
1

 Efficient Generation of Plausible Diagnoses in a
Model-Based Diagnostic Engine

Abstract
An important way in order to reduce the complexity of model-based diagnosis is to focus the
attention on a subset of ”plausible” diagnoses. Two important methods of focusing on plausi-
ble diagnoses have been reported: (i) search for the most probable diagnoses (de Kleer);
and (ii) search for the preferred diagnoses (Dressler and Struss). The first method has the
nice property that it allows to focus only on a small number of candidates. The second one
allows to structure the candidate space such that the discovery of a conflict prunes a whole
subspace of candidates. We propose a focusing method which combines the advantages
of the above mentioned approaches, i.e. we search for the most probable preferred diag-
noses. Our algorithm relies more on the explicit construction of the focus diagnoses rather
than on a merely sequential test of all candidates. The effect of using a small focus combined
with pruning the candidate space provides dramatic reductions of the time required for diag-
nosis.

Content areas: diagnosis.

1 Introduction

The purpose of model-based diagnosis is to detect and localize faulty components of a
given technical system. The only knowledge to be used is the description of the local be-
havior of the components, and of the way the components are connected to each other.
Using this kind of knowledge, a general view on the diagnostic process could be:

1. Assumption initialization: Make initial assumptions about the behavior of the com-
ponents and other kinds of diagnostic assumptions (cf. [17], [19]).

2. Observation acquirement: Propose points of the technical system where measure-
ments or observations are to be made or where certain inputs or states have to be
set. Add the results of these measurements and settings to the knowledge base.

3. Inference engine: Infer consequences of the observations and the assumptions. If
this step discovers contradictions, continue with Step 4, otherwise continue with
Step 5.

4. Candidate generation: Revise the previous assumptions such that consistency is
restored and continue with Step 3.

5. Termination check: Use a termination criteria that either stops the process or contin-
ues with Step 2.

The GDE [3] and its extensions provide a systematic and general approach to tackle the
above tasks. For the solution of Step 2, the original GDE proposed an approach based on
information theory, which required the consideration of the failure probabilities of each
component. Although the concept of the original GDE is very general, it is not directly appli-
cable to real technical systems, because: (i) its algorithmic complexity is too high; (ii) a sig-
nificant part of physical behavior cannot be described properly. But nowadays there are
several extensions or modifications of the GDE (for examples cf. [1], [5], [10], [12], [18])
that attempt to overcome these problems. Two kinds of extensions are crucial:

2

1. A focusing diagnostic engine restricts the attention to a subset of diagnoses. For
practical applications, this subset of focus diagnoses cannot be chosen arbitrarily,
but has to be defined according to some plausibility criteria (for examples cf. [6], [9],
[14]). This has two major advantages: First, it corresponds more to the needs of the
user, because typically the user is not interested in all diagnoses that are physically
possible. The second advantage is that restricting the attention to a small focus
leads to tremendous reductions of the time required for diagnosis [6].

2. A diagnostic engine with behavioral modes gives the opportunity or even requires
the description of faulty behavior. This considers the fact that technical components
usually do not fail in an arbitrary way. Without the use of this knowledge, the diag-
nostic engine might give diagnoses that are physically impossible [18].

These two extensions benefit from each other: On one hand, the knowledge of behavioral
modes facilitates a proper definition of what are plausible diagnoses. On the other hand,
the introduction of multiple behavioral modes significantly increases the complexity of diag-
nosis. Thus, the need for focusing is even more urgent.

This paper aims to identify efficient solutions to the problem of finding plausible diagnoses
in large technical systems where the consideration of multiple behavioral modes is a re-
quirement (e.g. in electrical systems). The current state-of-the-art with respect to focusing
on plausible diagnoses comprises of two notable approaches:

1. Find the most probable diagnoses (this is de Kleer’s focusing method, cf. [6]). This
method requires the consideration of probabilities for each behavioral mode in order
to define the probability of a candidate.

2. Find the preferred diagnoses (this is Dressler’s and Struss’ focusing method, cf. [9]).
The method defines a partial order for the individual modes of behavior of a compo-
nent. The order reflects how frequently the modes of behavior usually occur. The
preference order among the modes induces a preference relation among candi-
dates. The preferred diagnoses are the minimal diagnoses with respect to this or-
dering.

