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ation 2Abstra
tCal
ulating the transfer of light in three-dimensional virtual environments is aninevitable feature of modern 
omputer graphi
s systems. Usually it is a

omplishedby a �nite element (FE) method where the three-dimensional surfa
es of the s
enegeometry are 
ut into several sub-surfa
es | a surfa
e meshing is generated.We present a new way of 
reating this surfa
e mesh: the internal stru
tures oftwo neural networks trained by sample surfa
e points and sample light rays areinterpreted as su
h a mesh on whi
h the �nite element method is exe
uted.The presented approa
h avoids several drawba
ks arising with 
lassi
al meth-ods. The \neural meshing" outperforms standard te
hniques in terms of memoryrequirements and a

ura
y. Additionally this work presents several novel ideas ofinterpreting a neural network skeleton in terms of a virtual three-dimensional geom-etry and as a representation of light energy propagating through a three-dimensionalpolygon-based s
ene.Key words: Computer graphi
s, arti�
ial neural networks, realisti
 imagesynthesis, rendering, radiosity, �nite element method, growing 
ell stru
tures,self-organizing mapping
1 Introdu
tionRealisti
 looking pi
tures of three-dimensional virtual environments are in-
reasingly demanded in the �eld of 
omputer graphi
s. It has been shownthat 
omputing su
h images 
ommonly requires the simulation of a physi
ally1 bohn�imk.fraunhofer.de, http://viswiz.de/2 http://www.imk.fraunhofer.de/Preprint submitted to Elsevier Preprint 23 January 2002



adequate model of the 
ow of light. Due to the 
omplexity of su
h a model[10℄, the radiosity te
hnique [4℄ has been proposed a

ounting for an ex
erptof the overall phenomena of the physi
al light model. Radiosity simpli�es thegeneral s
attering properties of surfa
es to ideally di�use (Lambertian) re
e
-tion and emission. Due to its 
onvin
ing results 3 , on the one hand, and dueto the moderate amount of 
omputing resour
es required, on the other hand,radiosity has found broad a

eptan
e in �elds like ar
hite
ture, virtual reality,and �lm produ
tion.1.1 The Radiosity EquationMathemati
ally, radiosity is denoted by the radiosity integral equationB(y) = E (y) + �(y) ZS G(x;y) B(x) dx (1)where x and y are three-dimensional points lying in the two-dimensional sur-fa
e spa
e S and whi
h are de�ned by a polygonal s
ene des
ription. Theradiosity value B(y) at a point y represents the light intensity 4 determinedby the weighted a

umulation (integral in equation (1)) of the radiosity B(x)emitted from all points x in the s
ene geometry. The geometri
 termG(x;y) = 
os�x 
os�y� kx� yk2 �V (x;y) (2)des
ribes the geometri
 properties of the light transport from a point x toanother point y. It depends on the distan
e between the points and on theangles whi
h the normals at their lo
ations with the 
onne
ting ray build(see �gure 1 and [13℄ for a detailed derivation of equation (2)). V is 
alledthe visibility term. Its value depends on the mutual visibility of two pointsand equals zero if the dire
t view between them is o

luded by a s
ene obje
t,otherwise one. � is the re
e
tan
e term whi
h determines the portion of lightwhi
h is absorbed at a re
e
tion at a point y. � de�nes the 
olor (in this 
asea grey tone) of the parti
ular surfa
e. E is the self-emittan
e at ea
h point ofthe environment. It equals zero at surfa
e points whi
h are not light sour
es,otherwise it represents light emission and is greater than zero.3 see �gure 2 for example4 For simpli
ity, B is assumed being a one-dimensional intensity value, whi
h issuÆ
ient for the des
ription of mono
hrome light. The transition to 
olors is 
om-monly a

