Kohonen Feature Mapping through Graphics Hardware

Christian-A. Bohn

Department of Visualization and Media Systems Design
German National Research Center for Information Technology
Sankt Augustin, Germany
http://viswiz.gmd.de/bohn

Abstract

This work describes the utilization of the inherent
parallelism of commonly available hardware graph-
ics accelerators for the realization of the Kohonen
feature map. The result is an essential reduction
of computing time compared to standard software
implementations.

Keywords. Kohonen feature map, computer
graphics, hardware, OpenGL , frame buffer.

1 Introduction

The Kohonen feature map (KFM) [3] is a particular
kind of an artificial neural network (ANN) model,
which consists of one layer of n-dimensional wunits
(neurons). They are fully connected with the net-
work input. Additionally, there exist lateral con-
nections through which a topological structure is
imposed. For the standard model, the topology is a
regular two-dimensional map instantiated by con-
nections between each unit and its direct neighbors.

The KFM is used for unsupervised learning tasks
[2]. Through n-dimensional training samples, the
units organize in a way that they match the dis-
tribution of samples in their n-dimensional in-
put space — reference units are placed which can
be seen like representatives for particular regions.
Sample agglomerations are designated as clusters
and the according reference units are suitable for
classification tasks. Through embedding the refer-
ence units into a topology, the KFM offers outstand-
ing facilities for the structural analysis of data of
arbitrary dimension (dimensionality reduction [2]).
Nowadays, the KFM is one of the most applied neu-
ral network models.

The inherent parallel nature of the KFM has led
to the basic idea of this work of utilizing the par-
allel architecture of commonly available computer

graphics hardware accelerators. The efficiency of
graphics hardware comes from the fact that it is
commonly detached from the main computing unit.
It “lives” in its own environment and processes its
own fast memory, whereas the main application
software runs independently on a general purpose
CPU connected with the computer’s main memory.
This separation allows for an efficient development
of both parts independently.

This work adapts the general KFM algorithm to
be executed by graphics library function calls which
are commonly implemented directly as part of the
hardware. Each location in the graphics memory
(frame buffer) stands for a point (pizel) on the
computer screen. Processing is characterized by,
on one hand, memory management functions like
transferring or initializing memory blocks, and, on
the other hand, by complex functions like drawing
two-dimensional geometric objects. Due to the de-
mands for more advanced graphics features, in the
last decade, the principle functionality of graphics
hardware has widely been extended in a way that
it is also suitable to run algorithms which do not
come directly from this field.

This work compiles the KFM scheme, but be-
sides, it should generally initiate thinking of apply-
ing graphics hardware to non-graphics applications,
since actually, graphics acceleration techniques are
obviously the main focus of common hardware de-
velopment. Moreover, graphics hardware is usually
available on the most computer systems.

2 Kohonen feature map

Consider a set A of k units ¢;, 4 = 1...k with a
weight vector w; € R" attached to each of them.
The units are organized in a two-dimensional reg-
ular map. The coordinates of the ¢; concerning this
map are denoted as vectors r; € R2.

published in ’COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE’ (ICCIN’98) 2

Given an input sample ¢ € R™, learning is accom-
plished by a two-step process.

1. Search for the best matching unit (BMU) ¢
with a weight vector w; which is most similar
to the input £, i.e., which has the Euclidian
distance d = ||£ — wy||, such that

lwy — &Il < [lwi =&l , Ve e A (1)

holds.

2. Move all units ¢; € A regarding a distance
function of the lateral connections 2 : R? x
R? — R, 2a(ry,r;) = h(||ry —ri]|) according
to

Wi“ew = WiOld — € QA(rba ri)) (‘Vic’lcl - 5) (2)

h: R — R is commonly chosen a Gaussian ra-
dial basis function with an expansion param-
eter A. The BMU attracts the surrounding
units according to the definition of 2n and
their distances. The learning strength € and A
are successively diminished during the iteration
process, such that the training effects become
smaller, and finally, the network converges to
a fixed topology.

3 Realization

3.1 Graphics memory structure

The screen pixels are usually organized in a two-di-
mensional coordinate system on which the graphics
library function calls are based. This regular struc-
ture is adopted as the KFM topology — each point
on the screen is related to a certain unit ¢; and its
screen coordinates are taken as the unit’s position
r; on the map.

Each pixel is instantiated by a vector of four com-
ponents regarding the colors red, green, and blue,
and a transparency component named alpha value.
Whereas the resulting pixel color is composed (men-
tally) from the color channels, the alpha component
is used by the graphics hardware for transparency
effects only. For the purposes of this work, the li-
brary interprets the four components consistently
like a four-dimensional vector. Each pixel of the
screen is defined being one of the weight vectors
w; € R* of a unit ¢; at the map position r;.

