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Abstract

We propose Growing Cells Meshing (GCM) — a reconstruction algorithm which creates
triangle meshes from clouds of arbitrary point samples registered on object surfaces. GCM
is different to classical approaches in the way that it uses an artificial neural network (ANN)
to represent the triangle mesh together with an iterative learning technique. Based on the
Growing Cell Structures (GCS) approach [Fritzke, 1993] we introduce the Smart Growing
Cells (SGC) network as extension to fulfill the requirements of surface reconstruction.

Our method profits from the well-know benefits entailed by neural networks, like auton-
omy, robustness, scalability, the ability of retrieving information from very complex data,
and adaptability. On the downside, typical drawbacks like undesirable smoothing of informa-
tion, inability to exactly model detailed, discontinuous data, or a vast amount of computing
resources at big network sizes are overcome for the application of surface reconstruction.

The GCM approach creates high-quality triangulations of billions of points in few minutes.
It perfectly covers any amount and distribution of samples, holes, and inconsistent data. It
discovers and represents edges, manages clusters of input sample points, and it is capable of
dynamically adapting to incremental sample data.

Keywords: Surface Reconstruction, Mesh Optimization, Geometric Modeling, Neural Net-
works, Unsupervised Learning, Neural Mesh, Growing Cells Structures



1 Introduction

The demand for efficient high quality recon-
struction algorithms has grown significantly in
the last decade, since the usage of 3D point
scans has widely been spread into new appli-
cation areas. These include geometric model-
ing to supplement interactive creation of virtual
scenes, registering landscapes for navigation de-
vices, tracking of persons or objects in virtual
reality applications, medicine, or reverse engi-
neering.

3D points, retrieved by laser scanners or stereo
cameras, introduce two vital questions. First,
how can one recognize a topology of the orig-
inating 2D surfaces just from 0-dimensional 3D
samples and without any other information from
the sampled objects? Second, for further pro-
cessing, how is it possible to project this topo-
logical information on a data structure like a tri-
angle mesh — meeting given constraints con-
cerning mesh quality and size?

Although this issues have intensely been tack-
led since the early eighties a general concept that
addresses all problems of surface reconstruction
has not been determined up to now. Noise con-
tained in the sample data, anisotropic point den-
sities, holes, and discontinuities like edges, and
finally, handling vast amounts of sampling data
with adequate computing resources are still a big
challenge.

Previous Work. The issue of surface recon-
struction is a major field in computer graphics.
There have been numerous approaches with dif-
ferent algorithmic concepts. In [Hoppe et al.,
1992] and [Hoppe, 2008] an implicit surface is
created from point clouds which then is triangu-
lated by the marching cubes approach. [Edels-
brunner and Mcke, 1994] and [Kolluri et al.,
2004] reduce a delaunay tetrahedralization of a
point cloud until the model is carved out. Ap-
proaches like [Storvik, 1996] or [Huang et al.,
2007] utilize techniques based on the Bayes’
theorem.

In the area of artificial neural networks a famous

work is [Kohonen, 1982]. They propose the Self
Organizing Map (SOM) which iteratively adapts
its internal structure — a 2D mesh — to the dis-
tribution of a set of samples and enables clus-
tering or dimensionality reduction of the sample
data. While a SOM has a fixed topology, the
growing cell structures concept [Fritzke, 1993,
1995] allows the network for dynamically fit-
ting its size to the sample data complexity. SOM
and GCS are suitable for processing and repre-
senting vector data, like point samples on sur-
faces. [Hoffmann and Vrady, 1998] uses a SOM
and [Vrady et al., 1999] and [Yu, 1999] a GCS
for the purpose of surface reconstruction. Fur-
ther improvements in are made by [Ivrissimtzis
et al., 2003b] where constant Laplace smooth-
ing [Taubin, 1995] of surfaces is introduced, and
in [Ivrissimtzis et al., 2003a] the curvature de-
scribed by the input sample distribution is taken
to control mesh density. In [Ivrissimtzis et al.,
2004a] the GCS reconstruction process is further
enhanced in order to account for more complex
topologies. [Ivrissimtzis et al., 2004b] use sev-
eral meshes of the same model for a mesh opti-
mization process, and [Yoon et al., 2007] present
a concept for combining common deterministic
approaches and the advantages of the GCS ap-
proach.