omplished by 
al
ulating three separate 
olor bands and a

umulatingthe results. 2
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Fig. 1. The geometri
 term (eq. (2)) of the radiosity integral equation des
ribingthe di�use light re
e
tion behavior between two points in a virtual environment.1.2 Finite Elements and the Radiosity EquationB , E , �, and G in equation (1) are 
ontinuous fun
tions de�ned on an in�nitenumber of points des
ribing the surfa
e domain. In su
h 
ases, 
ommonly, a�nite element (FE) method is applied transforming the 
ontinuous fun
tionsinto approximations by dis
rete linear fun
tion bases. Due to the usually lo
alsupport of the base 
omponents this dis
retization is often termed meshing.The dis
retization usually originates at B in equation (1), whi
h is transformedinto an approximation B(x) = Pni=1 biNi(x). Here Ni are the n 
omponentsof the 
hosen fun
tion base, whi
h are lo
ated on the surfa
es of the s
enegeometry. If we also apply this s
heme to E and �, then, equation (1) 
an beproje
ted onto the fun
tion base N = (N1;N2 :::Nn) (see [2℄ for an expli
itdes
ription) resulting in a linear systemb = e+Kb: (3)Here the ve
tors b and e 
ontain the 
oeÆ
ients for ea
h of the a

ordingbase 
omponents and K is 
alled the dis
rete transport operator 
onsisting ofsingle transport 
oeÆ
ientskij = ZS Ni(y)�(y) ZS G(x;y)Nj(x) dx dy; i; j = 1 ::: n: (4)Thus, with equation (3) we developed a dis
rete form of equation (1). A �niteset of 
oeÆ
ients b distribute their energy through a �nite set of transfer3



Fig. 2. On the left hand side, the subdivided surfa
es of a virtual model of theGerman Museum of Ar
hite
ture in Frankfurt/Main, on the right hand side, theresulting radiosity simulation of the light distribution.
oeÆ
ients K. In 
ontrast, in equation (1) an in�nite number of intensitypoints B intera
t through an in�nite number of rays K . Finally, equation (3)enables us to solve the radiosity equation numeri
ally by 
ommon iterationmethods for linear systems.A

ording to the formulation in equation (4) and for the following 
onsider-ations we rewrite equation (1) like the general form of a Fredholm integralequation of the se
ond kindB(y) = E (y) + ZS K (x;y) B(x) dx (5)with the kernel K 
ombining all geometri
 relationships from equation (1).See �gure 2, for example. Here, the s
ene is subdivided into smaller subpat
hes.Considering the last paragraphs, in this 
ase the mentioned base 
omponentsare 
onstant box fun
tions with support limited to ea
h of the subpat
h bound-aries. A 
onstant 
olor value is assumed for ea
h of them | the 
oeÆ
ientsb. This more intuitive view of avoiding the formal de�nition of base fun
tionshas been applied in many 
lassi
al approa
hes.1.3 Numeri
al Solution of the Radiosity EquationThe shape of equation (3) delivers a hint for a possible solution method |the 
al
ulation of the �nite Neumann seriesb = (I+ 1Xk=1K(k)) e (6)where the 
omponents of e are initialized with the emission energy of thea

ording surfa
es proje
ted on the fun
tion base N. Intuitively, equation (6)4




an be evaluated by unfolding it into a re
ursion s
hemeb(0) = e; b(k+1) = e+Kb(k); k = 1 :::1 (7)whi
h 
onverges due to the spe
tral radius of (I�K) being less than one (seefor example [4℄, pgs. 110-111). Every new b(k) in equation (7) de�nes a furtherapproximation of the radiosity and repla
es the b on the right side for thefollowing iterations. Ea
h evaluation of equation (7) | ea
h element of theNeumann series | 
an be seen as another re
e
tion of the propagated light.This type of solution by a relaxation method is most 
ommon in the �eld ofradiosity sin
e general matrix inversion te
hniques mostly fail due to the sizeof the linear system.1.4 MotivationGeometries 
oming from appli
ations like, for example, virtual reality nowa-days 
ontain up to 50000 polygons. To represent the 
olor shading on thesesurfa
es adequately, they 
ommonly are subdivided into hundreds of smallerpat
hes ea
h, and thus, the solution of the linear system of equation (3) easilygoes beyond the s
ope of 
ommonly available 
omputing hardware.The subdivision algorithm is vital point in solving the radiosity equa-tion. The solution eÆ
ien
y, and moreover, the viability of a 
ompu-tation strongly depend on the eÆ
ien
y of the subdivision s
heme.Subdivision eÆ
ien
y means the same like in general approximation tasks,namely, a

