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Abstract

Calculating the transfer of light in three-dimensional virtual environments is an
inevitable feature of modern computer graphics systems. Usually it is accomplished
by a finite element (FE) method where the three-dimensional surfaces of the scene
geometry are cut into several sub-surfaces — a surface meshing is generated.

We present a new way of creating this surface mesh: the internal structures of
two neural networks trained by sample surface points and sample light rays are
interpreted as such a mesh on which the finite element method is executed.

The presented approach avoids several drawbacks arising with classical meth-
ods. The “neural meshing” outperforms standard techniques in terms of memory
requirements and accuracy. Additionally this work presents several novel ideas of
interpreting a neural network skeleton in terms of a virtual three-dimensional geom-
etry and as a representation of light energy propagating through a three-dimensional
polygon-based scene.

Key words: Computer graphics, artificial neural networks, realistic image
synthesis, rendering, radiosity, finite element method, growing cell structures,
self-organizing mapping

1 Introduction

Realistic looking pictures of three-dimensional virtual environments are in-
creasingly demanded in the field of computer graphics. It has been shown
that computing such images commonly requires the simulation of a physically
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adequate model of the flow of light. Due to the complexity of such a model
[10], the radiosity technique [4] has been proposed accounting for an excerpt
of the overall phenomena of the physical light model. Radiosity simplifies the
general scattering properties of surfaces to ideally diffuse (Lambertian) reflec-
tion and emission. Due to its convincing results®, on the one hand, and due
to the moderate amount of computing resources required, on the other hand,
radiosity has found broad acceptance in fields like architecture, virtual reality,
and film production.

1.1 The Radiosity Fquation

Mathematically, radiosity is denoted by the radiosity integral equation

B(y) = E(y) + ply) [ G(x.y) B(x) dx 1)

where x and y are three-dimensional points lying in the two-dimensional sur-
face space & and which are defined by a polygonal scene description. The
radiosity value B(y) at a point y represents the light intensity® determined
by the weighted accumulation (integral in equation (1)) of the radiosity B(x)
emitted from all points x in the scene geometry. The geometric term

Glx,y) = COS (x COS Py _

= > - V(xy) (2)
m{x =yl

describes the geometric properties of the light transport from a point x to
another point y. It depends on the distance between the points and on the
angles which the normals at their locations with the connecting ray build
(see figure 1 and [13] for a detailed derivation of equation (2)). V is called
the wvisibility term. Its value depends on the mutual visibility of two points
and equals zero if the direct view between them is occluded by a scene object,
otherwise one. p is the reflectance term which determines the portion of light
which is absorbed at a reflection at a point y. p defines the color (in this case
a grey tone) of the particular surface. E is the self-emittance at each point of
the environment. It equals zero at surface points which are not light sources,
otherwise it represents light emission and is greater than zero.

3 see figure 2 for example

4 For simplicity, B is assumed being a one-dimensional intensity value, which is
sufficient for the description of monochrome light. The transition to colors is com-
monly accomplished by calculating three separate color bands and accumulating
the results.
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Fig. 1. The geometric term (eq. (2)) of the radiosity integral equation describing
the diffuse light reflection behavior between two points in a virtual environment.

1.2  Finite Elements and the Radiosity Equation

B, E, p, and G in equation (1) are continuous functions defined on an infinite
number of points describing the surface domain. In such cases, commonly, a
finite element (FE) method is applied transforming the continuous functions
into approximations by discrete linear function bases. Due to the usually local
support of the base components this discretization is often termed meshing.

The discretization usually originates at B in equation (1), which is transformed
into an approximation B(x) = YI, b;N;(x). Here N; are the n components
of the chosen function base, which are located on the surfaces of the scene
geometry. If we also apply this scheme to E and p, then, equation (1) can be
projected onto the function base N = (Ny, Ny... N,,) (see [2] for an explicit
description) resulting in a linear system

b =e+ Kb. (3)

Here the vectors b and e contain the coefficients for each of the according
base components and K is called the discrete transport operator consisting of
single transport coefficients

by = [ N3)e(y) [ GO y)Ni(x) dx dy, i j = 1..n. (4)

Thus, with equation (3) we developed a discrete form of equation (1). A finite
set of coefficients b distribute their energy through a finite set of transfer



Fig. 2. On the left hand side, the subdivided surfaces of a virtual model of the
German Museum of Architecture in Frankfurt/Main, on the right hand side, the
resulting radiosity simulation of the light distribution.

coefficients K. In contrast, in equation (1) an infinite number of intensity
points B interact through an infinite number of rays K. Finally, equation (3)
enables us to solve the radiosity equation numerically by common iteration
methods for linear systems.