We think that a combination of these two methods satisfies best the requirements of practi-
cal applications: de Kleer’s method has the advantage that one can focus on very few –
normally a constant number – of diagnoses. Note that there can be a very large set even
of preferred diagnoses, because the preference relation is just a partial ordering. Thus, the
search for all preferred diagnoses is usually very expensive.

On the other hand, de Kleer’s method could supply a diagnosis of which the set of faulty
components is a superset of the faulty components of another diagnosis. This can never
be the case with preferred diagnoses, if we assume that the normal mode is the most pre-
ferred mode of a component. But a much more important advantage of the use of pre-
fernces is the fact that the partial ordering defined by the preferences structures the candi-
date space into a lattice. This structure enable us to prune a whole subspace of candidates
when a conflict is discovered. Our algorithm relies more on the explicit construction of the
focus diagnoses directly from the discovered conflicts rather than merely testing all candi-

3

dates in the intrinsic order defined by their probability1. The effect of using a small focus
combined with pruning the candidate space leads to order of magnitude reductions of the
time required for diagnosis.

Our solution does not depend on the way in which the observation acquirement (i.e. Step
2 of the general algorithm presented at the beginning of the paper) is solved. It is also inde-
pendent of the inference engine used in Step 3. The algorithms we propose are very simple
and do not require the use of default logics or prioritized defaults, used by the previous pa-
pers dealing with preferences (cf. [9], [14]). Thus, the results of our work are relevant for
a broad spectrum of diagnostic engines. Only minor changes are required in order to ac-
commodate a broader spectrum of definitions for ”plausibility”.

This paper is organized as follows: Section 2 specifies the framework in which the problem
discussed in this paper is embedded. Section 3 introduces the basic notations and proper-
ties needed for our solution. Section 4 presents a crude solution of the problem. This solu-
tion will be correct but slow. Section 5 shows how to improve the crude solution in order
to get it much faster. That improvement is the crucial part of this paper. In Section 6, we
give some experimental results comparing the crude algorithm with the improved one. In
Section 7, we sketch how our results may be used in a more general context than the one
described here.

2 A Framework for Focusing Diagnosis

Since our paper deals only with candidate generation, which is only one task (namely Step
4) of the general algorithm presented at the beginning of the paper, we will give here an
outline of the top-level control procedure in a way suitable for the presentation in the subse-
quent sections.

We share the view expressed in [17], that diagnosis can be seen as the process of retract-
ing assumptions. Flexible diagnosis requires the manipulation of several kinds of diagnos-
tic assumptions (cf. [19]), such as the assumptions that observations are correct, or that
the use of simplified models is appropriate. In order to keep the formal presentation as sim-
ple as possible, we consider in the following only the assumptions for the behavioral modes
assigned to the components. Note, however, that our method can also handle other diag-
nostic assumptions, provided they have been assigned a measure of probability.

One task of the inference engine (Step 3) is to find conflicts. We require that the inference
engine finds at least the minimal set of conflicts which invalidate the current focus. Of
course, we even suggest that the inference engine should perform only those inferences
(and, thus, only search for those conflicts) which hold in the current focus (cf. [4], [6], [8]),
because this leads to significant complexity reductions in Step 3. An architecture based on
a focused ATMS (cf. [4],[8]) usually ensures this, but our method does not require such an
architecture.

1. The original GDE [3] and Reiter’s HS–tree algorithm [16] also constructed the minimal diagnoses directly from
the conflicts.

4

The top-level control algorithm uses two global sets: Focus – containing the current focus
candidates; and Conflicts – containing the set of conflicts among the assumptions consid-
ered so far. Note that we cannot guarantee in general that once a candidate entered the
focus it is a diagnosis. In most cases the inference engine must focus the prediction on that
candidate. This may lead to the discovery of new conflicts which invalidate the candidate.

