
Kohonen Feature Mapping through Graphics HardwareChristian-A. BohnDepartment of Visualization and Media Systems DesignGerman National Research Center for Information TechnologySankt Augustin, Germanyhttp://viswiz.gmd.de/bohnAbstractThis work describes the utilization of the inherentparallelism of commonly available hardware graph-ics accelerators for the realization of the Kohonenfeature map. The result is an essential reductionof computing time compared to standard softwareimplementations.Keywords. Kohonen feature map, computergraphics, hardware, OpenGL , frame bu�er.1 IntroductionThe Kohonen feature map (KFM) [3] is a particularkind of an arti�cial neural network (ANN) model,which consists of one layer of n-dimensional units(neurons). They are fully connected with the net-work input. Additionally, there exist lateral con-nections through which a topological structure isimposed. For the standard model, the topology is aregular two-dimensional map instantiated by con-nections between each unit and its direct neighbors.The KFM is used for unsupervised learning tasks[2]. Through n-dimensional training samples, theunits organize in a way that they match the dis-tribution of samples in their n-dimensional in-put space | reference units are placed which canbe seen like representatives for particular regions.Sample agglomerations are designated as clustersand the according reference units are suitable forclassi�cation tasks. Through embedding the refer-ence units into a topology, the KFM o�ers outstand-ing facilities for the structural analysis of data ofarbitrary dimension (dimensionality reduction [2]).Nowadays, the KFM is one of the most applied neu-ral network models.The inherent parallel nature of the KFM has ledto the basic idea of this work of utilizing the par-allel architecture of commonly available computer

graphics hardware accelerators. The e�ciency ofgraphics hardware comes from the fact that it iscommonly detached from the main computing unit.It \lives" in its own environment and processes itsown fast memory, whereas the main applicationsoftware runs independently on a general purposeCPU connected with the computer's main memory.This separation allows for an e�cient developmentof both parts independently.This work adapts the general KFM algorithm tobe executed by graphics library function calls whichare commonly implemented directly as part of thehardware. Each location in the graphics memory(frame bu�er) stands for a point (pixel) on thecomputer screen. Processing is characterized by,on one hand, memory management functions liketransferring or initializing memory blocks, and, onthe other hand, by complex functions like drawingtwo-dimensional geometric objects. Due to the de-mands for more advanced graphics features, in thelast decade, the principle functionality of graphicshardware has widely been extended in a way thatit is also suitable to run algorithms which do notcome directly from this �eld.This work compiles the KFM scheme, but be-sides, it should generally initiate thinking of apply-ing graphics hardware to non-graphics applications,since actually, graphics acceleration techniques areobviously the main focus of common hardware de-velopment. Moreover, graphics hardware is usuallyavailable on the most computer systems.2 Kohonen feature mapConsider a set A of k units ci; i = 1 ::: k with aweight vector wi 2 Rn attached to each of them.The units are organized in a two-dimensional reg-ular map. The coordinates of the ci concerning thismap are denoted as vectors ri 2 R2 .1



published in 'COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE' (ICCIN'98) 2Given an input sample � 2 Rn , learning is accom-plished by a two-step process.1. Search for the best matching unit (BMU) cbwith a weight vector wb which is most similarto the input �, i.e., which has the Euclidiandistance d = k� �wbk, such thatkwb � �k � kwi � �k ;8ci 2 A (1)holds.2. Move all units ci 2 A regarding a distancefunction of the lateral connections 
� : R2 �R2 ! R; 
�(rb; ri) = h(krb � rik) accordingtowinew = wiold � � �
�(rb; ri) � (wiold � �): (2)h : R ! R is commonly chosen a Gaussian ra-dial basis function with an expansion param-eter �. The BMU attracts the surroundingunits according to the de�nition of 
� andtheir distances. The learning strength � and �are successively diminished during the iterationprocess, such that the training e�ects becomesmaller, and �nally, the network converges toa �xed topology.3 Realization3.1 Graphics memory structureThe screen pixels are usually organized in a two-di-mensional coordinate system on which the graphicslibrary function calls are based. This regular struc-ture is adopted as the KFM topology | each pointon the screen is related to a certain unit ci and itsscreen coordinates are taken as the unit's positionri on the map.Each pixel is instantiated by a vector of four com-ponents regarding the colors red, green, and blue,and a transparency component named alpha value.Whereas the resulting pixel color is composed (men-tally) from the color channels, the alpha componentis used by the graphics hardware for transparencye�ects only. For the purposes of this work, the li-brary interprets the four components consistentlylike a four-dimensional vector. Each pixel of thescreen is de�ned being one of the weight vectorswi 2 R4 of a unit ci at the map position ri.Consider some example graphics operations andtheir e�ects concerning the KFM interpretation.Opening a screen window of 1000�1000 pixels, con-currently allocates a four-dimensional KFM with