According to the formulation in equation (4) and for the following consider-
ations we rewrite equation (1) like the general form of a Fredholm integral
equation of the second kind

B(y) = E(y) + [ K(x.y) B(x) dx (5)

with the kernel K combining all geometric relationships from equation (1).

See figure 2, for example. Here, the scene is subdivided into smaller subpatches.
Considering the last paragraphs, in this case the mentioned base components
are constant box functions with support limited to each of the subpatch bound-
aries. A constant color value is assumed for each of them — the coefficients
b. This more intuitive view of avoiding the formal definition of base functions
has been applied in many classical approaches.

1.3  Numerical Solution of the Radiosity Equation

The shape of equation (3) delivers a hint for a possible solution method —
the calculation of the finite Neumann series

b—(I+3 K®)e (6)

where the components of e are initialized with the emission energy of the
according surfaces projected on the function base N. Intuitively, equation (6)



can be evaluated by unfolding it into a recursion scheme

b® =e, b*) —e + Kb®, b =1..00 (7)

which converges due to the spectral radius of (I — K) being less than one (see
for example [4], pgs. 110-111). Every new b(®) in equation (7) defines a further
approximation of the radiosity and replaces the b on the right side for the
following iterations. Each evaluation of equation (7) — each element of the
Neumann series — can be seen as another reflection of the propagated light.

This type of solution by a relaxation method is most common in the field of
radiosity since general matrix inversion techniques mostly fail due to the size
of the linear system.

1.4 Motivation

Geometries coming from applications like, for example, virtual reality nowa-
days contain up to 50000 polygons. To represent the color shading on these
surfaces adequately, they commonly are subdivided into hundreds of smaller
patches each, and thus, the solution of the linear system of equation (3) easily
goes beyond the scope of commonly available computing hardware.

The subdivision algorithm is vital point in solving the radiosity equa-
tion. The solution efficiency, and moreover, the viability of a compu-
tation strongly depend on the efficiency of the subdivision scheme.

Subdivision efficiency means the same like in general approximation tasks,
namely, accounting for coherence of the underlying goal function — smooth
locations require less support by base components than locations of high vari-
ation (like sharply edged shadows in case of radiosity). The invention of sub-
division algorithms for radiosity is mainly challenged by two issues:

a) Default meshing. It is hardly possible to blast the boundaries of the scene
surfaces, i.e., to define radiosity base functions with a larger support than
just the area of one single polygon of the scene definition. Thus, commonly
the initial number of transfer coefficients k;; (see equation (4)) equals the
square of the number of polygons of the scene definition. This property is
called initial linking and it arises independently from the subsequent sub-
division scheme.

b) Sequencing issue. Whereas the unknown radiosity — the color shading
on the surfaces — should be available for an adequate discretization of the
scene, the radiosity can only be calculated if this discretization of the scene
already is available.



With classical radiosity approaches the above topics are well-known. This work
proposes a workaround like follows:

a) The direct reference to the scene definition, i.e., to single polygons will be
avoided, and instead, a sampling based algorithm examines the functions
to be approximated. An additional representation of the surface topology,
which is not attached to the originating polygons is developed.

b) In order to develop an efficient approximation model the sequencing issue
postulates to regard the light flow (the term KB (eq. (5))) as a whole and
not the radiosity B separately, from which a surface discretization is derived.

In contrast to the latter item, classical radiosity approaches do not regard the
light low KB in the first place. Instead, they focus on the surface geometry
by developing a radiosity base without accounting for the light flow which
virtually is responsible for the particular meshing requirements.

The reason is self-evident: ideally accounting for KB is hardly possible if the
geometric definition of surfaces must be regarded. The existence of polygons
hinders the application of well-known efficient mathematical approximation
methods for analyzing KB directly, and thus, it prohibits a completely free
examination of the light transfer relationships.

Considering these issues, we propose a self-organizing algorithm which
smoothly adapts to the problem under consideration without a pre-
defined subdivision topology and without sticking to single surfaces.
The algorithm is characterized by a fluently adapting set of neural
networks, which automatically draws samples (points and rays) from
the scene description and which grows to a final “neural mesh” on
which the FFE calculations are executed.