ounting for 
oheren
e of the underlying goal fun
tion | smoothlo
ations require less support by base 
omponents than lo
ations of high vari-ation (like sharply edged shadows in 
ase of radiosity). The invention of sub-division algorithms for radiosity is mainly 
hallenged by two issues:a) Default meshing. It is hardly possible to blast the boundaries of the s
enesurfa
es, i.e., to de�ne radiosity base fun
tions with a larger support thanjust the area of one single polygon of the s
ene de�nition. Thus, 
ommonlythe initial number of transfer 
oeÆ
ients kij (see equation (4)) equals thesquare of the number of polygons of the s
ene de�nition. This property is
alled initial linking and it arises independently from the subsequent sub-division s
heme.b) Sequen
ing issue. Whereas the unknown radiosity | the 
olor shadingon the surfa
es | should be available for an adequate dis
retization of thes
ene, the radiosity 
an only be 
al
ulated if this dis
retization of the s
enealready is available. 5



With 
lassi
al radiosity approa
hes the above topi
s are well-known. This workproposes a workaround like follows:a) The dire
t referen
e to the s
ene de�nition, i.e., to single polygons will beavoided, and instead, a sampling based algorithm examines the fun
tionsto be approximated. An additional representation of the surfa
e topology,whi
h is not atta
hed to the originating polygons is developed.b) In order to develop an eÆ
ient approximation model the sequen
ing issuepostulates to regard the light 
ow (the term KB (eq. (5))) as a whole andnot the radiosity B separately, from whi
h a surfa
e dis
retization is derived.In 
ontrast to the latter item, 
lassi
al radiosity approa
hes do not regard thelight 
ow KB in the �rst pla
e. Instead, they fo
us on the surfa
e geometryby developing a radiosity base without a

ounting for the light 
ow whi
hvirtually is responsible for the parti
ular meshing requirements.The reason is self-evident: ideally a

ounting for KB is hardly possible if thegeometri
 de�nition of surfa
es must be regarded. The existen
e of polygonshinders the appli
ation of well-known eÆ
ient mathemati
al approximationmethods for analyzing KB dire
tly, and thus, it prohibits a 
ompletely freeexamination of the light transfer relationships.Considering these issues, we propose a self-organizing algorithm whi
hsmoothly adapts to the problem under 
onsideration without a pre-de�ned subdivision topology and without sti
king to single surfa
es.The algorithm is 
hara
terized by a 
uently adapting set of neuralnetworks, whi
h automati
ally draws samples (points and rays) fromthe s
ene des
ription and whi
h grows to a �nal \neural mesh" onwhi
h the FE 
al
ulations are exe
uted.Previous work. In 
lassi
al radiosity (CR) [8℄ an arbitrary base on the sur-fa
es is 
reated \by hand" (subdivision into subpat
hes). Sin
e the subdivisiondoes not regard the �nal (not yet known) intensity bleeding, a 
ommon aidhas been to estimate 5 the solution B and to develop the meshing a

ordingly.Progressive radiosity approa
hes (PR) [3℄ like they have been implemented inmany 
ommer
ially available software pa
kages 
ompute dire
t shadows 6 fromwhi
h an initial dis
retization is derived. Hierar
hi
al radiosity approa
hes(HR) [9℄ are the most promising attempts up to now. They start with a 
oarsedis
retization of the surfa
e domain, and then, re�ne pat
hes depending onthe parti
ular size of the a

ording transfer 
oeÆ
ients.5 intuitively, with the knowledge of an experien
ed user6 shadows generated by the dire
t emission of the light sour
es6