one million of units. Clearing the screen, sets thecomponents of all vectors wi 2 A to zero. Drawinga horizontal red line on top of the screen sets the�rst components wj;0 of those wj : j = 1 ::: k tothe value 1, whose second component rj;1 of theirmap position rj equals 1 (the top line contains thoseunits whose y-coordinate equals 1).3.2 Graphics libraryProgramming the graphics hardware is very simi-lar to writing code in assembly language. Graphicscommands are function calls which operate on thescreen memory and on few internal stacks. In thefollowing, �rst, some principal facilities of the usedgraphics library| OpenGL r| are outlined, then,the KFM algorithm from section 2 is translated toOpenGL calls.1Using the widely spread OpenGL guarantees thatas many hardware facilities as possible are utilized,and that the program can be implemented on al-most all recent computer systems. Nevertheless,some (yet) SiliconGraphics speci�c commands areused (ending with EXT), but these features will prob-ably be added to the standard of OpenGL in thenear future.BlendingThe OpenGL basic drawing scheme can be general-ized by moving pixel data from a source to a destina-tion. Here, sources may be a constant four-dimen-sional drawing color, or even complete rectangularregions of the screen memory.Instead of just overwriting the destination withthe source pixel, OpenGL provides the generalizedblending facility which allows for operations likeweighted summation or multiplication of the com-ponents before setting the destination pixel. Fromthe graphical point of view, blending denotes thesoftening up of two color values | transparencye�ects can be mimicked in that way. Blending isdetermined by the library call glBlendFunc withtwo arguments de�ning the term which is multi-plied with the source and the destination pixel, re-spectively.Color matrixWhile blending allows only for the combination ofthe four pixel components separately, the applica-1To keep this work comprehensive, it is focused on a smallsubset of OpenGL features. See [5] for further information.Even explanations concerning the graphics hardware archi-tecture (section 3.1) are limited to the needs of this work.



published in 'COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE' (ICCIN'98) 3tion of the color matrix provides the capability ofcombining single color components between eachother. Each time before a pixel (vector 2 R4 ) iswritten to the destination, it is multiplied with the4 � 4 color matrix. Thus, exchanging components,as well as a weighted summation between the com-ponents are possible.3.3 TranslationSome general operations needed at several places inthe algorithm from section 2 are described. Theirprinciple functionality is explained | detailed com-ments concerning the implementation like, for ex-ample, the storage of intermediate results in theframe bu�er, are omitted.Loading the frame bu�erAs few data exchange as possible should arise be-tween the main memory and the screen bu�er.Thus, once, the KFM vectors are created in thescreen memory, the whole algorithm is executed\on the screen", before the results are transferredback into the main memory. glReadPixels andglDrawPixels are the according OpenGL functioncalls (see [5, 4] for further descriptions).SubtractionGiven a particular region in the frame bu�er, sub-traction of a constant is accomplished by enablingblending, and then, drawing a geometrical ob-ject on the frame bu�er, or transferring bu�erdata. Blending arguments should be (GL ZERO,GL ONE MINUS CONSTANT COLOR EXT) or (GL ZERO,GL ONE MINUS SRC COLOR), respectively. Subtrac-tion of a constant is required in equations (1) and(2) for subtracting the input sample from the ac-tual unit weight vectors. Subtraction of a framebu�er segment is needed in equation (2) to calcu-late the resulting winew. It is executed by the rou-tine glCopyPixels which copies frame bu�er data,pixel by pixel, from one screen location to a second.MultiplicationMultiplication by a constant is realized throughthe blending arguments (GL ZERO, GL SRC COLOR),and it is needed for the multiplication of the weightmatrix with � in equation (2). For the mul-tiplication of two memory bu�er regions, again,glCopyPixels is applied. It is required for thequadrature of all pixel components (eq. 3) in equa-tion (1) for calculating the Euclidian distance. In

