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Abstract. We propose Growing Cells Meshing (GCM) — a reconstruction algo-
rithm which creates triangle meshes from clouds of arbitrary point samples regis-
tered on object surfaces. GCM is different to classical approaches in the way that it
uses an artificial neural network together with an iterative learning technique to rep-
resent the triangle mesh. Based on the Growing Cell Structures (GCS) approach [3]
we introduce the Smart Growing Cells (SGC) network as extension to fulfill the re-
quirements of surface reconstruction. Our method profits from the well-know bene-
fits entailed by neural networks, like autonomy, robustness, scalability, the ability of
retrieving information from very complex data, and adaptability. On the downside,
typical drawbacks like undesirable smoothing of information, inability to exactly
model detailed, discontinuous data, or a vast amount of computing resources at big
network sizes are overcome for the application of surface reconstruction. The GCM
approach creates high-quality triangulations of billions of points in few minutes.
It perfectly covers any amount and distribution of samples, holes, and inconsistent
data. It discovers and represents edges, manages clusters of input sample points, and
it is capable of dynamically adapting to incremental sample data.

1 Introduction

The demand for efficient high quality reconstruction algorithms has grown signifi-
cantly in the last decade, since the usage of 3D point scans has widely been spread
into new application areas. These include geometric modeling to supplement in-
teractive creation of virtual scenes, registering landscapes for navigation devices,
tracking of persons or objects in virtual reality applications, medicine, or reverse
engineering.

3D points, retrieved by laser scanners or stereo cameras, introduce two vital
questions (see Fig. 1 to get an idea of the problem). First, how can one recognize a
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Fig. 1 Reconstruction algorithms cope with the task of recognizing a surface topology (see
image on the right) from a set of arbitrary points (see image on the left) which are registered
by a laser scanner or stereo photographs from real object surfaces.

topology of the originating 2D surfaces just from 0-dimensional 3D samples and
without any other information from the sampled object? Second, for further pro-
cessing, how is it possible to project this topological information on a data structure
like a triangle mesh while meeting given constraints concerning mesh quality and
size?

Although these issues have intensely been tackled since the early eighties a gen-
eral concept that addresses all problems of surface reconstruction has not been de-
termined up to now. Noise contained in the sample data, anisotropic point densities,
holes, and discontinuities like edges, and finally, handling vast amounts of sampling
data with adequate computing resources are still a big challenge.

Previous Work

The problem of surface reconstruction is a major field in computer graphics. There
have been numerous approaches with different algorithmic concepts.

An important method is [8]. They construct an implicit surface using local infor-
mation from an unorganized point cloud and then compile a mesh with the marching
cubes approach. In contrast [6, 17] use radial basis functions as bases for a global
implicit surface. A different method for surface reconstruction is proposed in [2, 15]
where a delaunay tetrahedralization of a point cloud is successively reduced until the
model is carved out. Further approaches, like [7], do not create a mesh but a piece-
wise smooth surface which then is converted into a mesh as described for example in
[20]. Another class of algorithms suggest techniques based on the Bayes’ theorem,
like [18, 9]. These approaches are comparable with the GCS concept (see below)
and they share some advantages like noise resistance.

In the area of artificial neural networks a famous work is [14] where the Self Or-
ganizing Map (SOM) is proposed which iteratively adapts its internal structure — a
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2D mesh — to the distribution of a set of samples. It enables clustering or dimen-
sionality reduction of the sample data. While a SOM has a fixed number of elements,
the growing cell structures concept [3, 4] allows the network for dynamically fitting
its size to the sample data complexity. SOM and GCS are likely to process and
represent vector data like point samples on surfaces. [5] uses a SOM and [21, 23]
use a GCS for the purpose of surface reconstruction. Further improvements in this
field are proposed by [13] where constant Laplacian smoothing [19] of surfaces is
introduced, and in [11] the curvature described by the input sample distribution is
taken to control the mesh density. In [10] the GCS reconstruction process is further
enhanced in order to account for more complex topologies. [12] use several meshes
of the same model for a mesh optimization process, and [22] presents a concept for
combining common deterministic approaches and the advantages of the GCS ap-
proach. In [1] the GCS approach is used for focusing on mesh optimization, and in
[16] a surface optimization process based on an edge swap operation for the GCS
approach is presented.