Controler for Model-Based Diagnosis
Initialize Focus by the candidate that assumes everything is normal;
Initialize Conflicts by the empty set
Repeat

Set and acquire values and states for selected points of the technical system
Make inferences based on the acquired observations and considering the current focus:

Whenever a conflict conf is detected do
Insert conf into Conflicts
For all focus diagnoses diag invalidated by conf do

Invoke Remove-Diagnosis-from-Focus (diag, conf)
While Focus is not saturated (which is decided by any heuristic) do

Invoke Insert-Diagnosis-into-Focus
until it is decided that the diagnoses of Focus are satisfactory

End of Controler

The goal of the next sections will be to design the procedures Remove-Diagnosis-from-
Focus – which takes candidates out of the focus when they are found inconsistent; and
Insert-Diagnosis-into-Focus – which adds a new candidate to the focus. The criterion
which decides how many diagnoses need to enter the focus is usually decided by a heuris-
tic (for an example, cf. [6]) and is again independent of our method.

3 Basic Notations and Properties

Notational conventions about technical systems discussed in this paper:
Let � be a technical system with n components �1, �2, ..., �n.
For each component �i define ki behavioral modes.
Without loss of generality, assume that the modes m1, m2, ..., mki of a component �i
are ordered with respect to their probability, i.e. m1 is the most probable mode and mki
is the least probable mode.

Definition 1: (component-mode-assignment)
A component-mode-assignment A is an n-tuple A � [a1,a2,...,an] where each ai is an

integer number between 0 and ki.
The interpretation of A is a set of assumptions defined as follows:

If ai � 0 then no assumption is made about the behavioral mode of component �i.
If ai � 0 then A assumes that the component �i is in mode mai .

Definition 2: (candidate)
A candidate is a complete component-mode-assignment , i.e. ai � 0, for all i � 1,...,n.

Both, conflicts and candidates, are denoted by component-mode-assignments. However,
a conflict may not be a complete component-mode-assignment. On the contrary, the more

5

entries of a conflict are 0, the stronger a restriction (and thus, more information) is ex-
pressed by this conflict. Our definition of a component-mode-assignment implicitely entails
that the behavioral modes are exclusive, i.e. a component cannot be in two different modes
at the same time.

Definition 3:
A candidate A�[a1,a2,...,an] contains a conflict C�[c1,c2,...,cn] (denoted by C ⊆ A),
iff (ci � 0 � ai � ci) for all i � 1, ..., n.

Considering the interpretation of Definition 1, it is obvious that a candidate A contains a
conflict C if and only if the interpretation of C is a subset of the interpretation of A.

Definition 4: (preference between candidates)
A candidate A=[a1,a2,...,an] is preferred to a candidate B=[b1,b2,...,bn]

(denoted by A�B) iff ai�bi for all i=1,...,n.
If a candidate A is preferred to a candidate B, denote A to be a predecessor of B and

B to be a successor of A.
Denote A a direct predecessor of B (resp. B a direct successor of A) iff A�B and there

is no component-mode-assignment C such that A�C�B and A�C�B.

A candidate A is preferred to a candidate
B, if B is obtained from A by replacing
some modes of behavior with less prob-
able (less preferred) modes of behavior.
The partial order defined by the prefer-
ence relation structures the candidate
space into a lattice. Figure 1 shows the
candidate lattice for a system containing
3 components, each having 3 modes of
behavior.

Definition 5: (preference w.r.t. a set)
A candidate A is preferred with re-
spect to a set of candidates � if and
only if � contains no candidate that is
preferred to A other than A itself.

Observation 1:
[1,1,...,1] is the unique candidate preferred to every other candidate, i.e. all candidates
are successors of this candidate.

Observation 2:
Every successor of a candidate A is less or equal probable than A.
The most probable successor of a candidate A, different from A itself, is among the
direct successors of A.

111

121

131

222

323

333

211 112

221 212

213

122 113311

321 312 231 132 123

331 322 313 232 223 133

332 233

Figure 1: A candidate lattice

6

Definition 6: (diagnosis)
A candidate is a diagnosis for � if and only if it contains no conflicts.
A candidate is a preferred diagnosis for � if and only if it is a diagnosis for � and it is
preferred with respect to the set of all possible diagnoses for �.