this case, source and destination must be identicalmemory locations.Searching the BMUSearching the BMU is equivalent to looking for theci with the smallest squared distanced2 = 4Xj=1(wi;j � �j)2; 8i = 1 ::: k: (3)Given the map of units ci the related d2 are cal-culated by subtraction of the constant vector � anda summation of the resulting components. By set-ting the �rst line of the color matrix to 1, the com-ponents' sum is written into the red (�rst) chan-nel at the destination. Then, the determination ofthe biggest red-component of all pixels is accom-plished by the OpenGL function glMinmaxEXT. Un-fortunately, glMinmaxEXT does not deliver the co-ordinates (ri) of the maximum pixel, but only itsvalue. Thus, the following algorithm of subsequentcalls of glMinmaxEXT is necessary.1. Calculate and store the maximum value by oneapplication of glMinmaxEXT.2. Split the screen into two partitions and deter-mine (using glMinmaxEXT) which one containsthe stored result from step 1.3. If the detected partition contains only onepixel, then the position of the BMU is found,otherwise, set the search screen to the detectedpartition and go to step 2.The position of the BMU is found recursively af-ter log2m calls of glMinmaxEXT, withm the numberof pixels of a screen edge, i.e., the width of the KFM(assuming a square map).ConvolutionOne operation is left | the multiplication of theKFM matrix with the function 
� in equation (2).Suitable for this task is an OpenGL facility, calledtexturing. Texturing maps a two-dimensional im-age of texture values (texels) | contained in thetexture memory which is an additional bu�er simi-lar to the screen bu�er, and which can also be takenas source or destination for drawing pixels | intothe screen memory.A function table of h (eq. 2) is pre-calculated andstored as texture. By placing it regarding the posi-tion of the BMU and blending it with the weightsstored in the frame bu�er, the convolution is ac-complished.



published in 'COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE' (ICCIN'98) 4KFM Resolution 32� 32 64� 64 128� 128 256� 256 512� 512 1024� 1024Software 11 30 45 187 982 5721Graphics Hardware 3 36 50 95 284 1077Table 1: The KFM execution times (in seconds) of a standard software implementation compared with theproposed OpenGL realization on SiliconGraphics In�niteReality graphics hardware.3.4 LimitationsSome limitations due to the special format of theframe bu�er memory are mentioned in the follow-ing.Limited number of color components. Thedescribed algorithm has been limited to four-di-mensional Kohonen maps, due to the limited sizeof four components of one frame bu�er pixel vec-tor. Extensions to higher dimensions can easily beaccomplished by enabling a frame bu�er which islarger than required for the KFM, and applying sev-eral subregions of the window to instantiate furthercomponents of the KFM weight matrix. To preservethe e�ciency of the whole algorithm it should be re-garded that the needed memory should not exceedthe available frame bu�er size, since otherwise, timeconsuming pixel transfers are necessary to swap theframe bu�er and the CPU main memory.Quantization e�ects. Each component of thepixel bu�er has a resolution of 8 bits. To dimin-ish quantization e�ects, the calculated results arescaled implicitly after each operation by applyingthe color matrix and the glMinmaxEXT routine togenerate a scaling matrix. The comparison of theresults of the proposed realization with the resultsfrom a standard software implementation did notexpose signi�cant di�erences. Extending the com-ponent resolution can also be accomplished by us-ing several frame bu�ers whose single vector com-ponents are concatenated. Of course, this needs anextension of the OpenGL standard arithmetic.4 Tests and conclusionThe realization of Kohonen feature mappingthrough the usage of a common graphics hardwareaccelerator is presented. The algorithm is trans-lated into about 50 OpenGL calls which operate onscreen memory which stores an adapted represen-tation of the KFM. The algorithm pro�ts from theparallel hardware implementation of the OpenGLfunctionality, and increases execution speed of theKFM essentially compared to a common softwareimplementation.

Table 1 shows the comparison of a standardimplementation on a SiliconGraphics workstation(MIPS R10000 processor, 195 MHz) with the de-scribed implementation as OpenGL code which isexecuted on a SiliconGraphics In�niteReality graph-ics board. For large KFM dimensions, accelerationsof up to 500 % are accomplished.References[1] Andrew S. Glassner. Principles of Digital ImageSynthesis. Morgan Kaufmann, San Francisco,CA, 1995.[2] J. Hertz, A. Krogh, and R. Palmer. Introductionto the Theory of Neural Computation. Addison-Wesley, 1991.[3] Teuvo Kohonen. Self-organizing maps. SpringerVerlag, New York, 1997.[4] Tom McReynolds, editor. Programming withOpenGL: Advanced Rendering. ACM, SIG-GRAPH, 1996. SIGGRAPH '96 course notes.[5] Jackie Neider, Tom Davis, and Mason Woo.OpenGL Programming Guide. Addison-Wesley,Reading MA, 1993.