In the following, we describe the basis of our approach — the growing cell struc-
tures — and then derive our idea of the smart growing cells which matches the
specific requirements of reconstruction.

2 Mesh Generation with Smart Growing Cells

GCM is based on using the internal structure of a smart growing cells network as
triangulation of an object surface which is described by a set of surface sample
points. The SGC is a neural network approach which is derived from the growing
cells structures network.

The reason for using a neural network scheme for reconstruction tasks are its
obvious advantages compared to deterministic approaches.

• They robustly handle arbitrary sample set sizes and distributions which is impor-
tant in case of billions of unstructured points from scanned objects.

• They are capable of reducing noise and ply discontinuities in the input data.
• They are capable of adaption — it is not required to regard all points of the

sample set on the whole. Further, incrementally retrieved samples can be used to
retrain the network without starting the triangulation process from scratch.

• They guarantee to — theoretically — find the best solution possible. Approxi-
mation accuracy and mesh quality are automatically driven to the maximum.

• Training can be designed by simple learning rules which nevertheless solve com-
plex problems. This is important for our application case, since the converged
neural network structure and the general learning algorithm only match few re-
quirements of a reconstruction task.

Nevertheless, these advantages partly clash with our needs. On the one hand, dis-
continuities are often desired (for example, in case of edges or very small structures
on object surfaces). On the other hand, smoothing often destroys important aspects
of the model under consideration (for example, if holes are patched, if separate parts
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of the underlying objects melt into one object, or if the object has a very complex,
detailed structure). In such cases, neural networks tend to generalize which may be
advantageous from the physical point of view, but which mostly lets vanish visually
important features which the human is quite sensitized to.

Growing cells meshing, from our point of view, is a breakthrough in this area.
Through the use of a neural network, it delivers a general, robust, high-quality re-
construction algorithm which entails several advantages compared to classical ap-
proaches. Problems which often arise when using neural networks are solved for the
application of surface reconstruction.

In the following, we outline the SGC algorithm. Then, our modifications to meet
the requirements of surface triangulation are described.

2.1 Unsupervised Learning and Growing Cells

Unsupervised learning is accomplished by certain types of artificial neural networks
which are able to organize its internal structure automatically depending on an arbi-
trary input sample distribution. After training, a set of reference vectors match the
input sample distribution — classification is a typical task for this type of networks.
In case of this work, reference vectors are interpreted as a set of vertices located on
object surfaces.

Adaption of reference vectors in iterative unsupervised learning approaches is
called learning or training and is generally accomplished by randomly presenting
single n-dimensional samples from the input sample set to n-dimensional reference
vectors and moving them in n-dimensional space (see Fig. 2).
Surface reconstruction with pure unsupervised learning would place a set of refer-
ence vectors on object surfaces, but does not determine information about the un-
derlying surface topology. This leads to the Kohonen self organizing map described
in the following.

Fig. 2 Training
loop of general
unsupervised
training

Place k reference vectors ci ∈ R
n, i ∈ {0..k − 1} randomly in

the nD space of input samples

repeat

Chose sample s j ∈ R
n randomly from the input set

Determine reference vector cb (the “best matching vector”
or the “winning unit”) which lies closest to s j

Move cb in the direction of s j according to a certain strength
εbm, like cnew

b = cold
b (1− εbm)+ s j · εbm

Decrease εbm

until εbm ≤ a certain threshold ε0
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Kohonen Self Organizing Map

The SOM is based on reference vectors which are randomly connected in a regular
2D mesh. The learning rule is extended to account for the direct neighborhood of a
best matching unit (see Fig. 3)

for all cnb ∈ neigborhood of cb do

Move cnb in the direction of s j according to a certain
strength εnb, like cnew

nb = cold
nb(1− εnb)+ s j · εnb

Decrease εnb

end for

Fig. 3 The “neigh-
borhood loop” of the
Kohonen SOM to be
added at the general
unsupervised learn-
ing scheme

Insertion of this “neighborhood loop” into the general unsupervised learning al-
gorithm (after moving of cb in Fig. 2) leads to the phenomenon that the reference
vertices are moved by accounting for the regular 2D mesh topology of the SOM.
For example, training a plane-like arranged sample set leads to an adaption of the
SOM grid to this implicit plane — the sample topology is recognized and finally
represented by the SOM mesh.