The notion of preferred diagnosis is a natural extension of the notion of minimal diagnosis
(cf. [3]) when multiple modes of behavior are considered: Applying the above definitions
to a system which uses only the correct mode and an unknown failure mode, the set of pre-
ferred diagnoses coincides exactly with the set of minimal diagnoses (provided, of course,
that the correct mode is preferred to the failure mode). Also, the set of all preferred diag-
noses partially characterizes the set of all possible diagnoses, in that every possible diag-
nosis can be obtained from a preferred diagnosis by replacing some mode assignments
with less probable (less preferred) mode assignments. The most probable diagnosis is al-
ways one of the preferred diagnoses.

Note that the preference relation is not a total ordering. Thus, if [1,1,...,1] is not a diagnosis
anymore, there are several preferred diagnoses. Our experiments show that the set of pre-
ferred diagnoses grows rapidly when the set of conflicts increases. This is another motiva-
tion for our focusing method, i.e. to search only for the most probable preferred diagnoses.

By Observations 1 and 2, we immediately obtain the following:

Lemma 1:
If the focussing method is to compute the most probable preferred diagnoses and if
no conflict has been found yet, then the focus must contain [1,1,...,1] as the only ele-
ment, regardless of which heuristic is used for focus saturation.

4 A Crude Solution of the Problem

In the previous section, we have seen that (i) we always have to start with a focus that con-
tains only the candidate [1,1,...,1] assuming that everything behaves normally, and (ii) all
the candidates can be constructed as successors of this initial candidate. Our algorithms
will maintain two sets of candidates: Focus and Candidates. The following properties of
these two sets will be ensured at every moment:

� Focus contains only valid candidates. There is no candidate which is simulta-
neously: (i) valid, (ii) preferred with respect to the set of all diagnoses, and (iii)
more probable than an element of Focus.

� No element of Candidates is preferred to any element from Focus.

� All the candidates not containing a known conflict (thus all the diagnoses) are
successors of at least one element from Focus or from Candidates.

As long as no conflict is discovered, these properties hold if Focus contains only the ele-
ment [1,1,...,1] and Candidates is empty. All the operations we perform on Focus and on
Candidates will preserve the above properties: As long as an element stays in Focus, none

7

of its successors needs to be computed. If an element is removed from Focus, the above
properties are preserved when Candidates contains at least all direct successors of this
element. Some elements of Candidates may contain conflicts. It is easy to see that the
above properties are still satisfied, if we replace an element of Candidates that contains
a conflict by all of its direct successors. Further, the above properties are still satisfied if a
successor of a Focus element is removed from Candidates.

These considerations informally prove that the following is a correct (though rather ineffi-
cient) solution of our problem:

Crude Algorithm:
� If a conflict is found which invalidates an element of Focus, this element is removed from
Focus and, instead, all of its direct successors are inserted into Candidates.
� When a new element has to be added to Focus, the most probable element of Candi-
dates is removed from Candidates. If this element does not contain any conflict, it is added
to Focus. If it contains a conflict, all its direct successors are inserted into Candidates and
the search for the next most probable element of Candidates continues. If it is a successor
of a Focus candidate, it is ignored, and the search for the next most probable candidate
continues further.

It follows directly from Definitions 1 and 4 that the following procedure inserts all direct suc-
cessors of a given candidate pred into Candidates. For the sake of efficiency, the set Candi-
dates should be organized as a priority queue ordered by probability.

Procedure Compute-Direct-Successors (pred,conf: component-mode-assignment)
pred: candidate [p1,...,pn] of which all direct successors must be inserted into Candidates
conf: not relevant for this version

For i := 1 to n do
If pi < ki (where ki is the number of modes for component �i)

then
succ :� [p1,..., pi–1, pi+1, pi+1,..., pn]
Insert succ into Candidates according to its probability

End of Compute-Direct-Successors

In pseudo-code, the crude algorithm looks as follows:

Procedure Remove-Diagnosis-from-Focus (old-diag,conf: component-mode-assignment)
old-diag: a focus diagnosis that has been found invalid now
conf: a conflict that invalidates old-diag (i.e., conf ⊆ diag)

Remove old-diag from Focus
Compute-Direct-Successors (old-diag,conf)

End of Remove-Diagnosis-from-Focus

8

Procedure Insert-Diagnosis-into-Focus

Repeat
top-cand := the most probable candidate of Candidates
Remove top-cand from Candidates
If there is a conflict conf which is a subset of top-cand

then
Compute-Direct-Successors (top-cand,conf)

else
{pref. If there is no diagnosis diag in Focus that is preferred to top-cand
 check} then

Insert top-cand into Focus
until a new diagnosis has been inserted into Focus or Candidates is empty

End of Insert-Diagnosis-into-Focus

The preference check in the last procedure is only done in order to meet the requirements
of the focusing principle of this paper. If it is omitted, the above procedures give a solution
for de Kleer’s focusing method.