In the following, we describe the basis of our
approach — the growing cell structures — and
then derive our idea of the smart growing cells
which matches the specific requirements of re-
construction.

2 Growing Cells Meshing Approach

GCM is based on using the internal structure of
a smart growing cells network as triangulation
of object surfaces which are described by a set
of surface sample points. The SGC is a neu-
ral network approach which is derived from the
growing cells structures network, and which is
presented for the first time in this work.

The reason for using a neural network scheme
for reconstruction tasks are its obvious advan-
tages compared to deterministic approaches.



• They robustly handle arbitrary sample set
sizes and distributions which is important
in case of billions of unstructured points
from scanned objects.

• They are capable of reducing noise and ply
discontinuities in the input data.

• They are capable of adaption — it is not
required to regard all points of the sample
set on the whole. Further, incrementally re-
trieved samples can be used to retrain the
network without starting the triangulation
process from scratch.

• They guarantee to — theoretically — find
the best solution possible. Thus, approxi-
mation accuracy and mesh quality are auto-
matically driven to the maximum.

• Training can be designed by simple learn-
ing rules which nevertheless solve complex
problems. This is important for our appli-
cation case, since the converged neural net-
work structure and the general learning task
only match few requirements of a recon-
struction task.

Nevertheless, these advantages partly clash with
our needs. On the one hand, discontinuities are
often desired (for example, in case of edges or
very small structures on object surfaces). On
the other hand, smoothing often destroys impor-
tant aspects of the model under consideration
(for example, if holes are patched, if separate
parts of the underlying objects melt into one ob-
ject, or if the object has a very complex, detailed
structure). In such cases, neural networks tend
to generalize which may be advantageous from
the physical point of view, but which mostly lets
vanish visually important features which the hu-
man is quite sensitized to.

Growing cells meshing, from our point of view,
is a breakthrough in this area. Through the use
of a neural network, it delivers a general, robust,
high-quality reconstruction algorithm which en-
tails several advantages compared to classical
approaches. Problems which often arise when
using neural networks are solved for the appli-
cation of surface reconstruction.

In the following, we outline the SGC algorithm.
Then, our modifications to meet the require-
ments of surface triangulation are described.

2.1 Unsupervised Learning and Growing
Cells

Unsupervised learning is accomplished by cer-
tain types of artificial neural networks which are
able to organize its internal structure automat-
ically depending on an arbitrary input sample
distribution. After training, a set of reference
vectors match the input sample distribution —
classification is a typical task for this type of
networks. In case of this work, reference vec-
tors are interpreted as a set of vertices located
on object surfaces.

Adaption of reference vectors in iterative un-
supervised learning approaches is called learn-
ing or training and is generally accomplished
by randomly presenting single n-dimensional
samples from the input sample set to n-
dimensional reference vectors and moving them
in n-dimensional space, described as follows.

Place k reference vectors ci ∈ Rn, i ∈ {0..k−1}
randomly in the nD space of input samples.

repeat

Chose sample sj ∈ Rn randomly from the in-
put set.

Determine reference vector cb (best matching
vector or winning unit) which lies closest to sj .

Move cb in the direction of sj according to a
certain strength εbm, like cnew

b = cold
b (1− εbm)+

sj · εbm.

Decrease εbm.

until εbm ≤ a certain threshold ε0.

Surface reconstruction with pure unsupervised
learning would place a set of reference vectors
on object surfaces, but does not determine infor-
mation about the underlying surface topology.
This leads to the Kohonen Self Organizing Map
(SOM) described in the following.

Kohonen Self Organizing Map. The SOM is
based on reference vectors which are randomly
connected in a regular 2D mesh. The learning



rule is extended to account for the direct neigh-
borhood of a best matching unit as follows.

for all cnb ∈ neigborhood of cb do

Move cnb in the direction of sj according to a
certain strength εnb, like cnew

nb = cold
nb(1− εnb) +

sj · εnb.