Nevertheless, mesh size of a SOM is fixed and cannot adjust to the sample struc-
ture complexity. The growing cell structures approach overcomes this drawback.

Growing Cell Structures

To a certain degree, GCS may be seen as SOM which additionally is capable of
growing and shrinking according to the problem under consideration defined by the
sample distribution. This mechanism is based on a so called resource term contained
in every reference vector, which is a simple counter. It counts the reference vector
being a best matching unit and a high counter value signalizes the requirement of
insertion of new reference vectors in that region. Generally, “resource” may defined
differently, for example by accumulating an approximation error.

But using a GCS for surface reconstruction still exposes vital problems. There
is only one given type of topology available. In other words, starting training with
a regular mesh can best approximate the topology of plane-like structures, and a
tetrahedron would be adequate for sphere-like objects — only objects which are
homeomorphic to the start object can be represented satisfactorily. Further problems
arise at discontinuities like sharp edges and holes. These are commonly difficult to
model through neural network type algorithms like mentioned above. This brings us
to our approach, the smart growing cells.
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2.2 Smart Growing Cells for Reconstruction

Smart Growing Cells overcome the most problems mentioned above by introduc-
ing the three basic mechanisms of (a) aggressive cut out (ACO), (b) discontinuity
vertices, and (c) a specific curvature criterion, explained below.

The SGC basic structure is identical to general GCS. There are n-dimensional
cells which we now term neural vertices connected by links through an
m-dimensional topology. We let n = 3 since neural vertices are directly taken as
vertices of the triangulation mesh and m = 2 since we aim at 2D surfaces to be
reconstructed.

2.2.1 General Training

The simplified main training loop is very similar to to the classical GCS approach
(see section 2.1) and outlined in Fig. 4. For adaption of the neighboring vertices,
a smoothing process like described in [13] and [19] is applied which replaces the
classical movement, and which makes the adaption of the topology more robust.

As initial network, usually a tetrahedron or a plane with random vertices is suit-
able. A vertex split and an edge collapse operation adjust the network size dynam-
ically. See Fig. 5 to get an idea of what happens in surface reconstruction with the
SGC approach.

Fig. 4 The
main loop
of the SGC
approach is
similar to
that of the
GCS

repeat

for j = 1 to kdel do
for i = 1 to kins do

Choose a sample randomly, find closest neural vertex cb

and move it with its neighbors towards the sample

Increase signal counter of cb (the resource term men-
tioned above) and decrease the signal counters of all
other vertices

end for

Find the best performing neural vertex — which is the one
with the highest signal counter value — and add a new ver-
tex at this position

end for

Find the worst performing neural vertices, delete them and af-
fected edges

until a certain limit like approximation error, or number of vertices
is reached
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Fig. 5 Given a distribution of samples the SGC develops an initial simple polyeder into a final
mesh which represents the underlying object topology

Vertex Split

A vertex split operation adds three edges, two faces and a new neural vertex. The
longest edge at the neural vertex with the highest resource term is split and a new
vertex is added in the middle. The signal counter value is equally spread between
the two vertices (see Fig. 6).

Fig. 6 Vertex split operation (from
left to right) to increase mesh gran-
ularity locally. Edge collapse runs
inversely.

Edge Collapse

Neural vertices with resource terms below a threshold rmin are removed together
with three edges and two connected faces (see Fig. 6). Determination of the edge to
be removed is driven by connectivity irregularities as proposed in [13].

2.2.2 Aggressive Cut Out

Aggressive Cut Out may be the most important new scheme we added to the stan-
dard GCS algorithm for achieving sufficient flexibility to match any topology of the
training samples (the “homomorphism problem”). Before the edge collapse opera-
tion is applied to a vertex, it is tested if the vertex is contained in a degenerated mesh
region (definition follows below). If so, the ACO process deletes it and additionally
all connected faces.

It has been shown that degeneration of a part of the mesh serves as perfect in-
dicator for a mesh topology which does not fit the underlying sample distribution
correctly. For example, consider a region where sample density equals zero. Al-
though vertices are not directly drawn into it by training adjustment, their neighbors
may be moved there through their mesh connections. After a certain time, the re-
source term triggers the deletion of these vertices by edge collapse operations but
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their links remain alive. These links mistakenly represent the existence of a topol-
ogy and their structure is degenerated, i.e., it usually shows a surpassing number of
edges with acute-angled1 vertices (see Fig. 7).