5 Speeding up the Solution

The problem with the solution described in the previous section is that the set Candidates
grows exponentially very soon. This combinatorial explosion is due to the fact that the
crude algorithm constructs all candidates more probable than the diagnosis that is
searched for, checking the consistency and the preference w.r.t. focus for each of them.
Our goal is to improve the crude algorithm such that Candidates is kept much smaller and
still suffices to solve our problem. In particular, we show that it is not necessary to inspect
each point of the search space.

Improvement I: It is easy to see that our focusing method does not require the successors
of a candidate to be considered, before the candidate is considered itself. We already took
advantage of this property even in the crude algorithm: We invoked Compute-Direct-Suc-
cessors (cand,conf) only when cand was removed from Focus or Candidates. But we did
not consider the fact that a candidate usually has several direct predecessors. The proce-
dure Compute-Direct-Successors need not insert an element into Candidates if that ele-
ment has at least one predecessor in Focus or in Candidates. Note that this makes the pref-
erence check in the procedure Insert-Diagnosis-into-Focus superfluous.

Even with the above improvement, our procedures construct and test all candidates in de-
scending order of their probability until enough valid ones are found. In a system with n
components, each having k modes of behavior, the discovery of a conflict of size s (s �
n), invalidates a subspace of (n–s)p candidates. One may be tempted not to insert into Can-
didates any element which contains a conflict. However, we must insert inconsistent ele-
ments into Candidates: A successor of an inconsistent candidate need not necessarily be
inconsistent.

Improvement II: Up to this point, we have not made use of the knowledge which conflict
eliminated a candidate. Note that an element is only constructed in Compute-Direct-Suc-

9

cessors when its direct predecessor has been proven to contain a conflict. So, the informa-
tion which conflict eliminated it, is readily available. Once we already know a conflict C, it
is obvious that we are only interested in successors of a candidate A that do not contain
C. The following lemma gives a convenient characterization of such successors:

Lemma 2:
Let A be a candidate that contains a conflict C. Let S be another candidate.Then:

S is a successor of A and does not contain C
� S is a successor of a direct successor D of A such that D does not contain C.

Proof:
Let A�[a1 ,a2 ,...,an] contain the conflict C�[c1 ,c2 ,...,cn]. Thus, by Definition 3:
For all i, either ci�0 or ci�ai . Let S�[s1 ,s2 ,...,sn] be another candidate.
�: Assume that S is a successor of A. By Definition 4, for all i, si�ai . Assume further that
S does not contain C. By Definition 3, there is an index k such that ck�0 and ck�sk . Since
ck�ak and sk�ak , we conclude that sk�ak . Then D:�[a1 ,a2 ,...,ak–1, ak+1, ak+1, ...,an] is
a direct successor of A, does not contain C (ak=ck�ak+1), and has S as a successor.
	: Assume that D�[d1,d2,...,dn] is a direct successor of A. By Definition 4, there exists
a k such that ak�dk–1 and for all i�k, ai�di . Suppose that S is a successor of D. Then
S is clearly also a successor of A. Now, if D does not contain C, it must differ from C in at
least one position j where cj�0. Since A does contain C and A differs from D only in position
k, j�k. Thus, ck�dk–1. Since sk�dk , we obtain that 0�ck �sk . Thus, S does not contain
C.

Corollary to Lemma 2:
The procedure Compute-Direct-Successors (A,C) only needs to compute and insert
into Candidates the direct successors of A that do not contain C.

Lemma 2 proves that ignoring the direct successors of A which contain the same conflict
as A achieves a pruning effect: At later stages of our search, we avoid to construct other
non–direct successors of A which contain the same conflict as A did.