2 A Neural Network Model for Solving the Radiosity Equation2.1 In
remental Supervised Growing Cell Stru
turesThis work utilizes the in
remental supervised growing 
ell stru
tures (ISGCS)approa
h presented in [1℄ and based on [6℄ (see also [7℄). It is regarded aspe
i�
 sort of general arti�
ial neural network whi
h 
an eÆ
iently be usedfor 
lustering and fun
tion approximation tasks.In this work, one ISGCS serves as an approximation model of the radiositykernel K (eq. (5)) and delivers the required light 
ow dis
retization whi
h wehave been asking for in the previous se
tion. Additionally, a further ISGCStaken as dis
retization (meshing) of the geometry is utilized for the represen-tation of the radiosity itself.An ISGCS 
an be seen as an extended Kohonen Self-Organizing Feature Map(SOM) [11℄ whi
h is well-known in the �eld of general 
ompetitive learningusing arti�
ial neural networks.Competitive Learning | the basi
 prin
iple of 
ompetitive learning ren-ders an algorithm whi
h adapts a set of n-dimensional referen
e ve
tors 7 toa signi�
antly bigger set of n-dimensional training samples in a way that thedistribution of the referen
e ve
tors mat
h the sample distribution in the n-dimensional spa
e. For example, a 
ulmination of input samples at 
ertainregions in the input spa
e (
lusters) 
an be noti
ed by a similar 
ulminationof referen
e 
ells.A plain iteration method a

omplishes the following: samples of the trainingset are randomly presented to the set of randomly distributed referen
e 
ells.Ea
h time the best mat
hing referen
e 
ell (the \best mat
hing unit" (BMU))| the 
ell whi
h is most similar to the input, i.e., whi
h lies at the smallestEu
lidian distan
e | is determined. Then, this 
ell is moved into the dire
tionof the input a

ording to a 
ertain moving strength parameter.The pro
ess is repeated several times while steadily de
reasing the movingstrength. Finally, the result is a set of referen
e units whi
h, �rst, are a

u-mulated at those lo
ations where the training sample distribution is high, andse
ond, ea
h of whi
h mimi
s a kind of \average ve
tor" of its surroundingtraining samples.Prin
ipally, 
ompetitive learning is applied in most iterative 
lustering ap-7 
ommonly 
alled referen
e units in the �eld of neural networks or referen
e 
ellsin the growing 
ells area 7



(a) (b) (
) (d)Fig. 3. Pi
tures (a-
) show the growing of a two-dimensional ISGCS whi
h is trainedby three-dimensional points lying in 3D spa
e. Image (d) is generated by trainingthrough a non-uniform sample distribution.proa
hes, like for example k-means 
lustering or the Linde-Buzo-Gray algo-rithm [12℄. For an overview of the fundamental literature see [5℄.SOM | a SOM adds an additional topologi
al 
onstraint at the general
ompetitive learning rule. Like in the latter, iterations start with a randomdistribution of referen
e 
ells, but in 
ontrast, now the 
ells are 
onne
ted byan additional k-dimensional topology | in 
ase of k = 2 this topology formsa two-dimensional mesh. During adaption of the referen
e 
ells regarding thesample distribution, this mesh is also a

ounted for in a way that neighboringreferen
e units are moved similarly but with a strength lower than that of thebest mat
hing 
ell. It leads to the rise of a map representing a kind of orderingof the referen
e 
ells, and herewith, an ordering of the training samples itself.In �gure 3, for example, a two-dimensional map is shown in (d), whi
h adaptsto a (not visible) sample distribution in 3D spa
e. In the lower right quarter,the parti
ular sample distribution is higher than in the rest of the displayedsquare. This property is a

ounted for by a higher granularity of the shownnetwork.ISGCS | general 
ompetitive learning strategies and spe
i�
ally the SOMalgorithm are based on a prede�ned set of initial 
ells whi
h are to be adaptedto a 
ertain sample distribution. In 
ontrast, the ISGCS does not 
onsist ofa prede�ned set, moreover, it starts with one minimal element and grows toa network of elements. This makes it more 
exible 
on
erning the underlyingsample stru
ture. To parti
ularize further di�eren
es:� The ISGCS topology is not �xed | it grows from an initial n-dimensionalsimplex to a network of simpli
es and it may shrink if the underlying datais represented redundantly. Figure 3 shows the growth of a typi
al ISGCSstru
ture. Figure 4 exposes the training of a three-dimensional sample setdistributed in a way des
ribing two separate, 
ube-wise point 
lusters. It
an be seen that the network deletes super
uous parts of its topology at8