Fig. 7 The statue’s bottom on the
left is not represented by sam-
ples. Its acute-angled triangles re-
fer to a degenerated mesh region.
On the right, ACO has detected
this region and deleted the related
mesh elements.

The term ”aggressive” is chosen since triggering properties are matched during
training more often — suspicious neural vertices are cut out early.

Criterion for Degenerated Mesh Regions

In [10] a large area of a triangle is taken as sign for a degenerated mesh structure,
but it has been shown that this criterion warns very late. Also, triangles generated
from anisotropic sample densities are mistakenly interpreted as degenerated mesh
regions. Our proposal is a combination of vertex valence2, triangle quality, and qual-
ity of neighboring vertices. If all of the following conditions hold, an ACO is started
at the vertex to be deleted.

1. Vertex valence rises above a certain threshold ndegvalence.
2. Vertex is connected to at least ndegacute acute-angled triangles.
3. Vertex has more then ndegnb neighbors for which conditions (1) or (2) hold.

The latter condition says that ACO is only started if at least one or two neighbors
show the same inconsistencies in their local mesh structure. This is reasonable since
single degenerated vertices do not necessarily expose a problem, but may arise by
accident.

Curing Boundaries after an ACO

Obviously after an aggressive extinction of a neural vertex and its surrounding faces,
a boundary will be left behind which may consist of unfavorable mesh structure
elements. Curing detects structures like a “spike”, a “nasty vertex”, a “needle eye”,
or a “bridge” along a boundary and patches them.

1 A triangle is termed acute-angled if the ratio of its area and the area which is spanned by
a second equilateral triangle built from the longest edge of the first lies below a certain
threshold εacute.

2 The term vertex valence represents the number of connected vertices.
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Spike. A boundary vertex with a valence of 2 (see Fig. 8) is termed spike. Such a
vertex is very unlikely supporting a correct reconstruction process since it will be
adjusted to an acute-angled triangle after few more iteration steps. A spike must be
deleted in any case.

Fig. 8 Curing a boundary which con-
tains a “spike” (see image on the left)
results in the deletion of the involved
vertex (see image on the right).

Nasty Vertex. A nasty vertex is a neural vertex with at least nnastyacute acute-angled
triangles and/or triangles with a valence greater than nnastyval (see Fig. 9). These
vertices are suspected to be part of a degenerated mesh region and are deleted.

Fig. 9 A “nasty vertex” is a vertex
with too many neighbors (see image
on the left) and has to be deleted (im-
age on the right).

Needle Eye. A needle eye is a neural vertex that is connected to at least two bound-
aries (see Fig. 10). At these locations the mesh does not have a valid mesh structure.
To delete a needle eye, all groups of connected faces are determined. From these,
the group with the most faces is kept and all others are deleted.

Fig. 10 A single vertex connected to
two separate boundaries is termed a
“needle eye” (see image on the left)
and has to be deleted (see image on the
right).

Bridge. A bridge is very likely to be part of a degenerated mesh region. If a mesh
has a hole that consist of three vertices, then it would soon be closed by a coalescing
process (see section 2.2.3). This is not allowed if exactly one of the edges of this
hole is additionally connected to a face (which we term “bridge”, see Fig. 11) since
an invalid edge with three faces would arise. The entire bridge structure is deleted
and the hole will be closed with a new face.
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Fig. 11 If an edge of a hole is con-
nected to a second boundary and
the hole is to be closed (termed a
“bridge”, see image on the left),
then the connection to the second
boundary should be destroyed (see
image on the right)

Multiple Boundary Search Through

After deletion of a neural vertex by the ACO process the curing mechanism will look
for unfavorable structures along the boundary. There is more than one boundary to
be considered, if the deletion destroys a coherent set of faces and multiple separate
groups of faces arise due to other deletion processes.

Four cases may appear. First, the usual case with no additional boundaries. Sec-
ond, when a needle eye is destroyed, the boundaries of all groups of connected
faces need to be tested. Third, when surrounding faces of a vertex are interrupted by
boundaries. And fourth, when a needle eye is connected to the surrounding faces of
a vertex (see Fig. 12).