Previous work. In classical radiosity (CR) [8] an arbitrary base on the sur-
faces is created “by hand” (subdivision into subpatches). Since the subdivision
does not regard the final (not yet known) intensity bleeding, a common aid
has been to estimate® the solution B and to develop the meshing accordingly.
Progressive radiosity approaches (PR) [3] like they have been implemented in
many commercially available software packages compute direct shadows® from
which an initial discretization is derived. Hierarchical radiosity approaches
(HR) [9] are the most promising attempts up to now. They start with a coarse
discretization of the surface domain, and then, refine patches depending on
the particular size of the according transfer coefficients.

5 intuitively, with the knowledge of an experienced user
6 shadows generated by the direct emission of the light sources



2 A Neural Network Model for Solving the Radiosity Equation

2.1 Incremental Supervised Growing Cell Structures

This work utilizes the incremental supervised growing cell structures (ISGCS)
approach presented in [1] and based on [6] (see also [7]). It is regarded a
specific sort of general artificial neural network which can efficiently be used
for clustering and function approximation tasks.

In this work, one ISGCS serves as an approximation model of the radiosity
kernel K (eq. (5)) and delivers the required light flow discretization which we
have been asking for in the previous section. Additionally, a further ISGCS
taken as discretization (meshing) of the geometry is utilized for the represen-
tation of the radiosity itself.

An ISGCS can be seen as an extended Kohonen Self-Organizing Feature Map
(SOM) [11] which is well-known in the field of general competitive learning
using artificial neural networks.

Competitive Learning — the basic principle of competitive learning ren-
ders an algorithm which adapts a set of n-dimensional reference vectors™ to
a significantly bigger set of n-dimensional training samples in a way that the
distribution of the reference vectors match the sample distribution in the n-
dimensional space. For example, a culmination of input samples at certain
regions in the input space (clusters) can be noticed by a similar culmination
of reference cells.

A plain iteration method accomplishes the following: samples of the training
set are randomly presented to the set of randomly distributed reference cells.
Each time the best matching reference cell (the “best matching unit” (BMU))
— the cell which is most similar to the input, i.e., which lies at the smallest
Euclidian distance — is determined. Then, this cell is moved into the direction
of the input according to a certain moving strength parameter.

The process is repeated several times while steadily decreasing the moving
strength. Finally, the result is a set of reference units which, first, are accu-
mulated at those locations where the training sample distribution is high, and
second, each of which mimics a kind of “average vector” of its surrounding
training samples.

Principally, competitive learning is applied in most iterative clustering ap-

7 commonly called reference units in the field of neural networks or reference cells

in the growing cells area
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Fig. 3. Pictures (a-c) show the growing of a two-dimensional ISGCS which is trained
by three-dimensional points lying in 3D space. Image (d) is generated by training
through a non-uniform sample distribution.

proaches, like for example k-means clustering or the Linde-Buzo-Gray algo-
rithm [12]. For an overview of the fundamental literature see [5].

SOM — a SOM adds an additional topological constraint at the general
competitive learning rule. Like in the latter, iterations start with a random
distribution of reference cells, but in contrast, now the cells are connected by
an additional k-dimensional topology — in case of k£ = 2 this topology forms
a two-dimensional mesh. During adaption of the reference cells regarding the
sample distribution, this mesh is also accounted for in a way that neighboring
reference units are moved similarly but with a strength lower than that of the
best matching cell. It leads to the rise of a map representing a kind of ordering
of the reference cells, and herewith, an ordering of the training samples itself.

In figure 3, for example, a two-dimensional map is shown in (d), which adapts
to a (not visible) sample distribution in 3D space. In the lower right quarter,
the particular sample distribution is higher than in the rest of the displayed
square. This property is accounted for by a higher granularity of the shown
network.

ISGCS — general competitive learning strategies and specifically the SOM
algorithm are based on a predefined set of initial cells which are to be adapted
to a certain sample distribution. In contrast, the ISGCS does not consist of
a predefined set, moreover, it starts with one minimal element and grows to
a network of elements. This makes it more flexible concerning the underlying
sample structure. To particularize further differences:

e The ISGCS topology is not fixed — it grows from an initial n-dimensional
simplex to a network of simplices and it may shrink if the underlying data
is represented redundantly. Figure 3 shows the growth of a typical ISGCS
structure. Figure 4 exposes the training of a three-dimensional sample set
distributed in a way describing two separate, cube-wise point clusters. It
can be seen that the network deletes superfluous parts of its topology at
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Fig. 4. Training (from (a) to (c)) of two separate 3D point clusters (drawn in image
(a)). The network adapts to the sample distribution during training and the network
cells vanish at places where the sample distribution is sufficiently low.

those locations where samples do not exist.

e The ISGCS is capable of resampling the goal function according to a certain
learning criterion. The resampling feature can be observed in the results
section of this work.

e The ISGCS training is a combination of supervised and unsupervised learn-
ing — the sample distribution and the goal function approximation accu-
racy determines the network growth and the above mentioned resampling
process.