Decrease εnb.

end for

Insertion of the above “neighborhood loop” into
the general unsupervised learning algorithm (af-
ter moving of cb) leads to the phenomenon that
the reference vertices are moved by accounting
for the regular 2D mesh topology of the SOM.
For example, training a plane-like arranged sam-
ple set leads to an adaption of the SOM grid
to this implicit plane — the sample topology is
recognized and finally represented by the SOM
mesh.

Nevertheless, the mesh size of a SOM is fixed
and cannot adjust to the sample structure com-
plexity. The growing cell structures approach
overcomes this drawback.

Growing Cell Structures. To a certain de-
gree, GCS may be seen as SOM which addition-
ally are capable of growing and shrinking ac-
cording to the problem under consideration de-
fined by the sample distribution. This mecha-
nism is based on a so called resource term con-
tained in every reference vector which is a sim-
ple counter. It counts the reference vector being
a best matching unit. A high counter value sig-
nalizes the requirement for insertion of new ref-
erence vectors. Generally, “resource” may de-
fined differently, for example by accumulating
an approximation error.

But using a GCS for surface reconstruction still
exposes vital problems. There is only one given
type of topology available. In other words, start-
ing training with a regular mesh can best ap-
proximate the topology of plane-like structures,
and a tetrahedron would be adequate for sphere-
like objects — only objects which are homeo-
morphic to the start object can be represented
satisfactorily. Further problems arise at dis-
continuities like sharp edges and holes. These

are commonly difficult to model through neural
network type algorithms like mentioned above.
This brings us to our approach, the smart grow-
ing cells.

2.2 Smart Growing Cells and GCM

Smart Growing Cells overcome the most prob-
lems mentioned above by introducing the three
basic mechanisms of (a) aggressive cut out
(ACO), (b) discontinuity vertices, and (c) a spe-
cific curvature criterion, explained below.

The SGC basic structure is identical to gen-
eral GCS. There are n-dimensional cells which
we now term neural vertices connected by links
through an m-dimensional topology. We let
n = 3 since neural vertices are directly taken
as vertices of the triangulation mesh and m = 2
since we aim at 2D surfaces to be reconstructed.

2.2.1 General Training

In the following, we expose the simplified main
training loop which is very similar to the classi-
cal GCS approach (see section 2.1).

repeat

for j = 1 to kdel do
for i = 1 to kins do

Choose a sample randomly, find clos-
est neural vertex cb and move it with its
neighbors towards the sample.

Increase signal counter of cb (the re-
source term mentioned above), de-
crease the signal counters of all other
vertices.

end for

Find the best performing neural vertex —
which is the one with the highest signal
counter value — and add a new vertex at
this position (see Fig. 1).

end for

Find the worst performing neural vertices,
delete them and affected edges (see Fig. 1).

until a certain limit like approximation error, or
number of vertices is reached.

For drawing the neighboring vertices, a smooth-
ing process like described in [Ivrissimtzis et al.,



2003b] and [Taubin, 1995] is applied which re-
places the classical movement, and which makes
the adaption of the topology more robust.

As initial network, usually a tetrahedron or a
plane with random vertices is suitable.

Vertex Split. A vertex split operation adds
three edges, two faces and a new neural vertex.
The longest edge at the neural vertex with the
highest resource term is split and a new vertex
is added in the middle. The signal counter value
is equally spread between the two vertices (see
Fig. 1).

Figure 1: Vertex split operation (from left to right) to
increase mesh granularity locally, and edge collapse
(from right to left) to reduce mesh locally.

Edge Collapse. Neural vertices with resource
terms below a threshold rmin are removed to-
gether with three edges and two connecting
faces (see Fig. 1). Determination of the edge to
be removed is driven by connectivity irregulari-
ties as proposed in [Ivrissimtzis et al., 2003b].

2.2.2 Aggressive Cut Out

Aggressive Cut Out (ACO) may be the most im-
portant new scheme we added to the standard
GCS algorithm for achieving sufficient flexibil-
ity to match any topology of the training sam-
ples (the “homomorphism problem”). Before
the edge collapse operation is applied to a ver-
tex, it will be tested if the vertex is contained
in a degenerated mesh region (definition follows
below). If so, the ACO process deletes it and
additionally all connected faces.