Fig. 12 Example for the cut out
of a needle eye at a row of faces.
Faces are not necessarily con-
nected to other faces.

2.2.3 Coalescing

Like the mesh can be split by deletion of vertices or by the ACO process, it must
also be possible to merge two mesh boundaries during the training process. For that,
a coalescing test is accomplished each time a boundary vertex is moved.

Coalescing Test

This test recognizes if two boundaries are likely to be connected to one coherent
area. For that, a sphere is created with the following parameters. Given the neigbor-
ing boundary vertices v1 and v2 of cb, then we define c = 1/2(v1 +v2). A boundary
normal nc is calculated as the average of all vectors originating at c and ending at
neighbors of cb, where v1 and v2 are not taken into account. The boundary normal
can be seen as a direction pointing to the opposite side of the boundary. We define
a sphere with the center at c+ncr with a radius r as the average length of the edges
at cb.



Surface Reconstruction with Smart Growing Cells 57

The coalescing condition at two boundaries hold, i.e., merging of the boundaries
containing cb and q on the opposite side happens, if q is contained in the defined
sphere, and the dot product of the boundary normals at cb and q is negative.

Coalescing Process

After detecting the neural vertex q to be connected with cb, the according faces must
be created, starting with one edge from cb to q. There are two cases — “corner” and
“long side” — which have to be considered.

Fig. 13 Coalescing process at a mesh corner. On the left, the search process of a coalescing
candidate. In the middle, one edge is created, on the right, the only face capable of being
added is the corner face.

Corner. A corner of the same boundary arises when cb an q have one neighbor-
ing vertex in common. Here, it is only possible to generate the face which closes
the corner (see Fig. 13). Otherwise a needle eye would be created which is not a
satisfactory mesh structure.

Long Side. Here, two boundaries appear to be separated. After determining the new
edge, there are four possibilities for insertion of a new face containing the edge
(see Fig. 14b). The triangle with edge lengths which vary fewest is taken in our
approach (see Fig. 14c) since it is the triangle with the best features concerning
triangle quality. Finally, to avoid a needle eye, a further triangle must be added —
again, we take, the face with the highest edge similarity (see Fig. 14d). Coalescing

(a) (b) (c) (d)

Fig. 14 Coalescing of two separate boundaries. In (a) and (b) the edge is determined, in (c) the
triangle with the smallest variance of edge lengths is added, in (d) another triangle is created
to avoid a needle eye.



58 H. Annuth and C.-A. Bohn

sometimes creates unfavorable bridges that need to be deleted through a further
ACO process.

ACO is a vital scheme which allows for changing the topology of the initial SGC
mesh to match the topology of the underlying object. If ACO sees inconsistencies
in the mesh it clears them by destroying parts of the mesh at the involved locations.
Coalescing is the counterpart of this deletion. It forms new connections to create
new topological structures (see Fig. 15).

Fig. 15 Aggressive cut out detects inconsistent regions in the SGC mesh (visible in the image
on the left side at the centers of the tori), deletes them and melts the remaining boundaries
(see image on the right side). Thus, the mesh topology is adapted during training.

2.2.4 Granularity Adaption

Up to now, the SGC is able to approximate an arbitrary sample set by a 2D mesh.
Now we present an efficient local adaption scheme of the mesh density in a way
that areas with a strong curvature are modeled by a finer mesh resolution (see
Fig. 16). This also relieves the influence of the sample density on the mesh gran-
ularity making the SGC less vulnerable to sampling artefacts like holes or regions
which are not represented by a uniform sample distribution.

Each time a vertex is adapted by a new sample we calculate the estimated normal
nk at a neural vertex vk by the average of the normals at the surrounding faces. The
curvature ck ∈ R at a vertex is determined like

ck = 1− 1
|Nk| ∑

∀n∈Nk

nk ·n (1)

with the set Nk containing the normals of the neighboring neural vertices of vk.
Each time a neural vertex is chosen as winner, its curvature value is calculated and a
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Fig. 16 Granularity adaption correlates surface curvature to mesh density. See for exam-
ple, the accentuated mesh density at the bunny’s leg compared to its torso (left side), or the
dragon’s horns compared to its cheek (right side)

global curvature value c is adjusted. Finally, the curvature dependent resource term
rk at vk is adjusted through rnew

k = rold
k + Δrk, with

Δrk =
{

1, if (ck < c+ σrk)[
ck/(c+ σrk)

]
(1− rmin)+ rmin else

and the deviation σrk of the resource term rk, and a constant resource rmin that guar-
antees that the mesh does not completely vanish at plane regions with a very low
curvature.