(a) (b) (
)Fig. 4. Training (from (a) to (
)) of two separate 3D point 
lusters (drawn in image(a)). The network adapts to the sample distribution during training and the network
ells vanish at pla
es where the sample distribution is suÆ
iently low.those lo
ations where samples do not exist.� The ISGCS is 
apable of resampling the goal fun
tion a

ording to a 
ertainlearning 
riterion. The resampling feature 
an be observed in the resultsse
tion of this work.� The ISGCS training is a 
ombination of supervised and unsupervised learn-ing | the sample distribution and the goal fun
tion approximation a

u-ra
y determines the network growth and the above mentioned resamplingpro
ess.After training, the resulting model is a grown set of units with lateral 
onne
-tions forming a network of simpli
es of a 
ertain dimension. For example, in
ase of a two-dimensional topology, simpli
es are triangles.Ea
h of the network verti
es 
arries a Gaussian radial basis fun
tion (Gaus-sian RBF) whi
h altogether de�ne a linear fun
tion base approximating thetraining goal fun
tion. An example for the approximation 
apability is shownin �gure 11.For the realization of the ISGCS method, additionally a 
ounter is atta
hed toea
h of the ISGCS 
ells, whi
h stores the number of sele
tions of the parti
ular
ell as a best mat
hing unit together with the approximation error at that
ell 
ompared to the training goal fun
tion. Regarding this 
ounter | 
alledresour
e term | new elements are introdu
ed into the mesh in a way that thebasi
 simplex stru
ture holds. For a detailed des
ription see [1℄.2.2 Radiosity on Growing Cell Stru
turesSee �gure 5 for an overview of the basi
 s
heme of this work. On the right handside (pi
tures A and B), an example geometry is shown | a \
eiling pat
h"9



55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555
55555555555555555555555555

Projection of the kernel 
approximation model on the 
intensity function base and 
adaption of the outgoing 

energy of the ray samples

Generation of an intensity 
function base

Training of a 4D network for a 
kernel approximation model

Training of a 2D network for 
a surface discretization 

Sampling of rays (start
and end points on the 
surfaces of the scene)

A

B

C

D

E
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Fig. 5. Overview of the 
omplete approa
h.as light sour
e whi
h emits light on a \
oor pat
h". Our approa
h trains twoneural networks, the �rst one is 
harged with learning sample rays (pi
tureA) of the light 
ow, the se
ond one iterates on the rays' end points (pi
tureB) to 
reate a neural surfa
e topology. Samples are generated randomly atthe start of the algorithm. During the iterations, new rays are sele
ted by theISGCS' resampling feature a

ording to the model's approximation a

ura
y.The 
enter of the algorithm is a permanently growing set of samples.Pi
tures C and D expose the resulting networks, the kernel network and theshading network, respe
tively. The shading network approximates the geom-etry through its training with three-dimensional point samples, the kernelnetwork approximates the light 
ow by examining emission-weighted, six-di-mensional rays.Sin
e the surfa
e domain is two-dimensional, the shading network is a two-di-mensional ISGCS. The kernel network approximates the spa
e of all possiblerays between two points on a two-dimensional surfa
e domain. Thus, we traina four-dimensional kernel network. Nevertheless, for visualization purposes in�gure 5, we draw a three-dimensional ISGCS as kernel network.The internal representations of the two networks deliver the required dis-
retization of the radiosity integral equation. The adaptive dis
retization pro-
ess of the kernel and the surfa
e network is inter
onne
ted and thus guaran-tees the 
ontinuous adaption of the surfa
e meshing regarding the 
omputedlight phenomena. After a 
ertain number of training steps, a Gaussian linearfun
tion base is formed on the shading network topology (pi
ture E) and thelight energy is propagated through the kernel network stru
ture by 
al
ulating10