It has been shown that degeneration of a part of
the mesh serves as perfect indicator for a mesh

topology which does not fit the underlying sam-
ple structure correctly. For example, consider a
region where sample densities equal zero. Al-
though vertices are not directly drawn into it
by training adjustment, their neighbors may be
moved there through their mesh connections.
Due to the resource term, these vertices will be
deleted by edge collapse operations, but their
links remain and mistakenly represent the exis-
tence of a topology. In this case, the structure of
the links is degenerated, i.e., it usually shows a
surpassing number of edges with acute-angled1

vertices (see Fig. 2).

Figure 2: The statue’s bottom is not represented by
samples, on the right, the acute-angled triangles ex-
pose a degenerated mesh region.

The term ”aggressive” is chosen since triggering
properties are often matched during training —
suspicious neural vertices will be cut out early.

Criterion for Degenerated Mesh Regions. In
[Ivrissimtzis et al., 2004a] a large area of a tri-
angle is taken as sign for a degenerated mesh
structure, but it has been shown that this crite-
rion warns very late. Also, anisotropic sample
densities are mistakenly interpreted as degener-
ated mesh regions. Our proposal is a combi-
nation of vertex valence2, triangle quality, and
quality of neighboring vertices. If all of the fol-
lowing conditions hold, an ACO is started at the
vertex to be deleted.

1. Vertex valence rises above a certain thresh-
old ndegvalence.

1A triangle is termed acute-angled if the ratio of its
area and the area which is spanned by a second equilateral
triangle built from the longest edge of the first lies below
a certain threshold εacute.

2Vertex valence is the number of connected vertices.



2. Vertex is connected to at least ndegacute

acute-angled triangles.

3. Vertex has more then ndegnb neighboring
vertices for which condition (1) or (2) hold.

The latter condition says that ACO is only
started if at least one or two neighbors have the
same inconsistencies in their local mesh struc-
ture. This is reasonable since single degenerated
vertices do not necessarily expose a problem, but
may arise by accident.

Curing Boundaries after an ACO. Obvi-
ously after an aggressive extinction of a neural
vertex and its surrounding faces, a boundary will
be left behind which may consist of unfavorable
mesh structure elements. Curing detects those
structures along a boundary and patches them
discriminating between the following four cases.

Figure 3: Curing a boundary with a spike.

Spike. A boundary vertex with a valence of 2
(see Fig. 3) is termed spike. Such a vertex is
very unlikely to support a correct reconstruc-
tion process since it will be adjusted to an acute-
angled triangle after few iteration steps. A spike
must be deleted completely.

Figure 4: Cut out processes of a nasty vertex.

Nasty Vertex. A nasty vertex is a neural ver-
tex with at least nnastyacute acute-angled trian-
gles and/or triangles with a valence greater than

nnastyval (see Fig. 4). These vertices are sus-
pected to be part of a degenerated mesh region
and are deleted.

Needle Eye. A needle eye is a neural vertex
that is connected to at least two boundaries (see
Fig. 5). At these locations the mesh does not
have a valid mesh structure. To delete a nee-
dle eye, all groups of connected faces are de-
termined. From these, the group with the most
faces is kept and all others are deleted.

Figure 5: Cut out processes of a needle eye.

Bridge. A bridge is very likely to be part of
a degenerated mesh region. If a mesh has a
hole that consist of three vertices, then it would
soon be closed by a coalescing process (see sec-
tion 2.2.3). This is not allowed if exactly one
of the edges of this hole would additionally be
connected to a face (which we term “bridge”,
see Fig. 6) since an invalid edge with three
faces would arise. The entire bridge structure
is deleted and the hole will be closed with a new
face.

Figure 6: Curing a bridge.

Multiple Boundary Search Through. After
the deletion of a neural vertex by the ACO pro-
cess the curing mechanism will look for unfa-
vorable structures along the boundary. There
is more than one boundary to be considered, if



the deletion destroys a coherent set of faces and
multiple separate groups of faces arise.