2.2.5 Discontinuity Modeling

A sampled model that exposes discontinuities like edges is difficult to be approxi-
mated by a neural network mesh. Discontinuities are smoothed out since the network
tries to create a surface over them. This might be acceptable in many application ar-
eas since the approximation error is fairly small, but the effect is unfavorable in
computer graphics since it is clearly visible. And even worse: edges are quite com-
mon in real world scenarios.

Therefore, we propose handling vertices at regions classified as discontinuities
of the underlying scanned object differently — first, they are only allowed to move
in the direction of an object edge to represent it more properly, and second, the
smoothing process from section 2.2.1 is not applied at them (see Fig. 17, the same
model with and without discontinuity modeling).

Recognizing these discontinuity vertices is accomplished as follows. We
determine the curvature values of those neighbors which have a distance of two
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Fig. 17 Discontinuity modeling lets vertices move mainly in the direction of discontinuities.
On the left, a result from the SGC approach without discontinuity modeling is exposed, on
the right, with discontinuity modeling cells have grown into the corner of the plate.

connections from the vertex v under consideration — the “second ring” of neigh-
bors. Then the average δring of the squared differences of consecutive curvature
values on the ring is calculated.

If a curvature value clearly deviates from the average curvature value, then a
discontinuity at this location is assumed if the average of the neighbors’ (second
ring) curvature gradient differs to a certain amount, i.e., if

(ck > 2σck)∧ (∀c ∈ Ck : δring > 4σ2
ck

)

with Ck the set of curvature values of the second ring of neighbors.
For approximating the edge normal at a discontinuity vertex v, we take the aver-

age of the normals of two of the neighboring vertices, either those with the highest
curvature value, or those which are already detected as being a discontinuity vertex.
Finally, the normal is mirrored if the edge angle lies above 180◦, which is indicated
by the average of the surrounding vertex normals; in the first case it points in the
direction of v.

Fig. 18 shows two further examples for the discontinuity modeling facility of
GCM.

3 Results

In Fig. 19 the whole GCM algorithm is listed as pseudocode. To keep it comprehen-
sive, the outermost loop of the algorithm is neglected, vertex split and edge collapse
operations are triggered by using counters (compared with the basic algorithm from
section 2.2.1).
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Fig. 18 Two example objects which expose the discontinuity modeling facility of the SGC

Parameters

The following parameters have been proven to be reliable for almost all sample sets
we took for reconstruction: εbm = 0.1, εnb = 0.08, rmin = 0.3, εacute = 0.5, ndegacute =
4, kins = 100, kdel = 5, ndegnb = 1, nnastyacute = 4, nnastyval = 3.

Test Hardware

We used a Dell R©Precision M6400 Notebook with Intel R©Core 2 Extreme Quad Core
QX9300 (2.53GHz, 1066MHz, 12MB) processor with 8MB 1066 MHz DDR3 Dual
Channel RAM. The algorithm is not parallelized.

Some visual results are exposed in Fig. 21. All pictures are drawn from one SGC
mesh and they are rendered using Phong Shading. Most models stem from the Stan-
ford 3D Scanning Repository.

Besides visual results, GCM comes up with impressive numbers, listed in Fig. 20.
It can be seen that mesh quality, i.e. the percentage of perfect triangles in the mesh
lies at 96% at average. This is an outstanding result, nevertheless this is typically
expected when using an approach from the field of unsupervised learning, since it
guarantees an ideal representation of the underlying training sample distribution.