Consider some example graphics operations and
their effects concerning the KFM interpretation.
Opening a screen window of 1000 x 1000 pixels, con-
currently allocates a four-dimensional KFM with

one million of units. Clearing the screen, sets the
components of all vectors w; € A to zero. Drawing
a horizontal red line on top of the screen sets the
first components w; o of those w; : j = 1..k to
the value 1, whose second component 7; 1 of their
map position r; equals 1 (the top line contains those
units whose y-coordinate equals 1).

3.2 Graphics library

Programming the graphics hardware is very simi-
lar to writing code in assembly language. Graphics
commands are function calls which operate on the
screen memory and on few internal stacks. In the
following, first, some principal facilities of the used
graphics library — OpenGL® — are outlined, then,
the KFM algorithm from section 2 is translated to
OpenGL calls.!

Using the widely spread OpenGL guarantees that
as many hardware facilities as possible are utilized,
and that the program can be implemented on al-
most all recent computer systems. Nevertheless,
some (yet) SiliconGraphics specific commands are
used (ending with EXT), but these features will prob-
ably be added to the standard of OpenGL in the
near future.

Blending

The OpenGL basic drawing scheme can be general-
ized by moving pixel data from a source to a destina-
tion. Here, sources may be a constant four-dimen-
sional drawing color, or even complete rectangular
regions of the screen memory.

Instead of just overwriting the destination with
the source pixel, OpenGL provides the generalized
blending facility which allows for operations like
weighted summation or multiplication of the com-
ponents before setting the destination pixel. From
the graphical point of view, blending denotes the
softening up of two color values — transparency
effects can be mimicked in that way. Blending is
determined by the library call glBlendFunc with
two arguments defining the term which is multi-
plied with the source and the destination pixel, re-
spectively.

Color matrix

While blending allows only for the combination of
the four pixel components separately, the applica-

1To keep this work comprehensive, it is focused on a small
subset of OpenGL features. See [5] for further information.
Even explanations concerning the graphics hardware archi-
tecture (section 3.1) are limited to the needs of this work.

published in ’COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE’ (ICCIN’98) 3

tion of the color matriz provides the capability of
combining single color components between each
other. Each time before a pixel (vector € R*) is
written to the destination, it is multiplied with the
4 x 4 color matrix. Thus, exchanging components,
as well as a weighted summation between the com-
ponents are possible.

3.3 Translation

Some general operations needed at several places in
the algorithm from section 2 are described. Their
principle functionality is explained — detailed com-
ments concerning the implementation like, for ex-
ample, the storage of intermediate results in the
frame buffer, are omitted.

Loading the frame buffer

As few data exchange as possible should arise be-
tween the main memory and the screen buffer.
Thus, once, the KFM vectors are created in the
screen memory, the whole algorithm is executed
“on the screen”, before the results are transferred
back into the main memory. glReadPixels and
glDrawPixels are the according OpenGL function
calls (see [5, 4] for further descriptions).

Subtraction

Given a particular region in the frame buffer, sub-
traction of a constant is accomplished by enabling
blending, and then, drawing a geometrical ob-
ject on the frame buffer, or transferring buffer
data. Blending arguments should be (GL_ZERO,
GL_ONE_MINUS_CONSTANT_COLOR_EXT) or (GL_ZERO,
GL_ONE_MINUS_SRC_COLOR), respectively. Subtrac-
tion of a constant is required in equations (1) and
(2) for subtracting the input sample from the ac-
tual unit weight vectors. Subtraction of a frame
buffer segment is needed in equation (2) to calcu-
late the resulting w;". It is executed by the rou-
tine glCopyPixels which copies frame buffer data,
pixel by pixel, from one screen location to a second.

Multiplication

Multiplication by a constant is realized through
the blending arguments (GL_ZERO, GL_SRC_COLOR),
and it is needed for the multiplication of the weight
matrix with € in equation (2). For the mul-
tiplication of two memory buffer regions, again,
glCopyPixels is applied. It is required for the
quadrature of all pixel components (eq. 3) in equa-
tion (1) for calculating the Euclidian distance. In

this case, source and destination must be identical
memory locations.

Searching the BMU

Searching the BMU is equivalent to looking for the
¢; with the smallest squared distance

4

& = Z(wi,j — &), Vi=1..k.