We summarize the above improvements giving a revised version for procedure Compute-
Direct-Successors:

Improved (I+II) Procedure Compute-Direct-Successors (pred,conf:
component-mode-assignment)

pred: component-mode-assignment [p1,...,pn] of which all direct successors must be computed
conf: conflict [c1,...,cn] that invalidates pred (thus, conf ⊆ pred)

For i := 1 to n do
If ci � 0 and ci � ki (where ki is the number of modes for component �i)

{Note that ci � pi by assumption since conf ⊆ pred and ci � 0}
then

succ :� [p1,..., pi–1, pi+1, pi+1,..., pn]
{pref. If succ is not a successor of any element in Focus or Candidates
 check} then

Insert succ into Candidates according to its probability
End of Direct-Successors

10

The other procedures may remain in the way stated in Section 4. As mentioned above, the
preference check in procedure Insert-Diagnosis-into-Focus can now be omitted.

6 Experimental Results

The improvements presented in the last section lead to tremendous reductions in the time
required for diagnosis. The results we show here were obtained while diagnosing a family
of circuits described by Figure 2, where Mij are multipliers, and Ai are adders. By size, we
denote the number of output pads. Every component was characterized by 7 modes of be-
havior, as follows: ok – the correct mode of behavior, probability 0.75; s1 – output stuck at
1, probability 0.1; s0 – output stuck at 0, probability 0.05; l – output equal with the left input,
probability 0.04; r – output equal with the right input, probability 0.04; sh – output equal with
the correct result shifted with one bit to the left, probability 0.018; u – unknown failure, prob-
ability 0.002.

The inference engine used was based on a fo-
cused ATMS and only attempted to find those
conflicts which invalidate the current focus. The
heuristic for focus saturation, used for the experi-
ments, required Focus to contain the preferred
diagnoses with maximal probability only (so, if
the maximum was unique, Focus had to contain
just one diagnosis). Note that the set of diag-
noses with maximal probability coincides with
the set of preferred diagnoses with maximal pro-
bability.

The following table compares the results of the
crude algorithm presented in section 4 with its
successive improvements (I and I+II).

The first two rows show results obtained for the circuit enclosed in the dashed region in
Figure 2, which corresponds to a well known example in the literature. Since our improve-
ment rates grow tremendously with increasing circuit size, we gave some results for the
circuit of size 4. Columns 1, 2 and 3 of the table indicate the complexity of the problem.
Column 4 compares the total time required for diagnosis on a 386 PC. Column 5 compares
the number of candidates which were extracted from Candidates during the search. Col-
umn 6 gives the total size of Candidates at the end of diagnosis.

compo-
nents

con-
flicts

diagnosis TIME
crude / I / I+II

Extracted Cand.
crude / I / I+II

Candidates size
crude / I / I+II

 5 27 {u(M12)} 20 / 4 / 0.5 223 / 211 / 45 480 / 46 / 15

5 106 {u(M12),sh(A2)} 725 / 68 / 3 1873 / 1626 / 212 2216 / 170 / 42

15 9 {r(M14)} 37.5 / 8 / 0.3 61 / 61 / 13 735 / 119 / 19

15 17 {l(M15),s1(M11)} – / 414 / 1 – / 810 / 27 – / 784 / 82

15 238 {s1(A5),s1(A3),u(A4)} – / – / 80 – / – / 1068 – / – / 490

M11

M12

M13

M14

A1

A2

A3

M21

M22

Figure 2: Circuit family (size shown: 2)

11

7 Discussion and Comparison with Other Work

In [5] and [6], a scheme for updating the probability of a candidate was proposed. The up-
date can only lower the probability of a focus candidate if the candidate does not explain
some observations. The method of handling posterior probabilities could, in principle, be
incorporated in our algorithms, too. Dressler and Struss use default logics to characterize
and compute preferred diagnoses (cf. [9]). An extended ATMS (namely the NM-ATMS, [7])
constructed the set of all preferred diagnoses as a label of a special node. Although the
NM–ATMS offers a nice solution, it must use a double number of assumptions than we
need (it needs also out-assumptions) and cannot compute only a subset of the preferred
diagnoses. There are other papers in which candidate generation is discussed. Reiter (cf.
[16]) introduced the HS-tree algorithm which has been improved afterwards (cf. [11]). But
his algorithm only applies to systems without modes for faulty behavior. His focusing
method is to find all minimal diagnoses. Mozetic (cf. [15]) even gave a polynomial algo-
rithm, but his algorithm also only applies to systems without modes for faulty behavior. The
focusing method of Mozetic’s algorithm is to find just any feasible diagnosis, so no notion
of plausibility was used.