After training, the resulting model is a grown set of units with lateral connec-
tions forming a network of simplices of a certain dimension. For example, in
case of a two-dimensional topology, simplices are triangles.

Each of the network vertices carries a Gaussian radial basis function (Gaus-
sian RBF) which altogether define a linear function base approximating the
training goal function. An example for the approximation capability is shown
in figure 11.

For the realization of the ISGCS method, additionally a counter is attached to
each of the ISGCS cells, which stores the number of selections of the particular
cell as a best matching unit together with the approximation error at that
cell compared to the training goal function. Regarding this counter — called
resource term — new elements are introduced into the mesh in a way that the
basic simplex structure holds. For a detailed description see [1].

2.2 Radiosity on Growing Cell Structures

See figure 5 for an overview of the basic scheme of this work. On the right hand
side (pictures A and B), an example geometry is shown — a “ceiling patch”
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Fig. 5. Overview of the complete approach.

as light source which emits light on a “floor patch”. Our approach trains two
neural networks, the first one is charged with learning sample rays (picture
A) of the light flow, the second one iterates on the rays’ end points (picture
B) to create a neural surface topology. Samples are generated randomly at
the start of the algorithm. During the iterations, new rays are selected by the
ISGCS’ resampling feature according to the model’s approximation accuracy.
The center of the algorithm is a permanently growing set of samples.

Pictures C and D expose the resulting networks, the kernel network and the
shading network, respectively. The shading network approximates the geom-
etry through its training with three-dimensional point samples, the kernel
network approximates the light flow by examining emission-weighted, six-di-
mensional rays.

Since the surface domain is two-dimensional, the shading network is a two-di-
mensional ISGCS. The kernel network approximates the space of all possible
rays between two points on a two-dimensional surface domain. Thus, we train
a four-dimensional kernel network. Nevertheless, for visualization purposes in
figure 5, we draw a three-dimensional ISGCS as kernel network.

The internal representations of the two networks deliver the required dis-
cretization of the radiosity integral equation. The adaptive discretization pro-
cess of the kernel and the surface network is interconnected and thus guaran-
tees the continuous adaption of the surface meshing regarding the computed
light phenomena. After a certain number of training steps, a Gaussian linear
function base is formed on the shading network topology (picture E) and the
light energy is propagated through the kernel network structure by calculating

10



the integrals from equation (4) on the networks of Gaussians.

Thereafter, the solution of one reflection of light is calculated through the
surface base model (see picture F) and the result is used to adapt the emitted
energy B(x) and to adjust the training sample set. This back-coupling of
the results of one integration to adjust the sample set relates to the classical
iterative solution of equation (3) by calculating further elements of the finite
Neumann series (eq. (6)). Without the adjustment of the training sample set,
only the first element of the series would be the result.

Propagating the energy whereas constantly adapting the surface mesh-
ing, mainly focusing on an approximation model of the light flow and
not only the surface function, and using an efficient neural network
approximation model are the main ideas of this approach and result
in the efficiency of the proposed solution method.

2.3 Radiosity Light Transfer through Growing Cell Structures

The following section gives an impression of how the radiosity equation can be
translated to neural network structures. The detailed algorithm can be derived
from these steps or be read in the original work [2].

Consider the ISGCS representation of the radiosity kernel through a linear
function base ¥ = 2 v, 2,,(x,y) of z six-dimensional Gaussian RBFs
with Gaussian base components (2, and their coefficients v,, determined
through the ISGCS training. x and y are two points in the scene geome-
try. The training set consists of randomly drawn sample rays of the geometry,
which are weighted by the energy emitted from the surface at the rays’ starting

points. The radiosity equation is converted to

B(y) = B(y) + [ ¥(xy) dx

and by projection to the radiosity base N it becomes a linear system like

b-c+ RN(y) [ dx>}

with single lines

b, = e; +/Ni(y)/\Il(X,y) dx dy, i=1..n.
S s
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Fig. 6. Parameterization of the integration points x and y on two triangles (sim-
plices) of the shading network to calculate the transfer coefficient of two Gaussians,
Ai(rp), Aj(ry), centered at w, and wy,.