the integrals from equation (4) on the networks of Gaussians.Thereafter, the solution of one re
e
tion of light is 
al
ulated through thesurfa
e base model (see pi
ture F) and the result is used to adapt the emittedenergy B(x) and to adjust the training sample set. This ba
k-
oupling ofthe results of one integration to adjust the sample set relates to the 
lassi
aliterative solution of equation (3) by 
al
ulating further elements of the �niteNeumann series (eq. (6)). Without the adjustment of the training sample set,only the �rst element of the series would be the result.Propagating the energy whereas 
onstantly adapting the surfa
e mesh-ing, mainly fo
using on an approximation model of the light 
ow andnot only the surfa
e fun
tion, and using an eÆ
ient neural networkapproximation model are the main ideas of this approa
h and resultin the eÆ
ien
y of the proposed solution method.2.3 Radiosity Light Transfer through Growing Cell Stru
turesThe following se
tion gives an impression of how the radiosity equation 
an betranslated to neural network stru
tures. The detailed algorithm 
an be derivedfrom these steps or be read in the original work [2℄.Consider the ISGCS representation of the radiosity kernel through a linearfun
tion base 	 = Pzm=1 vm 
m(x;y) of z six-dimensional Gaussian RBFswith Gaussian base 
omponents 
m and their 
oeÆ
ients vm determinedthrough the ISGCS training. x and y are two points in the s
ene geome-try. The training set 
onsists of randomly drawn sample rays of the geometry,whi
h are weighted by the energy emitted from the surfa
e at the rays' startingpoints. The radiosity equation is 
onverted toB(y) = E (y) + ZS 	(x;y) dxand by proje
tion to the radiosity base N it be
omes a linear system likeb = e+ 24*N(y) ZS 	(x;y) dx+35with single lines bi = ei + ZS Ni(y)ZS 	(x;y) dx dy; i = 1 ::: n:11
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Fig. 6. Parameterization of the integration points x and y on two triangles (sim-pli
es) of the shading network to 
al
ulate the transfer 
oeÆ
ient of two Gaussians,�i(rp);�j(rq), 
entered at wp and wq.The shading network is trained 
on
urrently by sample ray end points anddelivers the n Gaussian base 
omponents with 
oeÆ
ientsbi = ei + ZS Ni(y)ZS 	(x;y) nXj=1 bjNj dx dy; i = 1 ::: n:This leads to \transfer 
oeÆ
ients"kpqo = ZZS �p(x) �q(y) 
o(x;y) dx dy; p; q; o = 1 ::: n (8)where �p and �q are Gaussian RBFs of the shading network and 
o a Gaussian
omponent of the kernel network. After orthonormalization of the surfa
e basewe extra
t the last step on the way to the �nal solution by 
onsidering two
omponents �p and �q 
entered at the 
orresponding 
ell 
enters wp and wq.The integration is a

omplished over all pairs of triangles of the approximategeometry de�ned by the shading network (see �gure 6 as an example geometry)leading to kpqo = ZZS �p�q 
o dx dy = X1�k;l�M ZSk ZSl �p �q 
o dx dy (9)where M is the number of triangles of the shading network. One su
h pair isdenoted by subs
ripts k and l in �gure 6 and bounded by the verti
es wk0,12



wk00, wk000, and wl0, wl00, wl000, respe
tively. For integration, we assume twopoints x on Sk and y on Sl and de�ne a two-dimensional parameterizationx;y : R2 ! R3 of both triangles,x(s; t) = (1� s� t)wk0 + swk00 + twk000; with s+ t � 1;y(u; v) = (1� u� v)wl0 + uwl00 + vwl000; with u+ v � 1:The distan
es rp; rq : R2 ! R of x and y from the 
enters wp and wq,respe
tively, 
an be written asrp(s; t) = kwp � x(s; t)k; and rq(u; v) = kwq � y(u; v)k; (10)and the distan
e ro : R4 ! R of the 
on
atenation (x;y) 2 R6 from the 
enterwo 2 R6 of the kernel Gaussian 
o isro(s; t; u; v) = qr2p(s; t) + r2q(u; v): (11)Repla
ing equations (10) and (11) at equation (9) leads to the integralkpqo = X1�k;l�n ZSk ZSl �p �q 
o dx dy =X1�k;l�n 1Z0 1�vZ0 1Z0 1�tZ0 e�dp�2r2p e�dq�2r2q e�do�2r2o
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�y�u � �y�v 




 ds dt du dvwhere the 
onstant Jpqokl = 


�x�s � �x�t 


 