Four cases may appear. First, the usual case with
no additional boundaries. Second, when a nee-
dle eye is destroyed, the boundaries of all groups
of connected faces need to be tested. Third,
when surrounding faces of a vertex are inter-
rupted by boundaries. And fourth, when a nee-
dle eye is connected to the surrounding faces of
a vertex (see Fig. 7). In other words, these cases
happen since the faces that are deleted may not
necessarily be connected to another face due to
another deletion process.

Figure 7: Cut out of a needle eye with a row of faces.
Here, each face is not necessarily connected to an-
other face. In contrast, if a needle eye has several
groups of connected faces then there are some omis-
sions of faces around the needle eye.

2.2.3 Coalescing

Like the mesh can be split by deletion of vertices
or by the ACO process, it must also be possible
to merge two mesh boundaries during the train-
ing process. For that, a coalescing test is accom-
plished when a boundary vertex is moved.

Coalescing Test. It determines if two bound-
aries are likely to be connected to one coher-
ent area. For that, a sphere is created with
the following parameters. Given the neigboring
boundary vertices v1 and v2 of cb, then we de-
fine c = 1/2(v1+v2). A boundary normal nc is
calculated as the average of all vectors originat-
ing at c and ending at neighbors of cb, where v1

and v2 are not taken into account. The bound-
ary normal can be seen as a direction pointing to
the opposite side of the boundary. We define a
sphere with the center at c + ncr with a radius r
as the average length of the edges at cb.

The coalescing condition at two boundaries
hold, i.e., merging of the boundaries containing
cb and q on the opposite side happens, if q is
contained in the defined sphere, and the scalar
product of the boundary normals at cb and q is
negative.

Figure 8: Coalescing process at a mesh corner. On
the left, the search process of a coalescing candidate.
In the middle, one edge is created, on the right, the
only face capable of being added is the corner face.

Coalescing Process. After detecting the neu-
ral vertex q to be connected with cb, the accord-
ing faces must be created, starting with one edge
from cb to q. There are two cases which have to
be considered.

Figure 9: Coalescing of two separate boundaries.
In the second picture, the edge is determined, in the
third picture, the triangle with the smallest variance
of edge lengths is added, in the fourth picture, an-
other triangle must be added to avoid a needle eye.

Corner. A corner of the same boundary arises
when cb an q have one neighboring vertex in
common. Here, it is only possible to generate
the face which closes the corner (Fig. 8). Other-
wise a needle eye would be created which is not
a satisfactory mesh structure.



Long Side. Here, two boundaries appear to
be separated. After determining the new edge,
there are four possibilities for insertion of a new
face containing the edge (see second picture in
Fig. 9). The triangle with edge lengths which
vary fewest is taken in our approach (see third
picture in Fig. 9) since it is the triangle with
the best features concerning triangle quality. Fi-
nally, to avoid a needle eye, a further triangle
must be added — again, we take, the face with
the highest edge similarity (see fourth picture in
Fig. 9). Coalescing sometimes creates unfavor-
able bridges that need to be deleted through a
further ACO process.

Figure 10: Granularity adaption correlates surface
curvature to mesh density, details of the model are
accentuated.

2.2.4 Granularity Adaption

Up to now, the SGC are able to approximate an
arbitrary sample set by a 2D mesh. What re-
mains is an efficient local adaption of the mesh
density in a way that areas with a strong curva-
ture are modeled by a finer mesh resolution (see
Fig. 10). This also relieves the influence of the
sample density on the mesh granularity making
the SGC less vulnerable to sampling artefacts
like holes or regions which are not represented
by a uniform sample distribution.

Each time a vertex is adapted by a new sample
we calculate the estimated normal nk at a neural
vertex vk by the average of the normals at the

surrounding faces. The curvature ck ∈ R at a
vertex is determined like

ck = 1− 1

|Nk|
∑
∀n∈Nk

nk · n (1)

with the set Nk containing the normals of the
neighboring neural vertices of vk. Each time
a neural vertex is chosen as winner, its curva-
ture value is calculated and a global curvature
value c is adjusted. Finally, the curvature depen-
dent resource term rk at vk is adjusted through
rnew
k = rold

k + ∆rk, and

∆rk =

{
1, if (ck < c+ σrk

)
[ck/(c+ σrk

)] (1− rmin) + rmin else,

with the deviation σrk
of the resource term rk,

and a constant resource rmin that guarantees that
the mesh does not completely vanish at plane re-
gions with a very low curvature.