The shading network is trained concurrently by sample ray end points and
delivers the n Gaussian base components with coefficients

b; = e +/N,-(y)/\1l(x,y) > bjN;jdxdy, i=1..n
7=1

This leads to “transfer coefficients”

kpgo = /Z A,(x) A,(y) 2,(x,y) dx dy, p,g,o=1..n (8)

where A, and A, are Gaussian RBFs of the shading network and {2, a Gaussian
component of the kernel network. After orthonormalization of the surface base
we extract the last step on the way to the final solution by considering two
components A, and A, centered at the corresponding cell centers w, and w,.
The integration is accomplished over all pairs of triangles of the approximate
geometry defined by the shading network (see figure 6 as an example geometry)
leading to

pqoz//AAdedy— 3 //AAdedy (9)

1<kI<MG 3

where M is the number of triangles of the shading network. One such pair is
denoted by subscripts £ and [ in figure 6 and bounded by the vertices wy,

12



Wy, Wi, and wy, Wy, Wyn, respectively. For integration, we assume two
points x on §; and y on &, and define a two-dimensional parameterization
x,y : R?2 — R? of both triangles,

X(S,t) = (1 — S — t) Wy + S Wyn +twkm, with s+1 S 1,
y(u,v) =(1—u—v)wy+uwp +vwp, with uw+o<1

The distances 7,7, : R — R of x and y from the centers w, and w,,
respectively, can be written as

rp(s,t) = [[wp = x(s,0)[|, and ry(u,v) = |lw, = y(u,v)ll,  (10)

and the distance 7, : R* — R of the concatenation (x,y) € R® from the center
w, € RS of the kernel Gaussian (2, is

ro(s, t,u,v) = \/rg(s,t) +72(u,v). (11)

Replacing equations (10) and (11) at equation (9) leads to the integral

bo = 5 [ [ 4400, dx iy =

lgk,lgnsk Sl

1 1—v 1 1—¢
[T
I<ki<ng 9 0 0
BX
— ds dt du dv
88
— |lox o ox| |9y 9y
where the constant Jpgon = ‘ 5 X 5 ‘ 5 X ool can be drawn out of the

integral, resulting in a term of the form

—_

1—v —t

/]

eP2580) s dt du dv (12)
1<k I<n

1
kpqo = Tpqoki /
0

o

with a polynomial Py (s,t,u,v) = As’+ Bt? +Cu?+ Dv*+Es+ Ft+Gu+
Hv+TITst+ Juv+ K.
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BRI to Aq

Fig. 7. The Flatland geometry for integration. Only the upper part of a kernel
reference ray is shown.

2.4 Analytical Derivation of the Light Transfer

Equation (12) could be calculated numerically, similar to almost all classical
approaches. Nevertheless, in this work we propose a symbolic solution by uti-
lizing the particular integration properties of Gaussians if they are integrated
to infinity.

For that we need to account for two constraints concerning the structure of the
shading network, i.e., the structure of the geometry defined by the shading net-
work. First, the shading network has to be “sufficiently flat” such that we get
a unique integration domain at the according Gaussians. In fact, we easily can
make this assumption for practical cases like proven in [2]. Second, Gaussians
which participate in the symbolic, infinite integration must not be located at
boundaries of surfaces, since in that case, integration must be stopped at the
boundaries. Thus, we integrate the border Gaussians numerically and the rest
which is the majority symbolically. This solution does not change the overall
complexity of the algorithm, and practical tests have proven not to increase
the computation time significantly.

The assumption of an infinite integration domain leads to the following ana-
lytical derivation. See figure 7, we assume A, and A4, being one-dimensional
functions. The geometry consists of lines instead of surfaces. The kernel is a
two-dimensional function, since rays begin and end at points on lines. This
way of thinking is classically termed “Radiosity in Flatland” and has been
proven to be very useful in the development of radiosity methods. Herewith,
first the lower dimensional, less complex Flatland solution is created, which
then is transposed to three dimensions. In the following we utilize this kind of
transfer also.

Consider parameters s and ¢ are the distance arguments of the functions 4,
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and A,, respectively. The parameter r of the particular kernel Gaussian is
derived from x and y through s and ¢ and from the reformulation of the
distance r of the kernel RBF center w,

r= rf, + 7“3 with rfp’q} = f{Qp’q} + {s, t}2 — 2{s,t} frp.q) - SinQgp gy

The ay,,q are the angles between “surface” normals ny,, and the vectors
f, = wy — (Wo1,wo2) and f; = Wy — (w3, wo4) With fip 0 = [[ffp 1/, and £,
and f; are vectors defined by the centers of the surface RBF and the top and
bottom of the kernel RBF center (ray), respectively.