In this paper, we proposed to focus on the most probable preferred diagnoses, an ap-
proach which combines the use of probabilities [6], with the use of preferences [9]. The
method allows to focus on small numbers of candidates, and furthermore provides a mech-
anism for pruning the candidate space.

Since the heuristic for focus saturation of the top-level control procedure from Section 2
may be arbitrary for our focusing method, an admissible heuristic would also be to find all
preferred diagnoses. For this purpose the heuristic requires that, as long as the set Candi-
dates is not empty, another element must enter Focus. Thus, our focusing method is a gen-
eralization of Dressler’s and Struss’ focusing method. However, our tests showed that even
for small systems like those presented in the preceding section, such a focusing principle
is extremely expensive.

 Note that our focusing method is not a generalization of de Kleer’s focusing method. The
set of the first k most probable preferred diagnoses does not coincide with the set of the
first k most probable diagnoses, unless k = 1. This is because some of the k most probable
diagnoses can be successors of some of the k–1, k–2, ..., 1 most probable diagnoses, and
so they are not preferred diagnoses. The algorithms presented in Section 4 could be used
to search for the most probable diagnoses, provided that the preference check w.r.t. Focus
is removed from the procedure Insert-Diagnosis-into-Focus. But the preference check
w.r.t. Candidates may also be done when the focusing principle is to search for the actual
next probable diagnosis. Then the set Candidates would just consist of fewer elements and
could still be used to yield the same result. Thus, the preference check with respect to Can-
didates is a real speed-up compared to a method that has no notion of preferences.

But the crucial speed-up is obtained by the consequence of Lemma 2 which allows the
pruning effect when searching the candidate space. If we did not consider it, the candidate
generator would still inspect sequentially all the candidates, according to the probability

12

order, until enough valid candidates are found. The procedure would have an exponential
any case complexity. Consider the case in which all the discovered conflicts have size one.
The size of the set Candidates grows exponentially in the crude algorithm, while it will al-
ways be zero in the improved one – in such a case there will be only one preferred diagno-
sis. In the worst case, i.e. when all the discovered conflicts have the size of a candidate,
the behavior of the improved algorithms coincide with that of the crude algorithms, since
no pruning is possible. Hopefully, this worst case is extremely unlikely to appear in practical
applications. Our empirical results showed reductions of the time required for diagnosis
up to a factor of several hundreds due to the pruning effect only.

With respect to the problem of plausible candidate generation, the described algorithms
are more general, and only minor changes must be added to accommodate a broader
spectrum of definitions for plausibility, which need not refer to the notion of probability at
all. In the above presentation we only needed the probabilities for ordering the set Candi-
dates. Different criteria for ordering Candidates could be considered for different definitions
of ”plausibility”. The only requirement is that the plausibility should be defined on top of the
preference relation, in that the successors of a candidate should be less plausible than the
candidate itself. Such a restriction is sufficient to allow the pruning effect and the other im-
provements described above. A different definition of plausibility, which fulfills this demand,
could be based on the number of faults assumed by a candidate, e.g. all the candidates
which assume p defective components are more plausible than the candidates assuming
p+1 faults. An admissible heuristic for this definition of plausibility would be to search for
all preferred diagnoses with less than k faults.

13

References

[1] DAGUE, Philippe / DEVES, Philippe / LUCIANI, Pierre / TAILLIBERT, Patrick: Analog Systems Diag-

nosis. Proceedings of the 9th European Conference on Artificial Intelligence (ECAI ’90), pp.

173-178, Stockholm (Sweden) 1990.

Also in: [13], pp. 229-234.

[2] DE KLEER, Johan: An Assumption Based Truth Maintenance System. Artificial Intelligence 28,

pp. 127-162, 1986.