2.2.5 Discontinuity Modeling

A sampled model that exposes discontinuities
like edges is difficult to be approximated by
a neural network mesh. Discontinuities are
smoothed out since the network tries to create a
surface over them. This might be acceptable in
many application areas since the approximation
error is fairly small, but the effect is unfavorable
in computer graphics since it is clearly visible.
And even worse: edges are quite common in real
world scenarios.

Figure 11: Discontinuity modeling provides for
mesh edges which map to the object edges.

Therefore, we propose handling vertices at re-
gions classified as discontinuities of the under-
lying scanned object differently — first, they are



only allowed to move in the direction of an ob-
ject edge to represent it more properly, and sec-
ond, the smoothing process from section 2.2.1 is
not applied to them.

Recognizing these discontinuity vertices is ac-
complished as follows. We determine the curva-
ture values of those neighbors which have a dis-
tance of two connections from the vertex v un-
der consideration — the “second ring” of neigh-
bors. Then the average δring of the squared dif-
ferences of consecutive curvature values on the
ring is calculated.

If a curvature value clearly deviates from the av-
erage curvature value, then a discontinuity at this
location is assumed if the average of the neigh-
bors’ (second ring) curvature gradient differs to
a certain amount, i.e., if

(ck > 2σck
) ∧ (∀c ∈ Ck : δring > 4σ2

ck
)

with Ck the set of curvature values of the second
ring of neighbors.

For approximating the edge normal at a discon-
tinuity vertex v, we take the average of the nor-
mals of two of the neighboring vertices, either
those with the highest curvature value, or those
which are already detected as being a disconti-
nuity vertex. Finally, the normal is mirrored if
the edge angle lies above 180◦, which is indi-
cated by the average of the surrounding vertex
normals; in the first case it points in the direc-
tion of v.

3 Results

Complete Algorithm. In Fig. 12 the whole
GCM algorithm is listed as pseudocode. To keep
it comprehensive, the outermost loop of the al-
gorithm is neglected, vertex split and edge col-
lapse operations are triggered by using counters
(compared with the basic algorithm from section
2.2.1).

Parameters. The following parameters have
been proven to be reliable for almost all sam-
ple sets we took for reconstruction: εbm =

Adjust samples regarding curvature.

Calculate average curvature and deviations.

Determine and sign discontinuity vertices.

for all Boundary vertices do
if ∃ coalescing candidate then

Melt boundary.
for all ACO candidates do

Clean by ACO.
end for

end if
end for

if Edge collapse operation triggered then
Collapse edge.
for all ACO candidates do

ACO-cleaning
end for

end if

if Vertex split operation triggered then
Split vertex.

end if

Figure 12: The complete GCM algorithm. The out-
ermost loop of the algorithm is neglected, vertex split
and edge collapse operations are triggered through
counters.

0.1, εnb = 0.08, rmin = 0.3, εacute = 0.5,
ndegacute = 4, kins = 100, kdel = 5, ndegnb = 1,
nnastyacute = 4, nnastyval = 3.

Test Hardware. We used a Dell R©Precision
M6400 Notebook with Intel R©Core 2 Extreme
Quad Core QX9300 (2.53GHz, 1066MHz,
12MB) processor with 8MB 1066 MHz DDR3
Dual Channel RAM. The algorithm is not paral-
lelized.

Some visual results are exposed on page 12. All
pictures are drawn from one SGC mesh and they
are rendered using Phong Shading. Most models
stem from the Stanford 3D Scanning Repository.

Besides visual results, GCM comes up with im-
pressive numbers, listed in Fig. 13. It can be
seen that mesh quality, i.e. the percentage of per-
fect triangles in the mesh lies at 96% at average.
This is an outstanding result, nevertheless this is
typically expected when using an approach from
the field of unsupervised learning, since it guar-
antees an ideal representation of the underlying
training sample distribution.



