and Larry Aupperle. A rapid hierarhialradiosity algorithm. In Thomas W. Sederberg, editor, Computer Graphis(SIGGRAPH '91 Proeedings), volume 25, pages 197{206, July 1991.[10℄ James T. Kajiya. The rendering equation. In David C. Evans and Rus-sell J. Athay, editors, Computer Graphis (SIGGRAPH '86 Proeedings),volume 20, pages 143{150, August 1986.[11℄ Teuvo Kohonen. Self-organized formation of topologially orret featuremaps. Biologial Cybernetis, 43, pages 59{99, 1982.[12℄ Y. Linde, A. Buzo, and R. M. Gray. An algorithm for vetor quantizerdesign. IEEE Trans. on Communiations, COM-28(1):84{95, January1980.[13℄ Fran�ois Sillion and Claude Pueh. Radiosity and Global Illumination.Morgan Kaufmann, San Franiso, 1994.

19