�y�u � �y�v 


 
an be drawn out of theintegral, resulting in a term of the formkpqo = X1�k;l�nJpqokl 1Z0 1�vZ0 1Z0 1�tZ0 eP2(s;t;u;v) ds dt du dv (12)
with a polynomial P2(s; t; u; v) = As2+B t2+C u2+Dv2+E s+F t+Gu+H v + I st+ J uv +K. 13



wp� rpx srp (wo;1; wo;2)fp npto �qFig. 7. The Flatland geometry for integration. Only the upper part of a kernelreferen
e ray is shown.2.4 Analyti
al Derivation of the Light TransferEquation (12) 
ould be 
al
ulated numeri
ally, similar to almost all 
lassi
alapproa
hes. Nevertheless, in this work we propose a symboli
 solution by uti-lizing the parti
ular integration properties of Gaussians if they are integratedto in�nity.For that we need to a

ount for two 
onstraints 
on
erning the stru
ture of theshading network, i.e., the stru
ture of the geometry de�ned by the shading net-work. First, the shading network has to be \suÆ
iently 
at" su
h that we geta unique integration domain at the a

ording Gaussians. In fa
t, we easily 
anmake this assumption for pra
ti
al 
ases like proven in [2℄. Se
ond, Gaussianswhi
h parti
ipate in the symboli
, in�nite integration must not be lo
ated atboundaries of surfa
es, sin
e in that 
ase, integration must be stopped at theboundaries. Thus, we integrate the border Gaussians numeri
ally and the restwhi
h is the majority symboli
ally. This solution does not 
hange the overall
omplexity of the algorithm, and pra
ti
al tests have proven not to in
reasethe 
omputation time signi�
antly.The assumption of an in�nite integration domain leads to the following ana-lyti
al derivation. See �gure 7, we assume �p and �q being one-dimensionalfun
tions. The geometry 
onsists of lines instead of surfa
es. The kernel is atwo-dimensional fun
tion, sin
e rays begin and end at points on lines. Thisway of thinking is 
lassi
ally termed \Radiosity in Flatland" and has beenproven to be very useful in the development of radiosity methods. Herewith,�rst the lower dimensional, less 
omplex Flatland solution is 
reated, whi
hthen is transposed to three dimensions. In the following we utilize this kind oftransfer also.Consider parameters s and t are the distan
e arguments of the fun
tions �p14



and �q, respe
tively. The parameter r of the parti
ular kernel Gaussian isderived from x and y through s and t and from the reformulation of thedistan
e r of the kernel RBF 
enter wor = r2p + r2q with r2fp;qg = f 2fp;qg + fs; tg2 � 2fs; tgffp;qg � sin�fp;qg:The �fp;qg are the angles between \surfa
e" normals nfp;qg and the ve
torsfp = wp � (wo;1; wo;2) and fq = wq � (wo;3; wo;4) with ffp;qg = kffp;qgk, and fpand fq are ve
tors de�ned by the 
enters of the surfa
e RBF and the top andbottom of the kernel RBF 
enter (ray), respe
tively.Inserting the radii from above as parameters of �p, �q, and 
o in the two-di-mensional form of equation (9) deliverskpqo = ZZR eP2(s;t) ds dt (13)with a polynomial P2(s; t) = �Ap s2 � Aq t2 + Bp s + Bq t � C, and thesubstitutions Afp;qg = do�2 + dfp;qg�2, Bfp;qg = do�2 � ffp;qg � sin�fp;qg, andC = do�2 � (f 2p + f 2q ).With RR exp (�As2 +Bs� C) ds = exp (B24A�C)p�pA , equation (13) 
an be rewrit-ten as kpqo = exp ( B2p4Ap + B2q4Aq � C) �qApqAq : (14)Swit
hing ba
k to three-dimensional geometries is identi
al to integratingtwi
e over s and t with di�erent parameters but the same 
oeÆ
ients Afp;qg,Bfp;qg, and C. Thus, the non-
onstant arguments of the exponential fun
tionin the solution (eq. (14)) are doubled and the 
oeÆ
ients squared, leading tothe following analyti
al solution.kpqo = ZZR2 eP2(s;t) ds dt = exp ( B2p2Ap + B2q2Aq � C) �2ApAq (15)
3 ResultsFigure 8 shows a simple example geometry. It is built from a 
oor surfa
e,a wall, and a 
eiling, the latter serves as light sour
e. On the left hand side,15