Samples Vertices
Time

[min:sec]
Quality

[Delaunay]
RMS/
Size

36K 30K 1:19 95.6% 4.7e-5

438K 100K 5:33 95.5% 3.3e-5

544K 260K 18:33 93.1% 1.7e-5

14,028K 320K 24:27 98.5% 1.3e-5

5,000K 500K 42:10 95.9% 2.7e-5

511K 10K 0:21 99.8% 6.6e-5

38K 5K 0:12 99.0% 15e-5

346K 5K 0:12 98.3% 0.7e-5

Figure 13: Results with objects from the Stanford
3D Scanning Repository. “Quality” means the per-
centage of triangles which hold the Delaunay crite-
rion. RMS/Size is the root of the squared distances
between the original point samples and the triangle
mesh, divided by the longest edge of the maximum
expansion of the sample set.

Further, the distance (RMS/object size) between
samples and mesh surface is negligible low —
far below 1% of the object size at average. This
is even more pleasant, since usually, the prob-
lem at edges generate large error terms. It proves
that discontinuity vertices are worth it. Also the
computing times needed are very short, i.e., few
minutes in almost all case.

All those measurements seem to be far better
than those from classical approaches, as long as
we could extract them from the regarding pa-
pers. The presented algorithm works very ro-
bustly. There are nearly no outliers visible in the
mesh.

4 Summary and Future Work

We presented a new neural network approach
for surface reconstruction purposes — the smart
growing cells. The algorithm, on the one hand,
profits from the common outstanding facilities
of neural networks, on the other hand, well-
known problems when using such iterative tech-

niques are avoided successfully. Growing cells
meshing is capable of recognizing and repre-
senting arbitrary topologies of objects. The net-
work training generates valid meshes at any size
and is able to handle 3D point samples at an ar-
bitrary amount. The mesh accounts for discon-
tinuities like sharp edges and holes, smoothes
over missing sample data, handles difficult dis-
tributions of sample data, and its granularity is
efficiently adapted to the curvature of the object
shape. The iterative approach enables to dynam-
ically change the training sample set to adapt the
network to small changes in a shorter time.

To achieve this, we introduced several mecha-
nisms like, first, aggressive cut out, which can
be seen as a brute cleaning mechanism for ill-
formed structures. We found out that these
structures are also a great hint for changing
connectivities to match the underlying surface
topology. Second, face normals are regarded
and included in the neural network training loop
to efficiently adapt mesh granularity and to make
the reconstruction process independent from the
sample distribution. Third, we proposed a spe-
cific learning strategy for vertices which lie in a
sample region which represents discontinuities
in the underlying, scanned model.

The proof of concept of our approach is enriched
by the achieved quality and performance mea-
sures. For the tested geometries which each hold
specific challenges of reconstruction, we got ap-
proximation errors for comparable mesh resolu-
tions that lie far below 1% at average. Mesh
quality, measured by the percentage of trian-
gles which comply the Delaunay criterion, lies
at 96% at average, and the time needed to com-
pute meshes of several hundreds of thousands of
polygons were just few minutes.

Thus, with these results, we are confident that
we could show that the growing cells meshing
approach is a considerable alternative to com-
mon reconstruction methods.

Future Work. There are several critical ob-
ject structures which can hardly be modeled ade-
quately by the presented method and which will
be challenged in future work. These are, for ex-



ample, planes which are thinner than the average
sample distance. From the SGC point of view,
these surfaces are not clearly distinguishable.

Another issue will be reducing vertex density on
flat planes whereas avoiding invalid mesh struc-
tures due to the extreme variation in vertex gran-
ularity.

Computation times are that small that one could
think of a real-time reconstruction approach.
Scanning users in VR applications for sending
their shape to other places could be a nice fea-
ture. Here, an effective parallelization of the al-
gorithm would be required and could be accom-
plished by executing sample adjustment on sev-
eral processing units concurrently.

Generally, the SGC approach should be able to
bring a lot of new ideas, because of its flexibil-
ity and since it is capable of learning arbitrary
sample sets. It delivers arbitrary sized meshes
as well as meshes with a very low resolution in
a very short time — independent from the sam-
ple set size.
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Figure 14: Upper lines: mesh training stages with number of vertices, lower lines, some assorted pictures of
reconstructed models.