=1

3)

Given the map of units ¢; the related d? are cal-
culated by subtraction of the constant vector ¢ and
a summation of the resulting components. By set-
ting the first line of the color matrix to 1, the com-
ponents’ sum is written into the red (first) chan-
nel at the destination. Then, the determination of
the biggest red-component of all pixels is accom-
plished by the OpenGL function glMinmaxEXT. Un-
fortunately, glMinmaxEXT does not deliver the co-
ordinates (r;) of the maximum pixel, but only its
value. Thus, the following algorithm of subsequent
calls of glMinmaxEXT is necessary.

1. Calculate and store the maximum value by one
application of glMinmaxEXT.

2. Split the screen into two partitions and deter-
mine (using glMinmaxEXT) which one contains
the stored result from step 1.

3. If the detected partition contains only one
pixel, then the position of the BMU is found,
otherwise, set the search screen to the detected
partition and go to step 2.

The position of the BMU is found recursively af-
ter log, m calls of glMinmaxEXT, with m the number
of pixels of a screen edge, i.e., the width of the KFM
(assuming a square map).

Convolution

One operation is left — the multiplication of the
KFM matrix with the function 24 in equation (2).
Suitable for this task is an OpenGL facility, called
texturing. Texturing maps a two-dimensional im-
age of texture values (texels) — contained in the
texture memory which is an additional buffer simi-
lar to the screen buffer, and which can also be taken
as source or destination for drawing pixels — into
the screen memory.

A function table of h (eq. 2) is pre-calculated and
stored as texture. By placing it regarding the posi-
tion of the BMU and blending it with the weights
stored in the frame buffer, the convolution is ac-
complished.

published in ’COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE’ (ICCIN’98) 4

[KFM Resolution || 32 x 32 | 64 x 64 | 128 x 128 | 256 x 256 | 512 x 512 | 1024 x 1024 |

Software 11 30

45 187 982 5721

Graphics Hardware 3 36

50 95 284 1077

Table 1: The KFM execution times (in seconds) of a standard software implementation compared with the
proposed OpenGL realization on SiliconGraphics InfiniteReality graphics hardware.

3.4 Limitations

Some limitations due to the special format of the
frame buffer memory are mentioned in the follow-

ing.

Limited number of color components. The
described algorithm has been limited to four-di-
mensional Kohonen maps, due to the limited size
of four components of one frame buffer pixel vec-
tor. Extensions to higher dimensions can easily be
accomplished by enabling a frame buffer which is
larger than required for the KFM, and applying sev-
eral subregions of the window to instantiate further
components of the KFM weight matrix. To preserve
the efficiency of the whole algorithm it should be re-
garded that the needed memory should not exceed
the available frame buffer size, since otherwise, time
consuming pixel transfers are necessary to swap the
frame buffer and the CPU main memory.

Quantization effects. Each component of the
pixel buffer has a resolution of 8 bits. To dimin-
ish quantization effects, the calculated results are
scaled implicitly after each operation by applying
the color matrix and the glMinmaxEXT routine to
generate a scaling matrix. The comparison of the
results of the proposed realization with the results
from a standard software implementation did not
expose significant differences. Extending the com-
ponent resolution can also be accomplished by us-
ing several frame buffers whose single vector com-
ponents are concatenated. Of course, this needs an
extension of the OpenGL standard arithmetic.

4 Tests and conclusion

The realization of Kohonen feature mapping
through the usage of a common graphics hardware
accelerator is presented. The algorithm is trans-
lated into about 50 OpenGL calls which operate on
screen memory which stores an adapted represen-
tation of the KFM. The algorithm profits from the
parallel hardware implementation of the OpenGL
functionality, and increases execution speed of the
KFM essentially compared to a common software
implementation.

Table 1 shows the comparison of a standard
implementation on a SiliconGraphics workstation
(MIPS R10000 processor, 195 MHz) with the de-
scribed implementation as OpenGL code which is
executed on a SiliconGraphics InfiniteReality graph-
ics board. For large KFM dimensions, accelerations
of up to 500 % are accomplished.

References

[1] Andrew S. Glassner. Principles of Digital Image
Synthesis. Morgan Kaufmann, San Francisco,
CA, 1995.

[2] J. Hertz, A. Krogh, and R. Palmer. Introduction
to the Theory of Neural Computation. Addison-

Wesley, 1991.

Teuvo Kohonen. Self-organizing maps. Springer
Verlag, New York, 1997.

Tom McReynolds, editor. Programming with
OpenGL: Advanced Rendering. ACM, SIG-
GRAPH, 1996. SIGGRAPH ’96 course notes.

Jackie Neider, Tom Davis, and Mason Woo.
OpenGL Programming Guide. Addison-Wesley,
Reading MA, 1993.