Fig. 8. A simple example s
ene. From left to right, the 
reated surfa
e network, thesample distribution, and the �nal radiosity result are shown.the 
reated shading network is shown whi
h is used as the FE meshing. Inthe middle, the generated sample set is exposed. It 
an be observed that thesample distribution a

ounts for the �nal 
olor shading on the surfa
es. Thelatter is displayed on the right hand side of �gure 8.In �gure 9 two blo
kers are inserted in the light 
ow from the 
eiling, whi
hgenerate sharp shadow edges. On the left hand side, the initial s
ene geometryis exposed, in the middle, the shading network whi
h is 
reated during thetraining phase, and on the right hand side, the �nal intensity distributiongenerated by the 
eiling light sour
e and the two light blo
kers.The diagrams in �gure 10 show error plots of the kernel approximation a
-
ura
y of the presented approa
h, growing 
ells radiosity (GCR), for the ge-ometries of �gures 8 and 9. The error is 
ompared to a 
lassi
al method |hierar
hi
al radiosity. The horizontal axes display the granularity of the twoapproximation models | they expose the number of fun
tion base 
ompo-nents and it 
an be observed that the error is signi�
antly lower than that ofthe 
lassi
al HR method.Figure 11 
ompares the two kernel approximation models. On the left handside (pi
tures (a) and (b)), results of the hierar
hi
al radiosity approa
h, on

Fig. 9. A simple example s
ene with two light blo
kers 
reating sharp shadows. Fromleft to right, the s
ene geometry, the network, and the 
omputed result.16
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ura
y of the kernel model of the two geometries from �g-ures 8 and 9 | this work (GCR) if 
ompared to the hierar
hi
al radiosity approa
h(HR). The horizontal axes show the granularity of the approximation models, i.e.,the number of base fun
tion 
omponents.the right hand side (pi
tures (
) and (d)), results of the GCR approa
h ofthis work is exposed. Pi
tures (a) and (
) show the di�erent dis
retizations,pi
tures (b) and (d) the kernel approximation 
hara
teristi
s.4 Con
lusionWe present an approa
h for 
al
ulating the 
ow of light in virtual three-dimen-sional geometries by using a s
heme of two self-organizing neural networks. Itoutperforms 
lassi
al methods in several ways and presents a bun
h of novel,un
ommon ideas outlined as follows.� A neural network is interpreted as a virtual, geometri
 s
ene des
ription.Vi
e versa, a �nite element method is realized using the internal represen-tations of two neural networks as an FE mesh.� The light 
ow is analyzed dire
tly, whi
h has not been a

omplished in
(a) (b) (
) (d)Fig. 11. Images (a) and (b) show the distribution of base fun
tion 
omponents andthe kernel approximation for the 
lassi
al HR radiosity approa
h for an exampleFlatland geometry. Images (
) and (d) expose the same approximation task by aISGCS | the points in pi
ture (
) are 
enters of the Gaussian radial base fun
tions.17



earlier radiosity approa
hes and whi
h leads to an outstanding eÆ
ient rep-resentation of the approximation model.� The presented work is 
ompletely independent from the des
ription of thes
ene geometry | the �nite element mesh is not 
onstrained by the polygongeometry whi
h is a vital disadvantage of 
lassi
al radiosity approa
hes.In the author's opinion, the main attra
tion of the presented method is its self-organizing nature | by iteratively adjusting a set of neural networks, an FEmesh is generated 
apable of being used to solve this work's parti
ular FE task.Meshing whi
h 
ommonly is the most diÆ
ult task in similar approa
hes has
ompletely been left to neural networks, and thus, the approa
h is able to pro�tfrom the typi
al outstanding neural network fa
ilities of analyzing arbitrarydata distributions. It results in an eÆ
ient meshing and in signi�
antly lowererror rates if 
ompared to 
lassi
al methods.Referen
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