Inserting the radii from above as parameters of A,, 4,4, and (2, in the two-di-
mensional form of equation (9) delivers

kpoo = e ds dt 13
Pq
R

with a polynomial Py(s,t) = —A,s* — A;t* + B,s + B,t — C, and the
substitutions A{p’q} = dO_Q + d{p’q}_Q, B{p’q} = dO_Q . f{p’q} - sin Oé{p’q}, and
C = d072 ) (f;? + fq2)

B _CO)\F
With [z exp (—As? + Bs — C) ds = w, equation (13) can be rewrit-
ten as

Fngo = NI . (14)

Switching back to three-dimensional geometries is identical to integrating
twice over s and ¢ with different parameters but the same coefficients Ay, 41,
By g1, and C. Thus, the non-constant arguments of the exponential function
in the solution (eq. (14)) are doubled and the coefficients squared, leading to
the following analytical solution.

2 2
B B?

exp (7 + 7= — C) 72
Kpgo = // e ds dt = (2 A 2,2(1 ) (15)
o p4q

3 Results

Figure 8 shows a simple example geometry. It is built from a floor surface,
a wall, and a ceiling, the latter serves as light source. On the left hand side,
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Fig. 8. A simple example scene. From left to right, the created surface network, the
sample distribution, and the final radiosity result are shown.

the created shading network is shown which is used as the FE meshing. In
the middle, the generated sample set is exposed. It can be observed that the
sample distribution accounts for the final color shading on the surfaces. The
latter is displayed on the right hand side of figure 8.

In figure 9 two blockers are inserted in the light flow from the ceiling, which
generate sharp shadow edges. On the left hand side, the initial scene geometry
is exposed, in the middle, the shading network which is created during the
training phase, and on the right hand side, the final intensity distribution
generated by the ceiling light source and the two light blockers.

The diagrams in figure 10 show error plots of the kernel approximation ac-
curacy of the presented approach, growing cells radiosity (GCR), for the ge-
ometries of figures 8 and 9. The error is compared to a classical method —
hierarchical radiosity. The horizontal axes display the granularity of the two
approximation models — they expose the number of function base compo-
nents and it can be observed that the error is significantly lower than that of
the classical HR method.

Figure 11 compares the two kernel approximation models. On the left hand
side (pictures (a) and (b)), results of the hierarchical radiosity approach, on

=

Fig. 9. A simple example scene with two light blockers creating sharp shadows. From
left to right, the scene geometry, the network, and the computed result.
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Fig. 10. Approximation accuracy of the kernel model of the two geometries from fig-
ures 8 and 9 — this work (GCR) if compared to the hierarchical radiosity approach
(HR). The horizontal axes show the granularity of the approximation models, i.e.,
the number of base function components.

the right hand side (pictures (¢) and (d)), results of the GCR approach of
this work is exposed. Pictures (a) and (c) show the different discretizations,
pictures (b) and (d) the kernel approximation characteristics.

4 Conclusion

We present an approach for calculating the flow of light in virtual three-dimen-
sional geometries by using a scheme of two self-organizing neural networks. It
outperforms classical methods in several ways and presents a bunch of novel,
uncommon ideas outlined as follows.

e A neural network is interpreted as a virtual, geometric scene description.
Vice versa, a finite element method is realized using the internal represen-
tations of two neural networks as an FE mesh.

e The light flow is analyzed directly, which has not been accomplished in
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Fig. 11. Images (a) and (b) show the distribution of base function components and
the kernel approximation for the classical HR radiosity approach for an example
Flatland geometry. Images (c) and (d) expose the same approximation task by a
ISGCS — the points in picture (c) are centers of the Gaussian radial base functions.
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In

earlier radiosity approaches and which leads to an outstanding efficient rep-
resentation of the approximation model.

The presented work is completely independent from the description of the
scene geometry — the finite element mesh is not constrained by the polygon
geometry which is a vital disadvantage of classical radiosity approaches.

the author’s opinion, the main attraction of the presented method is its self-

organizing nature — by iteratively adjusting a set of neural networks, an FE
mesh is generated capable of being used to solve this work’s particular FE task.
Meshing which commonly is the most difficult task in similar approaches has
completely been left to neural networks, and thus, the approach is able to profit
from the typical outstanding neural network facilities of analyzing arbitrary
data distributions. It results in an efficient meshing and in significantly lower
error rates if compared to classical methods.
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