[3] DE KLEER, Johan / WILLIAMS, Brian: Diagnosing Multiple Faults. Artificial Intelligence 32 (1), pp.

97-130, 1987.

Also in: [13], pp. 100-117.

[4] DE KLEER, Johan / FORBUS, Ken: Focusing the ATMS. Proceedings of the 7th National Confer-

ence on Artificial Intelligence (AAAI ’88), pp. 193-198, Saint Paul (MN) 1988

[5] DE KLEER, Johan / WILLIAMS, Brian: Diagnosis with Behavioral Modes. Proceedings of the 11th

International Joint Conference on Artificial Intelligence (IJCAI ’89), pp. 1324-1330, Detroit

(MI) 1989.

Also in: [13], pp. 124-130.

[6] DE KLEER, Johan: Focusing on Probable Diagnoses. Proceedings of the 9th National Confer-

ence on Artificial Intelligence (AAAI ’91), pp. 842-848, Anaheim (CA) 1991.

[7] DRESSLER, Oskar: Problem Solving with the NM-ATMS. Proceedings of the 9th European

Conference on Artificial Intelligence (ECAI ’90), pp. 252-258, Stockholm (Sweden) 1990.

[8] DRESSLER, Oskar / FARQUHAR, Adam: Putting the Problem Solver Back in the Driver’s Seat:

Contextual Control of the ATMS, Lecture Notes in AI 515, Springer Verlag, 1990.

[9] DRESSLER, Oskar / STRUSS, Peter: Back to Defaults: Characterizing and Computing Diag-

noses as Coherent Assumption Sets. Proceedings of the 10th European Conference on Arti-

ficial Intelligence (ECAI ’92), pp. 719-723, Vienna (Austria) 1992

[10] FRIEDRICH, Gerhard / GOTTLOB, Georg / NEIJDL, Wolfgang: Physical Impossibility instead of

Fault Models. Proceedings of the 8th National Conference on Artificial Intelligence (AAAI

’90), pp. 331-336, Boston (MA) 1990.

Also in: [13], pp. 159-164.

[11] GREINER, Russel / SMITH, Barbara / WILKERSON, Ralph: A Correction to the Algorithm in Reiter’s

Theory of Diagnosis. Artificial Intelligence 41 (1), pp. 79-88, 1989

Also in: [13], pp. 49-53.

[12] HAMSCHER, Walter: Modeling Digital Circuits for Troubleshooting. Artificial Intelligence 51

(1-3), pp. 223-271, 1991.

Also in: [13], pp. 283-308.

[13] HAMSCHER, Walter / CONSOLE, Luca, / DE KLEER, Johan (Editors): Readings in Model-Based

Diagnosis, Morgan Kaufmann Publishers, San Mateo (CA) 1992

[14] JUNKERS, Ulrich: Generating Diagnoses by Prioritized Defaults. (A)TMS in Expert Systems,

SEKI Report SR-92-06. pp. 19-24, Kaiserslautern (Germany) 1992.

14

[15] MOZETIC, Igor: A Polynomial-Time Algorithm for Model-Based Diagnosis. Proceedings of the

10th European Conference on Artificial Intelligence (ECAI ’92), pp. 729-733, Vienna (Austria)

1992

[16] REITER, Raymond: A Theory of Diagnosis from First Principles. Artificial Intelligence 32 (1),

pp. 57-96, 1987

Also in: [13], pp. 29-48.

[17] STRUSS, Peter: Diagnosis as a Process. Working Notes of the Workshop on Model-Based

Diagnosis, Paris (France) 1989.

Also in: [13], pp. 408-418.

[18] STRUSS, Peter / DRESSLER, Oskar: Physical Negation: Integrating Fault Models into the Gen-

eral Diagnostic Engine. Proceedings of the 11th International Joint Conference on Artificial

Inteeligence (IJCAI ’89), pp. 1318-1323, Detroit (MI) 1989.

Also in: [13], pp. 153-158.

[19] STRUSS, Peter: What’s in SD? Towards a Theory of Modeling for Diagnosis. Working Notes

of the 2nd International Workshop on Principles of Diagnosis, Technical Report RT/

DI/91-10-7, pp. 41-51, Torino (Italy) 1991.

Also in: [13], pp. 419-449.