Further, the distance (RMS/object size) between samples and mesh surface is
negligible low — far below 1% of the object size at average. This is even more
pleasant, since usually, the problem at edges generate large error terms. It proves
that discontinuity vertices are worth it. Also the computing times needed are very
short, i.e., few minutes in almost all cases.
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Fig. 19 The complete GCM algo-
rithm. The outermost loop of the
algorithm is neglected, vertex split
and edge collapse operations are
triggered by counters

Adjust samples regarding curvature

Calculate average curvature and deviations

Determine and sign discontinuity vertices

for all Boundary vertices do
if ∃ coalescing candidate then

Melt boundary
for all ACO candidates do

Clean by ACO
end for

end if
end for

if Edge collapse operation triggered then
Collapse edge
for all ACO candidates do

ACO-cleaning
end for

end if

if Vertex split operation triggered then
Split vertex

end if

All those measurements seem to be far better than those from classical ap-
proaches, as long as we could extract them from the regarding papers. The presented
algorithm works very robustly. There are nearly no outliers visible in the mesh.

4 Summary and Future Work

We presented a new neural network approach for surface reconstruction purposes —
the smart growing cells. The algorithm, on the one hand, profits from the common
outstanding facilities of neural networks, on the other hand, well-known problems
when using such iterative techniques are avoided successfully.

Growing cells meshing is capable of recognizing and representing arbitrary sur-
face topologies. The network training generates valid meshes at any size and it is
able to handle 3D point samples at an arbitrary amount. The mesh accounts for dis-
continuities like sharp edges and holes, smoothes over missing sample data, handles
difficult distributions of sample data, and its granularity efficiently adapts to the un-
derlying curvature of the object shape. The iterative approach enables dynamically
changing the training sample set to adjust the network to small changes in a shorter
time.

To achieve this, we introduced several mechanisms like, first, aggressive cut out,
which can be seen as a brute cleaning mechanism for ill-formed structures. We
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Samples Vertices
Time

[min:sec]
Quality

[Delaunay]
RMS/
Size

36K 30K 1:19 95.6% 4.7e-5

438K 100K 5:33 95.5% 3.3e-5

544K 260K 18:33 93.1% 1.7e-5

14,028K 320K 24:27 98.5% 1.3e-5

5,000K 500K 42:10 95.9% 2.7e-5

511K 10K 0:21 99.8% 6.6e-5

38K 5K 0:12 99.0% 15e-5

346K 5K 0:12 98.3% 0.7e-5

Fig. 20 Results
with objects from
the Stanford 3D
Scanning Repos-
itory. “Quality”
means the percent-
age of triangles
which hold the
Delaunay crite-
rion. RMS/Size
is the root of the
squared distances
between the origi-
nal point samples
and the triangle
mesh, divided by
the longest edge
of the maximum
expansion of the
sample set.

found out that these structures are also a great hint for changing connectivities to
match the underlying surface topology. Second, face normals are regarded and in-
cluded in the neural network training loop to assimilate mesh granularity and to
make the reconstruction process independent from the sample distribution. Third,
we proposed a specific learning strategy for vertices which lie in a sample region
which represents discontinuities of the scanned model.

The proof of concept of our approach is enriched by the achieved quality and
performance measures. For the tested geometries which each hold specic challenges
of reconstruction, we get approximation errors for comparable mesh resolutions that
lie far below 1% at average. Mesh quality, measured by the percentage of triangles
which comply the Delaunay criterion, lies at 96% at average, and the time needed to
compute meshes of several hundreds of thousands of polygons is just few minutes.
Thus, with these results, we are confident that we could show that the growing cells
meshing approach is a considerable alternative to common reconstruction methods.

Future Work

There are some object structures which can hardly be modeled adequately by the
presented method and which will be challenged in future work. These are, for ex-
ample, planes which are thinner than the average sample distance. From the SGC
point of view, these surfaces are not clearly distinguishable.

Computation times are that small that one could think of a real-time reconstruc-
tion approach. Scanning users in VR applications for sending their shape to other
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Fig. 21 The top two lines show each three states during a complete training process together
with the number of vertices which have been created at that time. The lower lines expose
some pictures of reconstructed models.



Surface Reconstruction with Smart Growing Cells 65

places could be a impressive feature. Here, an effective parallelization of the algo-
rithm would be required and could be accomplished by executing sample adjustment
on several processing units concurrently.

Generally, the SGC approach should be able to bring a lot of new ideas because
of its flexibility and since it is capable of learning arbitrary sample sets in a very
short time.

Acknowledgements. The authors would like to thank Kai Burjack for his support in render-
ing the presented images.
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