
��������� ������� 	��

������ �� �Æ�
����

� �������	��� �
	����
�

������������
	
� �����

�
 ��� ������
�����

�� ����������� ���������� ��� ������������ ����
�

���
���
� ���
�

� ����
� ������

�
� ��
� !�"���# $
�������

����
�
 %&&'

(������
� ��� ����������� ���������� ��� ������������ ����
�

�
�)����
 ���

*���+ ��+ ,���� !�
���� -���+ ����
�
.

*���+ ��+ /���
��
 ���	�� -���+ ����
�
.

*���+ ��+ *���� 0��
1 -�� ��
�����.

����
�
��� 2%+%3+%&&'

*���+ ��+ ����� 4���5
����
��� 0"������ ��� ������������

�����)����� 6
��� ��� ��������
�	
�
 ��� ������� ,��)(#
������
�
 07�����������# ,�����# ��
������
�

��������

��������� �� ��	 ���
 �� ��
��� ��	 �������� ����� �� � �������������� ����
�	�� ��
	�����	

�������� ��	� � ��
	� �� ��	 ����	� �� �	�	���	� �	�� ��

����������	 ����� ������	�	� ����� ��	 ����	���	�� ��
��	�	�� ����� �� ��	
����	�� ���� ��	��� �

�	��	� ��	 ��������� ��� ��	�������

�� �� ��� �	 ��
	 ��	 ����	�� �� �	�	������ ��
 �	����� ������	�	�
���	 	Æ��	��!

"� �� �� 	#�	�
 ��	 ��	��� �� ��
	�����	

�������� ���� �� ��
������	
���$	��	���� � �	����� ����� ��
������ ����	��� �����
��� ��	 ��	�
����
	�	�
	��
	�	���!

%��� �	��	�� �� ��	 ���� ��	����� �	 �����	 ��� ���	����� �� �������	

��������� 	����	�� ��	 ��� &'	���� �����	����	 (���	��) ��	 ����� ����
������� 	Æ��	�� ������	����� �	�������� ��	
 �� ���� �� ��	 ����
��� ��
	��
���	

��������� 	����	�� *� ���� ����	#� �	 �

�	�� ��� ���������	���

���� �� ��� ��	 �������
� �	 �������	
 ���	 	Æ��	����!

���� �� �� �	�	���	 	Æ��	���� ��	 ���
�
��	
��������� ������	�	�!

*� ����	���� ��	 ���� ���������	�� �	
���������� �	��		� �	$	��� ���
�
����� ��	 ��	��� ��
�������� ��
 ����� ��	 ������� ����������	
 �� �� ����
��� �������	��� ��	�
� ��� 	������	�� ��	�
� ��
 ��� ��	 ����������� �� �����
��� ���������� �	�� �� ������������ (������� ���� ��	 ���	�$����� ���� ��	�	
�	�$��	� �	����	 �� ���$	 �����	�� ����
��	�	��
	��		� �� �����	#���� ��

���� ��	 ����	�� �������
	 ���� ��	 ��	 	#�	���$	 �	�$��	 ��� �� ���$�
	 ��	
���� ��� �	�� �����	# ��	�� �	 ������	 � �	� ���	 �� ���� ������ ��� �	���
���	� ��	 ���������� ��	
 �� ���$	 ��	 ���
 ��� ���� ��	 ��	� ��	
 �� ���$	 ��	
+	���	�, ��	�- ���� �������� ��	 	#�	���$	 �	�	������ �� ��	 ������� ��������
��� �	�� �� ����������� �� �� ����	�	���� ��� ��
 �� �	��	�� ����- ��
 �����
���	����	� ��	 ����������� ���� �� �� ��	 ��	 �	����� �� ��	 +	���	�, ���
� ��
������� ��	 ����������� �� ��	 ������� ���������� �	�� �� ������������ ��	
"$��� ���	����	� �	����	� ��	�	�� �� ��	 �������� ����� �� ��	 ��.� �����
��
 �� ��	 �����

'	���
��� ��	 �����	� �� 	Æ��	�� ���
�
��	 �	�	������ �	
������ ���
�������� ���� ������	 �� �� ����	�	���� ��� ���	 �� ��	 ���� ��������	
�������	�� ���
�
��	�� ��	 ������������ ��
	��	
 ����� ���	���
��� �����
��	 ��
�$�
��� �	��$����� ��
	� �� 	��� ������	��� ��
 �� �

������� �����

��� �	������ ���� ��	� �	���
 ��	 	#��	���$	�	�� ����������� �� ��	 ��	�	�	��	�

%	 �����	� �����.	 ��	 ������ ����	���	� �� ��	 ������	
 ���������� ���
�	���� �����	����	 ��
 ���
�
��	 �	�	������ ���� �	��	�� �� ��	 ����	�
���
 �� ������������� ������ ��	 ������	
 ���������� ��	 ���$	
 �� �	�����
&�	����������� ���
	
) ������������� ��	�
��� ��
 �������	 ��
	� ������������
��� ������������� ��	���	��

��	 �	���
 ���� ����� �� ���� ��	��� �

�	��	� ��	 �����	� ��
	�	�
	��

	�	���� � �����	� ���� ���� ����� ���� �����	
 �� ��	 �	�
 �� ��
	�����	

��������� %	 �����
��	 �� 	#�	����� �� ��	 ����	�� ��	���	� ���
���������
����� �	���
� 	��� ������	�� ��
 ��	 ����	 ����	� ��
����	�	�	$	�� ����
�	�� &����	�����	 ������	�)� ��	 �	��	�	������� ������ �� ��
	� ��
 �� �	��
��� ������ ��� ��	 ��������� �� ��	 ��
	 �����	�� ���
������ ������	���
���� �	����� ��
 ��� ��	 ����	��	��	� �� ��	�/� �	���� ��
 ����	���������
�������� 0��� � �	������� ����� �� $�	�� �	 ���	
 �� �	��	 ��	 �������	

������	����	 ���
��������
������	
 �� ��	 ���� ���� �� ���� ��	���� ��
 ��
�$��
� �� ���� �� �������	� �� ����	��	 ��	 �����	#��� �� �	�������
�	 ��
��	 ���	 �	�	��� ����	���
�

Contents

� Introduction �
��� What is model�based diagnosis � � � � � � � � � � � � � � � � � � �
��� Arguments for a model�based approach to diagnosis � � � � � � �
��� Applying model�based theory to practice� some problems � � � ��

����� The complexity of model�based diagnosis � � � � � � � � ��
����� Restrictive presuppositions about the nature of faults � ��
����� Practically relevant aspects of model�based diagnosis

that are not covered by the theory � � � � � � � � � � � ��
����	 Modeling is
the hard part� � � � � � � � � � � � � � � � ��

��	 Aims of the thesis �	
��� Overview of the thesis �	

� Reason Maintenance Systems ��
��� Introduction �

����� The contents of this chapter � � � � � � � � � � � � � � � �

����� Hypothetical reasoning and reason maintenance � � � � ��

��� Basic concepts ��
��� Families of RMSs ��

����� The JTMS ��
����� The LTMS ��
����� The JTMS set ��
����	 The ATMS ��
����� The CMS ��
����� The lazy ATMS ��
����� The focusing ATMS ��

��	 Discussion � 	�

� Fundamentals of Model Based Diagnosis ��
��� Introduction � 	�
��� Preliminary notions � 	�

�

��� Candidate elaboration � 	�
����� Minimal diagnoses � 	�
����� Prime diagnoses� culprits without alibis � � � � � � � � � 	�
����� Fault models� GDE� and Sherlock � � � � � � � � � � � 	�
����	 Kernel diagnoses � 	�
����� Preferred diagnoses � 	

��	 Candidate discrimination ��
��	�� Discriminating tests for hypothetical reasoning � � � � � ��
��	�� Choosing the next measurement � � � � � � � � � � � � � ��

� Aspects of E�ciency in an RMS�Based Diagnostic Engine ��
	�� Introduction ��

	���� The contents of this chapter � � � � � � � � � � � � � � � ��
	���� The framework ��

	�� Reducing the costs of reason maintenance � � � � � � � � � � � ��
	���� On choosing the RMS for diagnosis � � � � � � � � � � � ��
	���� The �vRMS� combining focusing with lazy label eval�

uation ��
	���� Advanced control techniques in the �vRMS � � � � � � � ��
	���	 Experimental results ��

	�� E�cient candidate generation � � � � � � � � � � � � � � � � � �
�
	���� Introduction �
�
	���� Preferred candidates� basic de�nitions and properties �
�
	���� Searching for the preferred candidates having the high�

est priority ���
	���	 On the logical completeness of the candidate generator ��	

	�	 Putting the RMS and the candidate generator together � � � � ��	
	�� Related work and discussion ��

	���� Controlling the ATMS � � � � � � � � � � � � � � � � � � ���
	���� CSP techniques and candidate generation � � � � � � � ���
	���� Increasing the completeness of the ATMS � � � � � � � � ��	
	���	 Candidate generation in model�based diagnosis � � � � ���

� Model�Based Diagnosis with Dependent Defects ���
��� Introduction ���
��� Repair and testing during diagnosis � � � � � � � � � � � � � � � ��	
��� The Finite State Machine Framework � � � � � � � � � � � � � � ���

����� Basic presuppositions ���

�

����� Basic concepts ���
��	 The Pseudo Static Framework � � � � � � � � � � � � � � � � � � �		

��	�� Basic presuppositions �		
��	�� Basic concepts �	�

��� Searching for the primary causes � � � � � � � � � � � � � � � � � �	

��� Diagnosis with an RMS�based engine � � � � � � � � � � � � � � ���
��� Related work ���
��� Discussion and future work ���

� Conclusion ���

��� Contributions of this thesis ���
��� Sugestions for further research � � � � � � � � � � � � � � � � � � ���

A RMS Internal Operation ���

A�� RMS�based problem�solving ���
A�� The JTMS ���
A�� The LTMS ��	
A�	 The JTMSset ���
A�� The basic ATMS ���
A�� The lazy ATMS ���
A�� The focusing ATMS �
�
A�� Non�Monotonic RMSs �
	

B Algorithms for Candidate Generation ���

B�� A basic candidate generator �

B�� A hierarchic organization of several candidate generator modules��	
B�� Searching in secondary choice spaces � � � � � � � � � � � � � � ���

C Proofs of Chapter � �	�
C�� Lemma 	����	 ��

C�� Corollary to Lemma 	����	 ���
C�� Lemma 	����� ���
C�	 Lemma 	����� ���
C�� Lemma 	����� ���
C�� Corollary � to Lemma 	����� ���
C�� Property 	����� ��	
C�� Theorem 	����� ��	
C�
 Corollary to Theorem 	����� ���

�

C��� Lemma 	�	�� ���
C��� Lemma 	�	�� ���
C��� Corollary � to Lemma 	�	�� ���
C��� Corollary � to Lemma 	�	�� ���
C��	 Lemma 	�	�� ��

D Proofs of Chapter � ��	
D�� Property ����
 ���
D�� Theorem ������ ���
D�� Theorem ������ ��	
D�	 Theorem �����	 ���
D�� Property ��	�� ���
D�� Theorem ����� ���

E Extended Abstract in German ��	

	

Chapter �

Introduction

Understanding the world around us seems to be a never ending task� One
of the most powerful tools that humans have developed through history is
the
model�� an abstract re�ection of the part of the world one is interested
in� The process of understanding the world has reduced to the process of
developing appropriate models and reasoning with these models� Whenever
the models fail to explain a certain phenomenon� the models have to be
debugged� extended� abandoned and exchanged with fundamentally di�erent
ones� or kept but used under more restrictive presuppositions� In trying to
prove or disprove the appropriateness of a model to explain some phenomena�
we have to rely on experiments whose observable aspects have to be explained
by the models�

Model�based diagnosis re�ects� in a certain extent� the above approach�
Diagnosis can be seen as an attempt at understanding the world� while the
model�based approach explicitly deals with the generation and selection of
appropriate models�� The part of the world one wants to
understand� dur�
ing a diagnostic session is called system under diagnosis� Traditionally the
system under diagnosis is decomposed into smaller granularity interacting
sub�systems down to the level of components and connections� The ap�
proach advocates an iterative process of hypotheses formation� hypotheses
testing and hypotheses discrimination� where the hypotheses mainly refer to
the correctness of speci�c parts of the system�

�However� the �generation of models� is understood in a limited sense� i�e� there is
usually only a prede�ned range over which the considered models can vary� As a matter
of fact� it happens that this is one of the current limitations of the approach�

�

��� What is model�based diagnosis �

Model�based diagnosis provides a systematic approach to diagnosis� The
knowledge about the process of diagnosis is separated from the knowledge
about the system under diagnosis� This allows the same diagnostic engine
to be �re�used for several diagnostic applications by simply loading di�erent
system descriptions� Furthermore� the knowledge about the system under
diagnosis is provided in a structured way which facilitates reusability� This
knowledge basically provides the description of the�

structure of the system in terms of interacting sub�systems� down to the
level of basic components and connections� and of the

behavior �correct and faulty� of the basic components and connections�

The �ne granularity at which the knowledge about the behavior is provided
allows to reuse the same component descriptions in di�erent application prob�
lems�
The components are regarded as sub�systems that interact with each

other and with the surrounding environment via a set of interface param�
eters� usually grouped in �communication� ports� The connections are be�
tween such component ports� Usually� the connections enforce the equality
of the parameters of the connected ports� The behavior description of each
type of component is structured according to the behavior modes exhibited
by that component� For each behavior mode a component speci�es a con�
straint among the port�parameters �and eventually the component�s internal
parameters��
The diagnostic algorithms start from this basic knowledge in order to

reason about the behavior of the global system in di�erent situations and in
order to elaborate hypotheses� explain symptoms and suggest experiments�
Informally� the reasoning tasks that are performed can be described as fol�
lows�

repeat

��� candidate elaboration� elaboration of diagnostic hypotheses that can explain
the observations about the system�

��� candidate discrimination� proposal of further information�providing experi�
ments that could help to refute�con�rm the current competing hypotheses�

until the �nal diagnosis is decided�

�

Usually each candidate hypothesis assumes a unique assignment of modes
of behavior �correct or faulty� to each the component� Thus� each candidate
can be regarded as a collection of assumptions about the modes of the indi�
vidual components �and connections��
The candidate elaboration task is again an iterative process�

repeat

��� candidate generation� generation of plausible candidates�

��� candidate testing� testing of each candidate using the model of the system
and the current set of observations about the system�

�	� con�ict detection� retraction of the assumptions that proved to be wrong�
until
enough� competing candidates are gathered��

The task of candidate testing can be further re�ned as�

��� prediction� infer the consequences of adopting the candidate assumptions
using the model and the observations�

��� contradiction detection� if there are signi�cant discrepancies between the
predicted behavior and the observed one than fail the candidate�

Depending on the formalism used for knowledge representation� the pre�
diction task could be realized� for instance� by equation solving� constraint
propagation or logical entailment�

During the con�ict detection those hypotheses that failed to explain� the
observations are retracted� From reasons of e�ciency the discovered contra�
dictions are examined in more detail and one tries to learn as much as possible
from the failure cases� Namely� in many cases only a subset of the compo�
nents are responsible for predicting a certain value� and thus for leading to
a certain contradiction� The con�ict detection step identi�es the minimal
sets of components responsible for the contradictions� The modes assumed
by such a set form a minimal con�ict� Current strategies for candidate gen�
eration use the past minimal con�icts in order to avoid the generation of
hypotheses that later will turn out to be wrong� In order to help identify
the minimal con�icts among the assumptions of a candidate� in many cases�
during the prediction step also the strictly necessary assumptions used on

�Usually only a subset of the most plausible candidates need to be elaborated in order
to continue the candidate discrimination of the top�level diagnostic process�

�By �explanation� usually it is understood either logical entailment � in abductive
diagnosis� or logical consistency � in consistency�based diagnosis�

�

a certain path of inference are recorded� usually using a truth maintenance
system�
Without going into details� one could characterize the candidate discrim�

ination task of the top�level cycle as a search for situations in which the
di�erent competing hypotheses �candidates� would entail distinct observable
e�ects� This task also requires �among others� the ability to perform the
above prediction and contradiction detection tasks� Di�erent from the con�
tradiction detection performed during candidate testing� during candidate
discrimination� the discrepancies searched are among the predictions of the
current competing hypotheses� All the competing candidates are consistent
with the current set of observations� but there may exist parts of the model
where the competing candidates entail distinct predictions� Observing the
real value of the model parameters in those model parts brings more relevant
information for the discrimination process�

��� Arguments for a model�based approach

to diagnosis

Diagnosis continues to be a challenging domain in the area of arti�cial intel�
ligence �see also �Str
���� Although there exist many knowledge�based pro�
grams that address the topic of diagnosis� one could classify the approaches
into two large categories�

� the symptom�based �also called heuristic�based� approach� and

� the model�based approach�

The knowledge used by the symptom�based approach encodes� in some
form� associations between typical symptoms and possible defects that could
have produced the symptoms� For instance� such kind of knowledge would
be�

if the bulb ��� is not lit when the switch �	 is ON then the
fuse �� may be broken or the battery is discharged�

Typical examples for this approach are most of the expert systems of the
�rst generation�
Model�based diagnosis starts from a
deeper� knowledge �cf� �Byl
����

The knowledge about structure and behavior can be used to derive the

�

symptom�failure associations used by the �rst approach� but not vice�versa�
The experience with the �rst�generation expert systems has shown that there
are several limitations that prevent a wider application of these systems in
practice� It is believed that many of them could be overcome by using deeper
knowledge �cf� �HP�
�� �PL���� �Str
�a�� �Tat
���� Among the main draw�
backs of relying on heuristics supplied by experts one notes the following�

� The main problem is the acquisition of the heuristic knowledge� This
is a di�cult and an expensive process� it needs domain experts� knowl�
edge engineers� and� much worst� much time� Due to the extreme dy�
namics of the technological changes and due to the �exibility required
to permanently adapt to the needs of the customers� the life�cycle of
the products tends to become continuously shorter� Most of the rela�
tively complex technical systems need a diagnostic and repair speci�ca�
tion �e�g� handbooks� for the support and maintenance services before
they can be released to the market� The time required to develop a
symptom�based system is simply too long in these conditions� Also�
there is no� or not much� time to accumulate experience with these
systems�

� The knowledge cannot be reused when a new application must be dealt
with� or when small changes in the systems under diagnosis are per�
formed� The heuristics represent compiled knowledge and it is not ev�
ident what pieces of knowledge have to be updated when a structural
change in the device is done� In most of the cases everything must be
changed� This leads to extremely high costs for the maintenance of
such systems�

� There are problems with guaranteeing the completeness and the cor�
rectness of the knowledge acquired from the experts�

� The explanations provided by such systems cannot go deeper than the
encoded heuristics �cf� �HP�����

Because of the strong mathematical background and due to the systematic
and the modular form of the knowledge� the correctness of the knowledge
base can be better addressed within the model�based approach� The same
features make it easier to see which kind of errors are covered by a certain
algorithm and a certain modeling paradigm�
The main argument supporting the model�based approach is that it dra�

matically reduces the costs of the knowledge acquisition� Most of the knowl�
edge required can be either automatically acquired or reused� Figure ���

shows the di�erent kinds and sources of the knowledge relevant for model�
based diagnosis�

Integration

Knowledge
about
structure

System-specific
knowledge

Knowledge
about
behavior

Design

Part-lists,
lay-out descriptions
(CAD-Data)

Modeling

Component types
Connection types
Failure modes

Optimization

Failure plausibility,
Costs for
 – measurements
 – repair actions
 – state-changing actions

Diagnostic
knowledge

available reusable

automatic
acquisition

automatic
acquisition

”manual”
acquisition

Figure ���� Knowledge Sources in Model�Based Diagnosis�

� The knowledge about the structure of a �technical� system can be ob�
tained automatically using the CAD data already available�

� The knowledge about the behavior of the component types and of the
connection types must be encoded by hand in most of the cases� How�

��

ever� this knowledge is reusable� i�e� a component�connection type must
be described only once and then stored in a library for later usage� This
requires that the modeling of the components is done in terms of as�
pects that are independent of the system in which the component is
embedded � known as the
no function in structure� principle�

� The third category of knowledge is system�dependent and cannot be
in general automatically generated or reused �e�g� knowledge about
frequent failures� costs of performing repair� measurement and state�
changing actions� etc�� The knowledge of this category is� however�
necessary mostly for optimization purposes� This means that the cor�
rectness of the diagnoses is not critically a�ected by the accuracy of this
knowledge � only the cost �e�g� time� to reach to the correct solution
depends on it� One could start with a raw formulation of this knowl�
edge that could be later improved as more experience with a speci�c
system is gained�

��� Applying model�based theory to practice�

some problems

Although relatively young� the �eld of model�based diagnosis has reached a
stage where real applications could be handled by this technique� However�
there still are a series of problems that the approach encounters when faced
with the complexity and the diversity of the current technical products and
with the constraints of practice� These problems are multifarious and range
from the inherent complexity of the algorithms and the di�culties to model
components exhibiting complex behavior� to the insu�cient support for di�
agnosis from the early design stages of the products and the lack of standard
knowledge interchange formats�

����� The complexity of model�based diagnosis

It is known that the problems addressed by model�based diagnosis are NP�
hard �cf� �Byl�
��� Sources of the intractability are� the exponential space
of possible diagnoses� the complexity of the models and the impact of time�
the need to �nd the
best�� i�e� the most plausible � most critical diagnoses�
to name just a few of them� So it is no wonder that the algorithms used

��

are inherently exponential in the worst case� However� it is not clear how
relevant is the
worst�case� measure to practice and it is perfectly legitimate
that di�erent algorithms that are exponential in the worst case� have a better
or a worse behavior for some classes of problems relevant for practice�

Improving the e�ciency of model�based diagnosis still remains an impor�
tant research issue� Current techniques that aim to improve the e�ciency
are� the use of focusing strategies �e�g� �dK
�� DS
	��� the use of abstraction�
simpli�cation and hierarchies in modeling �e�g �Str
�b�� �Ham
�b�� �Moz
����
the compilation of the deep knowledge �e�g� �FGN
�a�� �Moz
���� the seek for
better solutions for the impact of time on diagnosis �e�g� �Ham
�b�� �Lac
���
�Dre
	�� �DJD�
���� the relaxation of some requirements of the problem �e�g�
�FGN
�b�� �Moz
��� �BB
����

Our work described in Chapter 	 speci�cally addresses the e�ciency of
model�based diagnosis� We discuss there the e�ciency of the reason mainte�
nance component� and of the component responsible for proposing the diag�
nostic candidates to be checked next�

E�ciency was also an important concern in the diagnostic framework that
we developed in Chapter �� where we address the diagnosis of a certain class
of dynamic systems� We avoid� in a certain extent� the usual ine�ciency of
performing temporal reasoning on top of a reason maintenance system by
reusing the predictions across time as well as across belief contexts�

����� Restrictive presuppositions about the nature of

faults

Model�based diagnosis dispensed with some of the presuppositions that other
approaches to diagnosis usually depend on� e�g� the assumption that there
are no multiple�faults� or that the modeling is complete� However� the cur�
rent theory� still makes some presuppositions that fail to be satis�ed in all
application domains�

Commonly made assumptions are that the observations are correct� that
probing has equal cost and that there are no unforeseen interactions among
the components of the system � like� for instance� the bridge�faults in elec�
tronics �see also �Cla
�� Dav�	���

There is still no satisfying way to deal with intermittent faults� although
some progress in this respect has been made by �FL
�� Lac
���

A commonly made assumption concerns the independence of the faults in

��

case of multiple failures� This assumption fails to re�ect correctly the cases of
cascading defects� e�g� when a fault occurring somewhere in a system causes
others to occur in certain situations� In some domains such caused defects
are quite frequent� much more frequent than multiple independent defects�
This fact motivated our work described in Chapter ��

����� Practically relevant aspects of model�based diag�

nosis that are not covered by the theory

In this category falls the need to propose test patterns during diagnosis�
Testing was a problem that received much attention� but was mainly regarded
in isolation of diagnosis� The tasks should be� however� interleaved� Repair
is another task that was mainly regarded as an independent one� A current
topic of research is the integration of diagnosis� testing and repair �cf� �Str
	��
�SW
��� �McI
	b�� �FGN
���� The support o�ered by the diagnostic systems
to the technicians should also consider the costs of the proposed diagnostic
actions �e�g� measurements� state�changing actions and repair actions��

Although we do not address in this thesis speci�cally the problem of
proposing testing and repair plans during diagnosis we had in mind the inte�
gration of these tasks within the framework proposed in Chapter �� Repair
actions can easily be modeled in our approach as transitions from defect
modes to correct ones� controlled by
repair� inputs� Also� since in our ap�
proach the input assignments and the observations are implicitly represented
as assumptions� it is easy to make hypothetical reasoning about possible fu�
ture actions and their outcomes� a reasoning ability that� in our opinion� is
required in order to elaborate testing and repair plans�

����� Modeling is �the hard part�

Modeling is the part of the diagnostic approach that could not� so far� be
automated� Although� due to the reusability of the knowledge� modeling is
much less expensive than in the symptom�based approaches� it still requires
considerable e�orts� Moreover� modeling still remains a kind of an art�

During modeling one has to consider the balance between complexity
and completeness� The more accurate the models are� the more reliable the
results of diagnosis� but the harder becomes the reasoning with the models�
For instance� many model�based diagnostic engines use a reason maintenance

��

system �rms� to cache the results of prediction for later reuse� The e�ective�
ness of this optimization is considerably a�ected by the granularity at which
modeling and reasoning is done� The degree of reusability tends to be much
smaller when the models are numerical or very accurate� The usage of dif�
ferent modeling perspectives and of several abstraction levels is one direction
of research �cf� �Str
�b���

While a qualitative or more abstract modeling promises to reduce the
complexity of diagnosis� it sometimes increases the costs of the knowledge
acquisition� There is no di�culty in computing automatically abstractions of
di�erent theories� the problem is that it is very di�cult to �nd automatically
which elements in the space of abstractions provide a good balance between
completeness and complexity� Moreover� once a good abstraction for the
behavior of a component �group of components� is found for an application�
there is no guarantee that the same characterization would still prove useful
in a di�erent application� Thus� there appears to exist another balance�
between the complexity of reasoning and the knowledge reusability� The less
details one brings into the models� the less expensive is the reasoning� but
the probability that the models can be reused decreases�

��� Aims of the thesis

The thesis intends to�

� Improve the e�ciency of model�based diagnosis in rms�based engines�
We deal mainly with the e�ciency of the rms tasks and with the prob�
lem of e�cient candidate generation�

� Extend the current model�based approaches in order to make possible
to model and to diagnose systems with dynamic behavior and depen�
dent defects�

��� Overview of the thesis

Chapters � and � provide background knowledge for the problematic dis�
cussed in this thesis� Chapter � gives an introduction to the reason mainte�
nance systems� Chapter � gives a survey of the main work that formalizes
the tasks of model�based diagnosis� Except the presentation of the jtmsset

�	

from Chapter �� a minor contribution of this thesis� Chapters � and � do not
describe original research work�

Chapters 	 and � report the main original work in thesis� Chapter 	 con�
siders two aspects of e�ciency in an rms�based diagnostic engine� namely�
we analyze the e�ciency of the tasks supported by the rms and the e�ciency
of the component that proposes the
best� diagnostic candidates� The two
sub�problems are related� both the rms and the candidate generator module
provide services at the propositional logic level� We argue that their algo�
rithms play a complementary role� Most of the rmss are logically complete
only for propositional Horn theories� The integration with the candidate
generator� basically a search tool� can overcome this incompleteness�

Chapter � addresses the problem of non�independent defects in diagnosis�
We suggest here an approach in which the components and the whole system
are regarded as �nite�state machines� The approach allows to capture� at
least partially� the causality of mode changes� As a side e�ect� it allows to
easily integrate repair actions into the models and to represent components
with dynamic behavior�

The rest of this section provides an abstract of the main results reported
in Chapters 	 and ��

The �vRMS

The truth maintenance systems �tms� or reason maintenance systems �rms�
are instruments used to record dependencies among data� There are several
kinds of rms systems� e�g� the atms �cf� �dK��a��� the jtms �cf� �FdK
����
the ltms �cf� �McA����� which di�er in the expressiveness of the allowed
dependencies and in the amount of services provided�

Many of the nowadays model�based diagnostic engines use an atms�like
rms to record the dependencies among the inferred data� Among other
reasons� the preference for the atms is due to the power of computing the
minimal con�icts among the diagnostic assumptions� in case a diagnostic
candidate fails to explain the symptoms�

Despite recent improvements in controlling the atms� like the focusing
atms �cf� �DF
�� FdK���� and the lazy atms �cf� �KvdG
���� for com�
plex problems the rms remains a major resource consumer in diagnosis�
This motivated our interest in further improving the e�ciency of the reason
maintenance tasks�

��

We start from a classi�cation of the tasks usually accomplished by an
rms�

�� Entailment check� decide what else can be believed if a set of assump�
tions is believed�

�� Consistency check� decide if the set of beliefs is consistent�

�� Computation of the minimal�support�set� what are the minimal sets of
assumptions that have to be believed in order to believe a certain data�

The atms family can accomplish all of the above tasks� while other rmss�
like the jtms and the ltms � can accomplish only the �rst two�� However�
the jtms and the ltms use much more e�cient algorithms to solve the �rst
two tasks than the atms family does� in Horn theories the entailment check
and the consistency check can be provided in linear time� but the atms use
the expensive minimal�support�set labeling� exponential in the worst case� to
solve the �rst two tasks as well�
The improved rms that we propose in this thesis ��vrms� i�e two�view

rms� is able to accomplish all of the above tasks� The �rst two ones are
solved with an e�ciency comparable to that of the jtms � ltms� The third
one is supported by request only� Moreover� the computation of the minimal
supporting environments is tightly controlled� In this respect� the �vrms
integrates two views on data�

�� The focusing view� This view corresponds to a jtmsset �cf� Chapter ���
i�e� a multiple�context rms that integrates a set of monotonic jtmss�

�� The detailed view� This view corresponds to a kind of focusing atms
with a lazy label computation�

A prototype �vrms was implemented and tested in conjunction with an
elaborate diagnostic engine developed at the Daimler�Benz Research Center
in Berlin� Signi�cant reductions of the space and time required for diagnosis
were obtained due to the usage of the �vrms �see Section 	���	��

Candidate generation

Usually in diagnosis there are very many possible candidates that are con�
sistent with the observations� especially in the early diagnostic steps when

�The ltms and the jtms support� however� a relaxed version of the third task� namely�
without guaranteeing the minimality and completeness of the supporting environments�

��

there is not enough evidence about the system� It is not feasible to consider
all of the possible candidates in parallel� Current techniques for candidate
generation focus only on a few of the most plausible � critical candidates
from the ones that are possible�
We use a diagnostic framework where each component can be character�

ized with several modes of behavior� Each candidate chooses exactly one
mode of behavior for each component� The plausibility � criticality informa�
tion that we use to control the selection of the focus candidates is encoded
by two relations� preference and priority�
The preference relation is as de�ned by Dressler and Struss �cf� �DS
����

A preference order among the modes of each component is used to induce a
preference order among candidates� The partial order de�ned by the candi�
date preference imposes a lattice structure on the candidate space� We show
how to take advantage of this structure in order to optimize the search�
The preference alone can only encode knowledge about the relative plau�

sibility of the modes of a single component� e�g� it can encode knowledge
saying that� �a wire is most probably correct� but if it is defect then it is more
likely to be broken than shorted to ground�� but it can not encode knowledge
saying that� e�g� �the bulbs break more often than the switches� which� in
turn� break more often than the wires�� The focus selection heuristic based
on the preference alone is in many cases not sharp enough� for large systems
the set of preferred candidates is very large� In order to gain more control
over the selection of the focusing candidates we de�ne an additional priority
relation that removes the expressiveness limitations of the preference�
The proposed algorithms can generate in an incremental way a few �say

k� of the most preferred candidates having the highest priority�
We further analyze the properties of the candidate generation algorithms

with respect to the framework of propositional logic� The �vrms �as well
as the atms family and the jtms� can perform satis�ability checking and
model construction for Horn clauses� The candidate generator can perform
satis�ability checking and model construction for purely positive and purely
negative clauses� The combination �vrms �atms or jtms� and the candi�
date generator can be used as a satis�ability checker and �preferred� model
builder for arbitrary propositional clause sets� thus removing the expres�
siveness limitations of the rms and of the candidate generator alone� In
comparison with a
conventional� propositional theorem prover� the rms �
candidate generator architecture o�ers the incremental way of operation and�
more importantly� the extra�logical control means encoded in the priority and

��

preference relations�
A further optimization which we suggest limits the degree of parallelism

in investigating the search space� We introduce� so called� secondary choice
sets� whose elements are assumed to be equally preferred� The search in the
secondary choice sub�spaces can use techniques similar with those used in
constraint satisfaction problems� where usually the construction of a single
solution is attempted�

Diagnosis of dynamic systems and systems with cascading defects

The current approaches to model�based diagnosis are mostly adequate for the
diagnosis of static systems with independent defects� either due to expressive�
ness� or complexity limitations� In some domains� however� dependent defects
appear relatively frequent� anyway more frequent that multiple independent
defects� We argue that systems with cascading defects cannot be properly
diagnosed by the current approaches that start from the fault�independence
assumption and neglect the dynamic of the mode changes�
We suggest an approach in which the components are modeled as tiny

automata� The knowledge about the whole system is generated� as usually
in model�based diagnosis� by composing the component behaviors using the
structure information� The mode of behavior of each component is regarded
as a state variable� i�e� is part of each component�s
memory�� The rep�
resentation allows to model in a uniform way and to reason about� �a� the
causality of the mode�changes� �b� dynamic components with memory� �c�
the consequences of user�s control and repair actions� The diagnoses general�
ize in our approach to transition paths consistent with the system description
and the observations� The preference among the non�deterministic choices
and the priority relations used by the candidate generator from Chapter 	
can be applied to de�ne preference relations among transition paths��

We were careful to avoid� in some extent� the well�known de�ciency of
reasoning across time using an rms� The logical description of the system
includes only temporal independent aspects� We show how to use such system
descriptions in order to reuse the predictions across belief contexts� as in any
rms�based prediction system� as well as across time�

�If the modeled system has a deterministic behavior� and if one assumes complete
information about the inputs� such non�deterministic choices appear only with respect to
the initial state of the transition paths� Otherwise� such choices appear with respect to
the state transitions as well� Only the deterministic case is discussed in this thesis�

��

Chapter �

Reason Maintenance Systems

��� Introduction

As we have seen in Chapter �� model�based diagnosis has at its basis the
generation� testing and discrimination of hypotheses� Reason Maintenance
�or truth maintenance� deals with the problem of correctly and e�ciently
performing hypothetical reasoning� Di�erent kinds of reason maintenance
systems �rmss� underlay many of the model�based diagnostic engines in use
today�
The goal of this chapter is to provide the background knowledge and the

context for our discussion of the improved rms that we are going to present
in Chapter 	�
Readers familiar with the terminology and problematic of reason main�

tenance may skip this chapter�

����� The contents of this chapter

Section ��� introduces the basic terminology� the architecture� and the no�
tions that are valid for the entire spectrum of rmss that are discussed in this
chapter�
Section ��� presents a survey of several rmss� the jtms� the ltms� the

jtmsset �a minor contribution of this thesis�� the basic� focusing and the lazy
atms� and the cms� Further details about the algorithms� as well as further
insights into the non�monotonic rmss� are given in Appendix A�
Section ��	 provides a comparative analysis of the services provided by

the di�erent kinds of monotonic rmss from a logical point of view�

�

����� Hypothetical reasoning and reason maintenance

Hypothetical reasoning involves reasoning with unsure or incomplete data or
knowledge� Without making assumptions about the missing or the uncertain
data� in many cases one can make no progress with solving a certain problem�
A sensible strategy for such cases is to try to estimate the plausibility of the
possible variants and to continue reasoning by assuming that the current case
is one of those most plausible ones� For instance� we cannot know if it will
rain or not in the next � hours� but we can estimate the plausibility somehow
and decide if we take an umbrella with us or not� If the assumptions were
wrong this can manifest sooner or later in discovering an inconsistency in the
knowledge�

Hypothetical reasoning inherently leads to reasoning with inconsistent
knowledge� When an inconsistency is detected two problems must be solved�
namely� �a� the assimilation of the inconsistency without inferring its con�
sequences�� and �b� the restoration of consistency� In order to restore con�
sistency one notes that� when inconsistency is detected� at least one of the
assumptions used to infer it must be false� Thus� a basic task in order to
achieve this is to analyze the patterns of reasoning and to detect which as�
sumptions contributed to the inconsistency�

Reason Maintenance Systems are tools that provide the basic function�
ality that allows the assimilation of the inconsistencies and the restoration
of the consistency� They maintain the sets of currently enabled �believed�
assumptions and the dependencies between the inferred data� They can an�
swer what inferred data can be believed if a set of assumptions are believed�
They also detect when inconsistent inferences are made� In such cases they
can report what set of assumptions is responsible for the inconsistency�

An rms supports e�cient hypothetical reasoning in that it prevents to
restart reasoning from the beginning when the set of beliefs changes� Due
to the dependencies between the inferred data that they maintain� they can
restore the old inferences that can be safely believed when the set of believed
assumptions change� They act like a database for the inferences made by a
problem�solver�

�This is not obvious� It is known that in the �rst�order predicate logic� if an inconsis�
tency is derived then anything else can be derived as well�

��

��� Basic concepts

There are several kinds of systems known as truth maintenance systems
�tms� or reason maintenance systems �rms�� the non�monotonic justi�ca�
tion based truth maintenance system �nmjtms� cf� �Doy�
��� the monotonic
variant of it �jtms� cf� �FdK
���� the logic�based truth maintenance system
�ltms� cf� �McA��� McA��� McA
���� the assumption�based truth mainte�
nance system �atms� cf� �dK��a��� and many descendants and variants of
these� However� they all share some basic concepts and functionality� This
section introduces the aspects that are common to all of these rms systems�
In �FdK
�� one can �nd a good and systematic introduction to the di�erent
kinds of monotonic rmss and to the way of e�ciently using them in problem�
solving� Another good introduction� covering also the nmjtms� is in �Rei�
��
In �Mar
�� one can �nd an indexed literature of the reason maintenance sys�
tems� In �McD
�� a unifying formalism for the jtms� ltms and the atms is
proposed�

The Problem�Solver � RMS architecture

A reasoning system using an rms separates in its architecture the Problem�
Solving �ps� component and the rms component� The problem�solver and
the rms interact via a well�speci�ed interface�

� the ps communicates to the rms�

 currently enabled assumptions �beliefs��

 inferences� what pieces of knowledge and what inference method
was used to derive each new piece of knowledge�

 questions about the belief in some pieces of knowledge�

� the rms communicates to the ps�

 answers to ps� queries�

 inconsistencies� what subset of the currently enabled assumptions
is responsible for the derivation of an inconsistency�

The decision what assumption�s� to retract when an inconsistency is dis�
covered and eventually what new assumptions to enable� is sometimes left
to the problem�solver� sometimes to the rms� In most of the rmss the ps
can attach so called consumers� to the inferred data� The consumers are

��

procedures that the rms should activate when the belief in the associated
data changes in some way� This way� the ps can accord its inference with
the belief status of data�

An rms operates incrementally� The queries about the beliefs are in�
terleaved with the addition of inferences and assumptions� An rms usually
takes advantage on the fact that before the addition of a new inference or
before changing the set of enabled assumptions the knowledge was labeled
with the correct beliefs and updates the beliefs in an incremental way�

In most of the rmss the ps can only add inferences and assumptions and
not delete them�

Although the knowledge may have a richer structure and semantics for
the ps� the rms systems that we discuss here regard the knowledge supplied
by the ps as purely propositional�

Basic terminology

Some of the concepts have di�erent names in di�erent papers� The terminol�
ogy we adopt here is closest to the atms �cf� �dK��a� dK��b� dK��c���

assumption� piece of data designated by the ps whose in�uence on the in�
ferred data must be traced by the rms� Usually� the assumptions represent
uncertain data that the ps may choose to believe or disbelieve at certain
times��

rms node� data structure associated by the rms with a proposition �da�
tum� inferred by the ps� A node stores� besides the associated datum�
dependency information� The dependency information contains references
to the other nodes whose belief status in�uences �is in�uenced by� the be�
lief in the current node �see bellow belief constraint�� The dependencies
connect the rms nodes into a network� Usually� there are four categories of
nodes� assumption nodes� premise nodes� derived nodes and contradiction
nodes� described bellow�

node label� a slot of the rms�node data structure that caches the current
belief in the node� The main rms task is to maintain the node labels� The

�However� the meaning of the assumptions to the ps is not known in the rms� The
rms will just trace the dependence of the inferred data on the designated assumptions� It
could be that the ps encodes something as an assumption just for indexation reasons� and
not because it represents uncertain data�

��

way the nodes are labeled and the contents of the label depends on the
particular kind of rms�

assumption node� node associated with an assumption� When inconsis�
tencies are detected the dependencies are traced back to the assumptions
responsible for the derivation of the inconsistency�

premise node� node associated with a sure proposition� The belief in the
premises does not depend on any assumptions� i�e� the premises are always
believed��

derived node� node associated with an inferred proposition� The belief in
the associated proposition depends on the belief in other data� and ulti�
mately depends on the belief of some assumptions�

contradiction node� node whose associated proposition represents the fal�
sity� A contradiction node must never be believed� An inconsistency is
detected whenever such a node receives a label indicating the belief�

When an inconsistency is detected this is signaled to the ps and some of
the currently enabled assumptions must be retracted in order to restore
consistency� The rms can detect the minimal sets of currently enabled
assumptions that support the contradiction��

belief constraint� data structure representing a constraint between the be�
liefs of some nodes� The form of a belief constraint depends on the par�
ticular type of rms� e�g� Horn clauses �also known as justi�cations� in the
atms� and in the jtms� non�monotonic justi�cations in the nm�jtms and
nm�atms� propositional clauses in the ltms and in the cms �see Section
�����

nogood� set of assumptions whose belief leads to the derivation of a contra�
diction� Some rmss automatically store the discovered nogoods �e�g� the
atms�� others do not record the nogoods automatically �i�e� the ps has to
do it��

environment� set of assumptions�

context� the set of propositions that are believed if a certain set of as�
sumptions is believed �enabled�� Each environment de�nes a context� The

�This does not mean that the premises have to be positive literals�
�The minimality is not always guaranteed� Also� usually� only one such set is searched

�the atms is an exception��

��

contexts that contain a contradiction are inconsistent� Sometimes the con�
texts are also called
hypothetical worlds��

single � multiple context rms� if a certain rms maintains the beliefs for
one context at a time it is called single�context �examples are the ltms and
the �nm��jtms�� If it can maintain the beliefs �labels� in several contexts
in parallel it is called multiple�context �e�g� the atms��

focusing environment � context� A context in which the ps is interested
at a certain moment and in which the rms labels the beliefs is called a
focusing context� The set of assumptions de�ning a focusing context is a
focusing environment� We say that a node holds in focus if there exists a
focusing context where the node is believed�

contradiction handling� strategy of restoring the consistency� It basically
must specify what assumptions to retract and enable after the discovery of
each inconsistency� Some rmss have an incorporated contradiction han�
dling mechanism �e�g� the non�monotonic rmss that use the defaults to
specify what to believe when� the basic atms does the parallel search in
all the possible consistent contexts at once and does not need external
contradiction�handling�� When the contradiction handling is not incorpo�
rated in the rms �e�g� the jtms� the rms must o�er hooks to the ps in
order to connect it�

monotonic � non�monotonic rms� in a monotonic rms the belief in a
proposition is based on the presence of belief in other propositions �e�g�

if a is believed and b is believed than believe c��� In a non�monotonic
rms the belief in a certain proposition can be also based on the lack of
belief in other propositions �e�g�
if a is believed and �b is not believed
then believe b��� In monotonic rmss the size of a context always increases
when enabling more assumptions� while in a non�monotonic rms the set of
believed propositions may increase or decrease when more assumptions are
enabled�

The atms �cf� �dK��a��� the jtms �cf� �FdK
��� and the ltms �cf� �McA���
McA��� FdK
��� are monotonic� The nmjtms �cf� �Doy�
�� and the
nmatms �cf� �Dre��� Dre
��� are non�monotonic�

consumer� procedure attached by the ps to an rms node� This is a way
of connecting the ps inference with the rms operations� The rms is used
to trigger the ps inferences� Namely� the rms must activate a consumer
when a certain condition is satis�ed by the node to which it was attached�

�	

Problem�Solver rms

� create premise p� q
� create assumptions A�B�C�D
� create derived m�n
� create contradiction �
� add clause p � q � m
� add clause A � B �m� n
� attach consumer P to node n
� query belief of n � False
� enable assumptions fA�B�C�Dg � activate consumer P
� query belief of n � True
� create derived g� h
� add clause g � h� �
� add clause C � n� h
� query belief of h � True
� add clause B � C � g � Notice Nogood� fA�B�Cg
� disable assumptions fAg
� query belief of h � False
� � � � � �

Figure ���� A typical rms � ps interaction

typically when the belief in the node changes� After a consumer is activated
it is also removed from the list of pending consumers of the node� The ac�
tivated consumers are usually placed into an agenda� The ps can later pick
up the active consumers and execute them according to some scheduling
strategy� At execution time the consumer receives as argument the rms
node to which it was attached� Typically� the consumers implement ps
inference rules� During execution more nodes may be created� more belief
constraints may be added� and new consumers can be attached�

A generic rms�ps interaction based on the consumer mechanism is pre�
sented in more detail in Appendix A��� When used properly� the consumer
architecture guarantees that no inference is performed twice when switch�
ing between contexts and that no inference in which the problem�solver
expresses interest is left out�

��

Single Context Multiple Context
all contexts some contexts

Monotonic jtms atms cms focusing atms
ltms Lazyatms jtmsset

Non�monotonic nmjtms � nmatms

Table ���� Families of rmss

��� Families of RMSs

The ltms and the cms are the only rmss from those listed in Table ��� that
accept as belief constraints arbitrary clauses and that can directly represent
negation� The rest of the monotonic rmss from above work with Horn clauses
�called justi�cations� that can be represented by material implications� like
p� � p� � � � � � pn � q� The justi�cations accepted by the nmjtms and the
nmatms are like the ones of the jtms � atms� except that one can require
that some of the antecedents should be out� i�e� should not be believed�
The rest of this section presents the main features of the jtms� jtmsset�

ltms� basic� focusing and lazy atms� and the cms� Further details about
the algorithms and about the non�monotonic rmss� i�e� the nmjtms and the
nmatms� are given in Appendix A�

����� The JTMS

The monotonic jtms �cf� �FdK
��� is the simplest kind of rms� but also a
commonly used one� The jtms works in one context at a time� The context is
de�ned by the set of currently enabled assumptions� The ps has to explicitly
enable � retract the assumptions�
The belief constraints accepted are justi�cations� p� � p� � � � � pn � q�

where p�� p�� � � � pn are called the antecedents of the justi�cation and q is
called the consequent of the justi�cation� In logical terms� the justi�cations
are propositional Horn clauses�
The jtms node label consists of one symbol indicating whether the node

holds in the context de�ned by the currently enabled assumptions� In logical
terms� this means that A � J j� n� i�e� the node follows from the union
of the propositions representing the enabled assumptions �A� and the set of
clauses representing the justi�cations �J ��

��

Answering a query about the belief in some node means to simply return
the label of that node� for instance IN can indicate the belief and OUT the
lack of belief� The belief constraints de�ned by the justi�cations in terms of
allowed node labels say simply that�

�� if all of the antecedents of a justi�cation are IN then the consequent
must be IN�

�� if all of the justi�cations in which a node n is the consequent have all
the antecedents OUT then n is OUT�

In order to detect the inconsistency a contradiction node is used� When�
ever the label of a contradiction node is IN this indicates that A � J is
not satis�able� The consistency check is realized as a particular case of the
entailment check�
In order to detect a subset of A responsible for an inconsistency or for

the derivation of some node� the well�founded support of a node can be used�

Well�Founded Support

The notion of well�founded support is important in an jtms for �a� providing
explanations� �b� examining the causes of the contradictions� and �c� the
incremental label update after retracting an assumption� A well�founded
support for a node n is a non�cyclic and non�redundant proof for n� i�e� it is
a sequence of justi�cations J�� � � � � Jk such that�

�� Jk justi�es node n�

�� all the antecedents of Ji are either enabled assumptions or are justi�ed
earlier in the sequence��

�� no node has more than one justi�cation in the sequence�

Note that there can be several well�founded supports for a node� The jtms
maintains only one for each node� Namely� the node data structure includes
a slot �say wfSupport� that stores the justi�cation currently providing the
well�founded support for that node �if any�� In case of inconsistency the
well�founded support of the contradiction node can be traced back to detect
the enabled assumptions involved� This simple mechanism is not enough to
guarantee the minimality of the nogoods� however�

�The premise nodes can be seen as derived nodes justi�ed with an empty set of an�
tecedents� e�g� � p

��

The labeling after the assumption enabling � disabling� the node creation
and the justi�cation addition� is performed incrementally� i�e� it is assumed
that before these operations the labels were correct� and the label update
inspects as few nodes as necessary� Except the assumption disabling� the
�re�labeling algorithms performed after such operations are fairly trivial� In
order to update correctly the labels after assumption retraction and to avoid
to introduce unfounded belief� one has to proceed in two steps�

�� Label OUT all of the nodes whose well�founded support depended on
the retracted assumption�

�� Inspect all of the nodes labeled OUT in the previous step to check if
some of them cannot be labeled IN�

A more detailed description of the jtms data structures and of the inter�
nal operation can be found in Appendix A��� The logical properties of the
jtms are discussed at the end of this chapter�

����� The LTMS

The ltms �Logic�based tms� cf� �McA��� McA��� McA
�� FdK
��� is a
single�context� monotonic rms� The belief constraints accepted by the ltms
are propositional clauses� but not necessarily Horn�clauses� The ltms is
more expressive than the jtms because it can directly represent negation�
Each propositional symbol is associated to an ltms node� The node labels
can take three values� namely�

� true meaning that the associated proposition is believed�

� false meaning that the negation of the proposition is believed�

� unknown indicating the lack of belief in either the proposition or its
negation�

As usual� the nodes contain references to the constraints in which they are
involved� i�e� to the clauses in which they are mentioned� There is no need
for an explicit contradiction node to express inconsistency in the ltms� in�
consistency is simply detected by clause violation� The procedure that labels
the nodes relies on boolean constraint propagation �bcp�� an e�cient infer�
ence method �i�e� P�complete� in the worst�case linear in the number of
literals in clauses�� but� obviously�� an incomplete one� equivalent to the unit
resolution�

�Satis�ability in propositional logic is a well�known NP�complete problem�

��

Boolean Constraint Propagation

A clause is a disjunction of literals� where each literal is a proposition� or
a negation of an atomic proposition� The literals that contain negation are
called negative� otherwise they are positive� Given a labeling with true�

false and unknown of the propositions� a clause can be�

�� Satis�ed� At least one literal from the disjunction evaluates to true�
For instance the clause �x � y � �z is satis�ed in the labeling�
f�x� true�� �y� unknown�� �z� false�g�

�� Violated� All the literals evaluate to false� The above clause is violated
in the labeling f�x� true�� �y� false�� �z� true�g�

�� Unit open� All the literals except exactly one evaluate to false� The
remaining literal refers to a proposition that is labeled unknown� The
assignment f�x� true�� �y� unknown�� �z� true�g makes the above clause
unit open in y�

	� Non�unit open� The clause is in none of the above categories� i�e� no
literal evaluates to true and more than one are unknown�

bcp starts with a certain labeling and tries to satisfy all the clauses by
changing the labels from unknown to true or false� It maintains a stack
checkStack of clauses that have to be examined �initially all clauses have
to be examined� and a stack violatedStack of clauses that are violated�
bcp sequentially pops a clause from the stack checkStack and pushes it
to violatedStack if it is violated or� if the clause is unit open� satis�es that
clause by changing the label of one proposition�

Analog to the well�founded support de�ned for the jtms� in the ltms
exists the notion of well�founded explanation� When the bcp algorithm
deduces the belief in some node the ltms notes the clause that enforced that
label� Like the jtms� the ltms maintains only one well�founded explanation
per node� This can be used to �nd one �not necessarily minimal� subset of
the enabled assumptions that support the belief of some node�

A more detailed description of the data structures and of the algorithms
can be found in Appendix A��� The logical properties of the ltms are dis�
cussed at the end of this chapter�

�

����� The JTMS set

The jtmsset is a simple multiple�context monotonic rms which integrates a
set of jtmss� The jtmsset is� however� more e�cient than a set of indepen�
dent jtmss and represents a minor contribution of this thesis�
The jtmsset is able to work in several contexts in parallel� The set

of contexts in which the jtmsset works at a certain moment are called the
focusing contexts� The focusing contexts must be characterized using the sets
of enabled assumptions per context� i�e� using the focusing environments�
The belief constraints are justi�cations like in the jtms� The label of a

node is no longer a simple symbol IN or OUT as in the jtms� rather it is a
set whose elements are the identi�ers of the focusing contexts in which the
node is IN� For instance� if at a certain moment the focusing environments
are f� � fA�B�Cg� � � fB�D�Eg� � � fE�F�Ggg and a node n holds in the
contexts de�ned by the focusing environments � and �� then the label of n
would be f�� �g�
The jtms belief constraints require that whenever all the antecedents of

a justi�cation are IN the consequent of the justi�cation must be also IN� In
terms of the jtmsset representation this means that�

n�label �
�

J�n�justifications

J�label�

J�label �
�

n�J�antecedents

n�label�

where n is a node and J is a justi�cation� Apart from these� the premises
are labeled with the total set� the derived nodes with no justi�cations are
labeled with the empty set while the assumptions are labeled with the set��

label�a� � fi j a is member of the i�th focusing environmentg�

Figure ��� contains a small dependency network with the jtmsset labels�
The notion of well�founded support has the samemeaning and importance

as in the jtms� In the jtmsset a node has di�erent well�founded supports in
di�erent focusing contexts� The jtmsset maintains one well�founded support
for each focusing context for each believed node� The jtmsset is more e�cient
than a set of independent jtmss because�

�If the assumptions can be justi�ed then also the propagated set must be added to the
above set�

��

{1,2} {2,3}

J1 {2}

{2}

J2{2}

{2,3}

1 = {A,B,D}
2 = {A,B,C}
3 = {C,D,E}

Focusing Environments:

{3}

A C

Ep

s

J3 {3}

Figure ���� Dependency net in the jtmsset� A�B�C�D�E are assumptions�
p� s are derived nodes� J�� J�� J� are justi�cations� e�g� J� � �A�C � p��

�� the jtmsset stores the nodes and the justi�cations only once�

�� the labeling algorithms touch the nodes that hold in the intersection
of several focusing contexts only once in the jtmsset� while these node
would have been several times touched if the jtmss were independent�
Thus� for instance� if a certain operation a�ects the set of nodes N�� N�

where the nodes form Ni hold in the focusing context i� then a set of
independent jtmss would touch a number of jN�j� jN�j nodes� while
the jtmsset touches only jN�j� jN�j � jN� �N�j nodes�

During reasoning the ps may add and remove environments to the focus
of the jtmsset� The label update after focus changes is performed in an
incremental way� When the ps removes some environment from the focus the
jtmsset just marks this environment as
obsolete� �i�e� it adds its identi�er
to the set tms�obsoleteFocus�� but does not immediately reprocess the labels�
Of course� as soon as an environment is added to the obsolete focus� the
jtmsset will stop to activate the consumers in that context� The reprocessing
of the labels is delayed until the ps adds a new environment to the focus�
but at this time the reprocessing can be performed incrementally� as follows�

Suppose Eold is an old obsolete focusing environment having the
index i in the jtmsset� and that Enew is a new focusing environ�
ment that will replace Eold� Then�

��

�� The assumptions from Eold � Enew must be disabled in the
context i�

�� The assumptions from Enew � Eold must be enabled in the
context i� but

�� No update of the labels has to be done at the nodes that
hold in the context de�ned by the environment Eold �Enew�

If the focusing environments do not di�er much in between� which
is usually the case� at least in diagnosis� then most of the old labels
do not have to be inspected and only a few incremental changes
have to be performed�

Internally� the jtmsset maintains three data structures that de�ne the actual
focus�

�� tms�focusEnvironments � an ordered collection of environments� The
index of a focusing environment in this ordered collection is used as the
identi�er of that focusing environment� The sets of such identi�ers can
be e�ciently represented as bit sets�

�� tms�obsoleteFocus � the �bit� set specifying the set of elements from
tms	focusEnvironments that the ps removed from the focus�

�� tms�activeFocus � the �bit� set specifying the elements from tms	focus�
Environments that are not in tms�obsoleteFocus and have not been
discovered inconsistent�

The focusing environments from tms	focusEnvironments that are neither ob�
solete� nor active� are inconsistent� The consumers are activated only for the
contexts de�ned by the active focus�
A more detailed description of the data structures and of the algorithms

is given in Appendix A�	�

����� The ATMS

The atms �cf� �dK��a�� is a monotonic� multiple�context rms which� like the
jtms� accepts as belief constraints justi�cations� i�e� Horn clauses� The atms
was the underlying rms in the original gde �General Diagnostic Engine� cf�
�dKW���� and has received much attention in the model�based diagnostic
community� The atms that we present in this section is sometimes known

��

as the basic atms due to the many extensions and improvements that built
upon the original one�
In contrast with the rmss presented until now� the basic atms works in

all consistent contexts in parallel� When a certain context is discovered in�
consistent the atms automatically stops working in that context and thus� it
does not need the contradiction�handling component which was required by
the jtms� ltms and the jtmsset� The atms labels each node with all mini�
mal and consistent sets of assumptions which� together with the justi�cation
set� logically entail the proposition of that node��

The atms maintains a concise characterization of the inconsistent con�
texts� This is provided by the minimal sets of assumptions that lead to the
derivation of an inconsistency for a given set of justi�cations� These are
called minimal nogoods and are stored in the atms nogood database� The
inconsistency is detected� as in the jtms� using contradiction nodes� The
environments propagated to the label of a contradictory node are �minimal�
nogoods�
Given the current set of justi�cations J � the atms labels each node n

with a set of environments n�label having the properties�

�� Completeness
 For any set of assumptions A such that A � J is con�
sistent and A � J j� n there exists an environment e 	 n�label such
that A
 e�

�� Consistency
 For any e 	 n�label we have� e � J is consistent�

�� Soundness
 For any e 	 n�label we have� e � J j� n �

	� Minimality
 The elements of the label are minimal with respect to set
inclusion� i�e� �e� e� 	 n�label � e � e�
 e � e��

The constraints that the labeling algorithms must maintain can be expressed
as�

�� e 	 n�label� e is minimal in n�label� e is not a superset of a minimal
nogood ���J 	 n�justifications s�t� e 	 propagSet�J���

�� propagSet�n�� n�� � � � � nk � n� � fe� � � � � � ekjei 	 ni�labelg�

Moreover� the label of the premises contains the empty environment� i�e�
n�label � ffgg� the label of derived nodes without justi�cations is empty�

�The atms was characterized �cf� 	RdK
��� to compute certain prime implicates of a
set of propositional clauses� We will come later to this characterization�

��

i�e� n�label � fg� the assumptions mention themselves in the label�	 i�e�
a�label � ffagg� The environments propagated to the contradictory nodes
are minimal nogoods and are removed� together with their supersets� from
all node labels as soon as they are discovered� Figure ��� depicts a small
dependency network� with the labels attached by the atms�

{{A}} {{C}}

J1

{{AC}}

J2

{{AC},{E}}

{{E}}

A C

rq

s

J5

{{E}} {{}}

J4

E p

J3

Figure ���� Small dependency network in the atms� A�C�E are assumptions�
p is a premise� q� r� s are derived nodes� J�� � � � � J� are justi�cations�

The atms takes in account all the possible well�founded supports for
each node� This information is not re�ected in a special node slot� but in the
node labels� Each environment from a node label corresponds to �at least�
one well�founded support�

The entailment checking and the consistency checking are realized using
the more powerful computation of the minimal supporting environments in
the atms� However� the algorithms underlying the atms are known to be
exponential in the worst case��

More details about the data structures and algorithms can be found in
Appendix A���

�Justi�ed assumptions receive additionally the propagated label�
�	Recall that for propositional Horn clauses the consistency check and the entailment

check can be detected using polynomial algorithms� like the bcp�

�	

����� The CMS

The cms �Clause Management System� cf� �RdK���� is a generalization of
the atms that works with arbitrary clauses� like the ltms does� In �RdK���
the atms was characterized to compute some prime implicates of a set of
propositional Horn clauses� The cms is also based on the computation of
prime implicates� but for arbitrary clauses� Since a cms would have much
higher computational costs than the basic atms� and even for the basic atms
they are in most of the cases prohibitive� we do not think that the cms has
much practical relevance� We list� however� the main theoretical aspects
underlying the cms �they provide also a characterization for the atms��
A literal is a propositional symbol or the negation of a propositional

symbol� A clause is a �nite disjunction of literals�

De
nition ����� Let � be a set of propositional clauses and M be a propo�
sitional formula	 A clause S is a minimal support clause of M with respect
to �� i	e	 S 	MinSupp�M��� if and only if

�	 � � �S is satis�able�

	 � j� ��S�
M �

�	 No proper subset of S has properties � and
	

The cms is supposed to incrementally receive arbitrary clauses from the ps�
� represents the set of clauses stored in the cms at a certain moment� The
ps can query then the minimal support clauses for some other arbitrary
clauses �e�g� M above�� not necessarily just for the ones supplied to the cms�
The importance of the minimal support clauses in problem solving and in
particular in AI was argumented in �RdK���� As a computational mechanism
for the minimal support clauses Reiter and de Kleer propose the computation
of prime implicates���

De
nition ����� A prime implicate of a set � of clauses is a clause C such
that
 � j� C� and for no proper subset C � of C does � j� C �	

The characterization of the minimal support clauses in terms of prime impli�
cates states �cf� �RdK�����

��The notion of prime implicate is the dual of the well�known prime implicants� which
play an important role in Boolean minimization of switching circuits� Namely� a prime
implicant of � is a minimal conjunction of literals that entails �� The prime implicants

implicates have the same properties modulo the duality between � and ��

��

Theorem ����� S 	 MinSupp�C��� if and only if
S 	 �C��� and no clause of �C��� is a proper subset of S�

where �C��� � f!�C j ! is a prime implicate of � and ! � C �� fgg	

The literature contains many algorithms for the computation of prime im�
plicants � implicates �cf� �dK
�a� Qui�
��� however� the problem is known to
be NP�complete� The basic atms was characterized to compute�

Theorem ����� Let J �A be the set of justi�cations and assumptions trans�
mitted to the atms	 Let fng be a query� where n is a propositional symbol	
The answer to this query is

fA� � � � � � Ak j Ai 	 A and ��A� � � � � � �Ak� 	 MinSupp�n�J �g�

����	 The lazy ATMS

The Lazyatms �known as the Lazyrms� cf� �KvdG
��� was designed due to
the dissatisfaction with the high computational costs of using the basic atms
in scheduling and constraint satisfaction problems� but also in model�based
diagnosis �cf �KvR
����
The Lazyatms behaves like the basic atms� except that it employs a

lazy strategy for computing the node labels� Unless the ps explicitly shows
interest at a certain time in the label of a certain node� the Lazyatms does
not update the label of that node� Since the atms maintains the labels in all
the possible consistent contexts and since there can be an exponential number
of such contexts� the atms labeling requires in most of the cases prohibitive
amounts of time and memory� The Lazyatms avoids the amounts of atms
work that are not relevant for the ps� and assumes that not all of the nodes
are interesting at each moment for the ps� In �KvR
�� KvdG
�� the authors
show signi�cant reductions in both time and memory over the use of the
basic atms�
In order to keep trace of which labels have already been computed and

what might be in an incomplete � inconsistent state the Lazyatms main�
tains at each node a boolean mark which indicates that� The addition of a
justi�cation implies by default only the maintenance of the marks� When a
justi�cation is added all of the followers of the consequent in the justi�cation
network must be marked as having possibly unupdated labels� When the ps
queries the label �belief� of some node the Lazyatms recursively steps back�
wards in the justi�cation network until it reaches nodes with updated labels

��

and incrementally propagates the changes to the nodes that are required to
answer the query� Afterwards some of the marks will be changed to indicate
that the labels are complete and consistent�
In order to recall which label updates were not considered by each justi��

cation� the justi�cation data structure of the Lazyatms may include another
slot � the delayedConstraints� The delayedConstraints can store a set of
triples �J� n� envSet� with the meaning�
the addition of the environments
envSet to n�label was not propagated further by J�� where n is an antecedent
node of the justi�cation J � When a justi�cation is marked
required� the
label updates from delayedConstraints must be reconsidered�
As until now� we specify the constraints that the labeling algorithms have

to maintain in the dependency network� Except the mark and the label�
during query answering the nodes and the justi�cations can be marked as

required� or not�

�� The Lazyatms is not answering a query�

� if a justi�cation is added or if the mark of an antecedent of a
justi�cation is set to
unupdated� then the consequent of the
justi�cation is marked
unupdated�� unless the consequent is a
premise�

�� The Lazyatms answers a query about the label of a node�

� by default the nodes and the justi�cations are not
required�� but
the queried node is
required��

� if a node with an
unupdated� mark is
required� then also all
the incoming justi�cations and their antecedents are
required��

� if a node with an updated label is required then none of its in�
coming justi�cations are
required��

� a justi�cation that is not
required� imposes no constraints on the
labels of the nodes it connects� A
required� justi�cation imposes
the usual atms constraints between the labels of the connected
nodes �see ����	��

After a query is processed the
unupdated� mark is removed from all
the nodes that were
required��

Obeying the above constraints can guarantee that after the query of a
node its label will be sound� minimal and complete� The consistency� how�
ever� is not fully guaranteed� In order to guarantee the consistency also one

��

has to query the contradiction node�s� each time a query of a di�erent node is
posed� This observation suggests that� di�ering from the basic atms� in the
Lazyatms one can explore also inconsistent contexts �if that makes sense��

While the Lazyatms avoids to perform work that is irrelevant for the
ps� it� obviously� requires that the ps has a strategy of selecting what is
not relevant� If the ps is not careful about this aspect and� for instance�
always queries the labels of all nodes� then the Lazyatms would provide no
advantage over the basic atms� It is also true that� even in this worst case�
the additional work of maintaining the marks in the Lazyatms is not very
substantial�

The above point indicates that the consumer�based architecture of the
ps is not going to e�ectively take advantage of the lazy strategy� The con�
sumer architecture is driven by the changes in the belief state of the nodes
which �almost� constantly requires to maintain updated labels� There seems
to be currently no general strategy for driving the ps inference on top of
the Lazyatms �the solutions of �KvR
�� KvdG
�� are appropriate for the
particular applications addressed��

Since the consistency check and the entailment check are still based on
computing minimal supporting environments� the worst�case complexity for
providing these services remains exponential in the Lazyatms �

More details about the Lazyatms are given in Appendix A���

����
 The focusing ATMS

The focusing atms �cf� �DF
�� FdK���� is another descendant of the basic
atms that attempts to reduce the high computational costs of labeling� As
opposed to the basic atms� the focusing atms �fatms� avoids to work in all
the consistent contexts in parallel� While it still can work in several contexts�
the focusing contexts must be selected by the ps� like in the jtmsset� This re�
quires that the ps be more selective about what combinations of assumptions
to keep in the focus at a certain time���

The focus can be speci�ed extensionally� by enumerating the current fo�
cusing environments� or intensionally� by providing a general predicate that
decides at each moment which environments are in focus and which not� The

��In the generic ps architecture presented in Appendix A�� this task was solved
by the ps contradiction handling module� which appears in A�� under the name
CandidateGenerator�

��

basic idea of the fatms is to delay the propagation of those environments
that are out�of�focus� In this respect� the node data structure can include
an additional slot � the blockedLabel � used to store the environments whose
addition to the node label and further propagation in the network is de�
layed because they do not agree with the focus� When the focus changes�
however� the previously delayed label updates that enter the focus must be
reprocessed�

The label completeness and consistency are weaker than in the basic
atms� namely they are ensured only relative to the current focus���

�� Completeness w	r	t	 focus
 For any set of assumptions A such that
A � J is consistent and A � J j� n and Focus j� A there exists an
environment e 	 n�label such that A
 e�

�� Consistency w	r	t	 focus
 For any e 	 n�label s�t� Focus j� e we have�
e � J is consistent�

The fatms can guarantee that it only �nds those nogoods that are relevant
to the focus� i�e� that invalidate �at least a part of� the focus� Appendix A��
gives more details about the operation of the fatms�

In the coco architecture of �DF
�� more sophisticated environment con�
trol mechanisms were proposed� The justi�cations have so called guards
attached that control which environments they propagate and which not�
The control using the guards can be done at a �ner granularity� they can use
global information or local one� It is less clear what degree of consistency
and completeness one gets if the guards use di�erent local decision strategies�
but the proposed control mechanism can be very strong and �exible�

The worst case complexity of the focusing atms remains exponential� By
maintaining relatively few contexts in the focus the average costs of labeling
was shown to be tremendously reduced in comparison with the basic atms
in diagnostic problems �cf��DF
�� FdK����� For complex problems the costs
remain very high� In Chapter 	 we aim to further reduce them by� �a�
combining the focusing control with the lazy label evaluation� �b� separating
the algorithms that provide the entailment and consistency checks from the
expensive minimal supporting environment computation�

��The label soundness and minimality have the same formulation as in the basic atms�

�

��� Discussion

We have presented a series of rmss with di�erent degrees of complexity and
expressiveness� Some of them work in single contexts� others in some set of
contexts� others in all the contexts in parallel �see Table ����� Some of them
allow to directly represent negations and arbitrary clauses �the ltms and
the cms�� others do not��� Some of them o�er automatic con�ict resolution
�the nmjtms and the nmatms�� others need external mechanisms for doing
this �the monotonic rmss�� Some of them address tractable problems �the
ltms and jtms�� others address NP�hard problems �the atms family and
the nmrmss��
How to decide if an rms would be useful for a speci�c application� and� if

so� which rms to take� does not seem to be easy questions� In the context of
diagnosis we try to address them in Chapter 	� Relevant questions for taking
a decision are�

� How expensive are the inferences�

� Is it important to explain the reasoning�

� How many solutions are wanted� one� several� all�

� How many context changes �backtrackings� are likely to be performed
until a solution is usually found�

� In case of inconsistency �or failure�� are the �minimal� con�icts found
small enough to be informative�

� Is there a signi�cant overlapping among the possible worlds�

� Is the parallel exploration of several alternatives required or useful�

� Is it possible to identify a preference among the solutions�

We end this chapter with a discussion of the services that the di�erent
rmss can provide to their users from a logical point of view�
Both the label propagation in the jtms �jtmsset� and in the ltms is

equivalent with unit resolution� However� the jtms is restricted to work
with propositional Horn clause sets� while the ltms works with arbitrary
propositional clause sets �cf� �FdK
��� pp� �������� 	���	���� As we know
�cf� �HW�	��� unit resolution provides a sound and complete check for the

��Negation and even arbitrary clauses can be encoded in all the rmss� but not directly�
Usually� in order to do this� several nodes� justi�cations and rules of inference must be
added by the problem�solver in order to overcome the logical incompleteness of the rmss
�see 	FdK��� dK
�b� dK

� Dre

���

	�

satis�ability of Horn propositional clause sets� The bcp of the ltms achieves
this property also for non�Horn clause sets that can be rewritten as Horn sets
by substituting literals with their negations �see also �Lew����� However� the
completeness of the satis�ability check is not guaranteed in general for non�
Horn sets in an ltms�
It is also known that unit resolution in propositional Horn theories is

a sound and complete inference procedure for deciding the entailment of
positive propositions� This is both true for the jtms and for the ltms� while
the ltms guarantees this as well for clause sets that can be rewritten as Horn�
as mentioned above� This services are supplied e�ciently� i�e� the worst�case
complexity of bcp is linear in the number of literals in the clauses�
The labeling in the atms is equivalent with the computation of some

prime implicates� respectively some minimal support clauses �cf� �RdK�����
This is a service that goes beyond the power of the jtms or of the ltms�
i�e� based on the computation of the prime implicates �minimal support
clauses� also the satis�ability checks and the positive literal entailment can
be supplied� but not vice�versa� However� the prime�implicate generation can
come at signi�cant additional costs� the computation of prime implicates is
known to be NP�complete� The cms� the basic and the focusing atms di�er�
however� in the amount of prime implicates computed�
The following points summarize this discussion���

� the jtms operates on a set of enabled assumptions A �standing for pos�
itive literals� and a set J of justi�cations �Horn clauses� and supports�

 the �positive� entailment check� i�e� whether A � J j� p� where p
is a positive literal� In this case p has an associated node in the
jtms and the answer is directly provided by the node�s label�

 the satis�ability check for A � J � This is realized as a side�e�ect
of the above service� by asking if the contradiction node is entailed
by A� J �

� the jtmsset may operate with several sets of enabled assumptions Ai 	
Focus� It provides the same services as the jtms for each Ai � J �

� the ltms operates on propositional clause sets C and a set of enabled
assumptions A �that can be negative or positive literals� and supports�

��The negative clauses are represented as justi�cations to the contradiction node in the
jtms� jtmsset� and in the atms family�

	�

 the �positive� entailment check� i�e� whether A � C j� p� The
answer to this question is true if the node p is labeled true�

 the satis�ability check for A � C�

The answers of the ltms are always sound� but may not be complete�
The completeness is guaranteed only for Horn clauses� or for clause sets
that can be rewritten as Horn by substitution�

� the cms operates on propositional clause sets C� It can answer� for any
clause M the set� MinSupp�M�C� �see �������

� the atms operates on a set of assumptions A �standing for positive
literals� and a set of justi�cations �propositional Horn clauses� J � For
any node n it computes

MinSuppA�n�J � �� f��a� � �a� � � � �� 	MinSupp�n�J � j ai 	 Ag�

When the above n is replaced with the contradiction node� the set of
minimal negative prime implicates consisting of assumptions is com�
puted � corresponding to the minimal nogoods� Both the satis�ability
check and the positive entailment check are supported in the atms us�
ing the above service for any A� � A �i�e� by inspecting the node labels
and the nogoods��

� the lazy atms is providing the same services like the basic atms� but
the labels �i�e� the sets MinSuppA�n�J �� are computed by request�
while in the atms they are always updated�

� the focusing atms has the same services like the basic atms� but the
sets MinSuppA��n�J � are computed for those sets of assumptions A��
A� � A such that A� are in the focus of the atms�

	�

Chapter �

Fundamentals of Model Based

Diagnosis

��� Introduction

This chapter presents some of the basic work formalizing the model�based
diagnostic tasks� The reader familiar with the �eld may skip this chapter�
As we have seen in the �rst chapter� at the top level there are two tasks

that must be accomplished� candidate elaboration and candidate discrimina�
tion� The candidate elaboration step must decide what diagnostic candidates
�hypotheses� should the diagnostic agent believe� given a set of observations
about the system under diagnose� The candidate discrimination must decide
what
experiments� the diagnostic agent should perform next in order to
discriminate between the current hypotheses�

��� Preliminary notions

For most of this chapter we only need �rst order logic�

De
nition ����� A system is a pair Sys � �SD�Comps� where
 �i� SD�
the system description� is a set of �rst�order sentences� and �ii� Comps� the
components� is a set of constants	

De
nition ����� A diagnostic problem associates to a system �SD�Comps�
a set Obs of �rst order sentences representing the observations about the
system	 We note with �SD�Comps�Obs� a diagnostic problem	

	�

When the system under diagnosis is a physical system then the system de�
scription usually models the behavior of the individual components and the
structure of the physical system in terms of components and connections�
To denote that a certain component is of a certain type commonly a pred�
icate denoting that type is used �e�g� adder�AD����� or the membership is
denoted in the manner usual in object oriented representations�
Each type �class� of components is characterized by a set of variables

that usually stand for the parameters of a physical model of the compo�
nent� The parameters may be denoted by speci�c logical functions applied
to the component instances �e�g� in��AD����� or in�AD���� ���� Some of
the parameters are called port variables others are intern variables� The port
variables represent the interface through which a component interacts with
the environment and are used to describe the connections with other compo�
nents� or the inputs and outputs of the system� Furthermore� it is useful to
capture aspects like observability and controllability of system�s parameters�
The connections are denoted using speci�c predicates for this purpose� e�g�

conn�in��AD����� out�M����� A connection type is associated with a certain
interaction model that constraints the values of the variables belonging to
the connected ports� For instance a logical connection states the equality
of two variables �or of the corresponding port variables�� while an electrical
connection enforces a more complicated constraint according to Kirchho��s
laws�
More details about the structure of the system under diagnosis can be

captured by the system description� for instance part�of hierarchies or in�
formation about the geometrical lay�out� Since such kind of information
�usually� does not have causal e�ects on the behavior of the system� most
of the current diagnostic programs do not make use of it� However� these
aspects are important when one develops repair plans� or when the diagno�
sis must also cover undesirable component interactions like bridge faults in
electronics �cf� �Dav�	� Cla
����
The behavior of the components is described using the� so�called� be�

havioral modes� A behavioral mode characterizes a particular aspect of the
correct or faulty behavior of a component� In general there can be several cor�
rect and several faulty modes of behavior� although most of the approaches
assume that there is a single correct mode and assume that a component
can be in one and only one mode of behavior at a certain time �i�e� assume
that the behavioral modes are exclusive�� Another common assumption is
that the modes of behavior do not change during diagnosis� In this case

		

the mode of behavior assumed by a component can be denoted by a speci�c
predicate for each mode �e�g� ok�AD����� or using an intern variable of a
component �e�g� mode�AD���� � ok�� Typical fault modes are� for instance�
the stuck�at�one� stuck�at�zero faults� in logical circuits� or the broken and
shorted to ground wires in electrical circuits� A mode of behavior of a com�
ponent is associated a constraint among the component�s parameters� e�g�
ok�c� � adder�c�
 out�c� � in��c� � in��c��

��� Candidate elaboration

In most of the papers this task alone is referred to as �model�based� diagnosis�
since the candidates elaborated are possible diagnoses and must conform to a
certain de�nition of what diagnoses are� There exists a spectrum of di�erent
de�nitions in the literature� In order to have any pragmatic value a theory of
diagnosis must provide means to �e�ciently� compute the possible diagnoses�
But� one of the problems faced� is that there are usually a huge set of possible
diagnoses whose direct computation is in practice too expensive� Di�erent
approaches try to deal with this problem in di�erent ways� for instance�

� some approaches try to characterize concisely the set of all candidates�
using descriptions that stand for possibly large sets of candidates �for
instance the minimal diagnoses of �Rei���� or the kernel diagnoses of
�dKMR
����

� some de�nitions put more constraints on what a candidate is meant to
be �e�g� the use of
alibis� in �Rai
��� or abductive explanation versus
consistency in �CT
����

� some approaches characterize only a subset of candidates� e�g� the one
that are more plausible �cf� �DS
����

Another dimension on which the approaches di�er is the expressiveness of
the knowledge taken into account� for instance�

� only the correct mode of behavior is considered �cf� �dKW��� Rai
��
Rei�����

� only the fault modes are considered �cf� �CDT�
���

� both the correct and the defect behavior are considered �cf� �CT
��
dKMR
�� dKW�
� DS
����

	�

In order to characterize the diagnoses all approaches presented here require
notions like logical consistency or logical entailment� which are in general
undecidable�

����� Minimal diagnoses

The work of Reiter �cf� �Rei���� was one of the most in�uential in the �eld of
model�based diagnosis� His theory provides a logical foundation for the gde
�cf� �dKW�����
Reiter�s de�nition of diagnosis is based on the notion of abnormal� A

literal AB�c�� c 	 Comps is supposed to be true if and only if the component
c is behaving abnormally� i�e� it represents the negation of the predicate
denoting the correct mode of behavior�
A diagnosis is a set of components that� if abnormal� make the system

description consistent with the observations� A minimal diagnosis appeals to
a principle of parsimony� namely it is a minimal �w�r�t� set inclusion� set of
components that must be abnormal in order to achieve the consistency�

De
nition ����� A diagnosis for �SD�Comps�Obs� is a set � Comps
such that SD � Obs � fAB�c� j c 	 g � f�AB�c� j c 	 Comps � g is
consistent	 A minimal diagnosis is a minimal set of components satisfying
the above requirement	

In order to generate the possible minimal diagnoses the set of con�icts plays
an important role�

De
nition ����� A con�ict for �SD�Comps�Obs� is a set fc�� � � � � ckg �
Comps such that SD � Obs � f�AB�c��� � � � ��AB�ck�g is inconsistent	 A
minimal con�ict is a minimal set of components satisfying the above require�
ment	

Reiter proved that a minimal diagnosis is a minimal set of components
such that it intersects each minimal con�ict� In �Rei��� an algorithm for the
computation of the minimal diagnoses using the minimal con�icts is given
�an algorithm that works correctly also when the con�icts are not minimal is
given in �GSW�
��� The candidates generated by the gde �cf� �dKW���� are
minimal diagnoses� gde uses only the description of the correct behavior of
the components� i�e� each component has a correct mode and an unknown
mode of behavior� Reiter proposed to use a theorem prover in order to detect

	�

the set of con�icts� The gde uses an atms in order to compute the minimal
con�icts� In addition� gde used probabilities in order to generate only the
most probable minimal diagnoses�
As shown in �dKMR
��� if in the clausal form of the system description

every occurrence of an AB literal is positive " which is the case in the gde
" then the minimal diagnoses characterize the set of all possible diagnoses�
i�e� every superset of a minimal diagnosis is a diagnosis�

����� Prime diagnoses� culprits without alibis

Raiman considered in �Rai
�� the case when there are negative occurrences
of the AB literals in the clausal form of the system description� In such cases
he showed that one can exonerate some components� A set of components
can provide an alibi for a suspected component if the correctness of the al�
ibi set implies the correctness of the suspected component� given the system
description and the observations� In such cases the minimal diagnoses� as de�
�ned by Reiter� do not characterize the set of all possible diagnoses� Namely�
not each superset of a minimal diagnosis is a diagnosis�
Raiman de�ned the notion of trial diagnosis which is a set of compo�

nents that intersects each con�ict and� in addition� intersects each alibi of
each c 	 �i�e� the possible culprits are suspects without valid alibis� �
The trial diagnoses characterize the set of all diagnoses if SD � Obs is a

Horn theory� In such a case each diagnosis is a union of some trial diagnoses�
and each union of trial diagnoses is a diagnosis� However� the second part of
the previous statement does not hold in general for non�Horn theories�

����� Fault models� GDE� and Sherlock

Systems like gde �cf� �dKW���� constrained only the correct behavior of
the components� i�e� the component descriptions included only the correct
mode of behavior and an unknown fault mode� This style of modeling has
the advantage that one does not need to acquire knowledge about the faulty
behavior� It also removed the limitation of assuming complete knowledge
about the faulty behavior�
On the other side� as argued in �SD�
�� allowing the faults to behave

arbitrarily leads to the construction of diagnostic candidates without any
physically sensible meaning� The diagnostic engine may
invent� faults that
do not exist and cannot exist�

	�

In order to overcome this problem a few years later the gde was extended
to work with fault models by two related successors� gde� �cf� �SD�
�� and
Sherlock �cf� �dKW�
��� In gde� complete knowledge about the faulty
behavior is assumed� When complete knowledge about the faulty behavior
can be assumed it is possible to exonerate components� if none of the fault
modes of a component is consistent with the system description and the
observations then the component must be correct� gde� uses this kind
of inferences to conclude the correctness of the components� when possible�
In such cases the concept of minimal diagnosis is no longer adequate to
characterize the space of possible diagnoses� namely� not all supersets of a
minimal diagnosis are diagnoses�
Sherlock still uses an unknown fault mode� and so it does not introduce

the assumption about the completeness of the knowledge about faulty be�
havior� In this case the minimal diagnoses still characterize the space of all
possible diagnoses �cf� �dKMR
���� But� since the faults are still allowed
to behave arbitrarily� there is no logical means to prohibit the generation of
physical impossible diagnoses� This problem is alleviated in Sherlock by the
use of probabilistic knowledge� the unknown faults are usually assigned a
very small probability such that� for instance� they will only be considered
when no candidate using known fault models is consistent with the observa�
tions�
The candidates in Sherlock are complete mode assignments to the compo�

nents� i�e� a candidate assigns a unique mode of behavior to each component
of the system� The information about the probabilities of the behavioral
modes of each component is used in Sherlock in order to generate only some
most probable candidates �called the leading diagnoses� at a time� gde� also
avoided to generate all the possible diagnoses by focusing on� for instance�
single faults� double faults or using other heuristic focusing strategies� The
candidate generation in Sherlock and gde� uses the minimal con�icts be�
tween the modes assigned to the components� The con�icts are identi�ed
using a focusing atms in Sherlock and gde��

����� Kernel diagnoses

An important work at characterizing diagnoses� which generalizes the min�
imal and the trial diagnoses� is provided by �dKMR
��� The minimal di�
agnoses characterize the space of all diagnoses only if the clausal form of
SD � Obs contains no negative occurrences of AB literals� The trial di�

	�

agnoses characterize the space of all possible diagnoses if each clause from
SD�Obs contains at most one negative AB literal� i�e� if SD �Obs is Horn�
However� neither the minimal nor the trial diagnoses characterize the whole
space of diagnoses in general�
A diagnosis is an explicit assertion of positive and negative AB literals for

system�s components consistent with SD �Obs� The con�icts in �dKMR
��
generalize the con�icts of �Rei��� and the alibis of �Rai
��� namely a con�ict
is de�ned to be any clause entailed by SD � Obs and containing only AB
literals�
A partial diagnosis is an assignment of AB�literals that does not necessar�

ily assert an AB�literal for each component of Comps� The components for
which no assertion is made in a partial diagnosis can be consistently assumed
to have either a positive or a negative AB�assertion� A kernel diagnosis is a
partial diagnosis with a minimal number of AB literals� �dKMR
�� concluded
the following remarkable results�

� The minimal diagnoses of �SD�Comps�Obs� are the prime implicants
of the set of positive minimal con�icts of �SD�Comps�Obs��

� The kernel diagnoses of �SD�Comps�Obs� are the prime implicants of
the minimal con�icts of �SD�Comps�Obs��

Although important from a theoretical point of view� the kernel diagnoses
are from a practical point of view too expensive to compute�

����� Preferred diagnoses

In this paragraph we outline the work of Dressler and Struss from �DS
��
DS
	�� A preference order among the modes of each component induces
a preference among the diagnoses� The preference relation re�ects usually
some notion of plausibility or criticality�
Assume� without loss of generality� that the mode of behavior of a com�

ponent is an intern variable of the component denoted by m�c�� c 	 Comps�
The mode of behavior of each component c can take mutually exclusive val�
ues from a �xed domain modes�c�� where modes��� is a function associating
to each component a �nite set of constants denoting the modes� One of the
modes of modes�c� for each c 	 Comps is ok denoting the correct mode of
behavior� The mode assigned to a component c is denoted using equality�
m�c� � mi� where mi 	 modes�c��

	

The modes of each component are ordered according to a preference par�
tial order
 � � modes�c��modes�c�� As usual� x � y � x � y � ��y � x��
We note two that modes are equally preferred by� x � y � x � y � y � x�
The correct mode of behavior is strictly preferred over all the other modes
of a component� ok � m��m 	 modes�c�� fokg�
A mode�assignment for a set of components � Comps is a set of literals

fm�c� � mci j c 	 �mci 	 modes�c�g�
Furthermore� in �DS
�� it was assumed that the diagnostic engine can

adopt several working hypotheses� The working hypotheses can be simplify�
ing assumptions for instance� Let Whyp be the set of literals denoting the
working assumptions� Any subset w 	 �Whyp is called a world in �DS
�� and
represents the set of working assumptions that the diagnostic engine decides
to adopt at a certain time�

De
nition ����� Let w 	 �Whyp be a world	 A mode assignment for Comps�
i	e	 ! � fm�c� � mci j c 	 Compsg� where mci 	 modes�c�� is a diagnosis
in world w i� SD �Obs � w � ! is satis�able	

De
nition ����� Let ! � f��m�c� � mci��g� !� � f��m�c� � m�
ci��g be two

mode�assignments for a set of components	 ! is preferred to !�� i	e	
! � !� i� mci � m�

ci �mci � m�
ci for all c 	 	

If two mode�assignments assert two distinct but equally preferred modes to
some component �mci � m�

ci � mci �� m�
ci�� then the mode�assignments are

not comparable� i�e� none is preferred to the other� irrespective how the other
modes relate��

De
nition ����� A diagnosis ! is a preferred diagnosis in the world w i� no
diagnosis in world w is strictly preferred over it
 �!�� where !� is a diagnosis
in world w we have ! � !�
 ! � !�

Subsequently� Dressler and Struss characterized the preferred diagnoses in
default logic� A �normal� default �cf� �Rei���� is an inference rule a � b � b�
with the meaning
if a is derived and it is consistent to assume b� then
derive b�� The preferences among the modes of each component are ex�
pressed using normal defaults� For each mode mi 	 modes�c� a default is

�This is a minor correction to the de�nition from 	DS��� DS���� where the preference
was de�ned to be � � �� i� mci � m�

ci for all c � �� The preferred diagnoses computed
in those papers are according to the above de�nition�

��

created��
�V

mj�pre�c�mi� ��m�c� � mj�
�
� �m�c� � mi� � �m�c� � mi�� where

pre�c�mi� � fm 	 modes�c� j m � mig� For instance� for the correct mode
of behavior the rule � �m�c� � ok� � �m�c� � ok� is added for each compo�
nent�
A �rst order logic set of statements P has a unique deductive closure

ctx�P � � fp j P j� pg� A default theory �D�P �� where D is a set of defaults
and P is a set of �rst order formulae �the premises�� can have several exten�
sions� which contain� besides the monotonically derivable formulae� also the
consequences of maximal sets of applicable defaults� Since there can exist
di�erent maximal sets of applicable defaults there can exist several exten�
sions of a default theory� The following theorem characterizes the preferred
diagnoses in default logic�

Theorem ����� Let D be the set of defaults resulting by encoding the prefer�
ences among the modes of each component as speci�ed above	 ! is a preferred
diagnosis under w i� ctx�SD � Obs � w � !� is an extension of the default
theory �D�SD �Obs � w�	

Besides this result� �DS
�� showed how the preferred diagnoses can be gener�
ated using the nmatms� For the negation of each literal p that appears in the
non�monotonic part of a default �e�g� in a � b�b� for �b�� an out�assumption
��b�out is created� An out�assumption xout encodes the assumption that there
is no derivation for x �cf� �Dre��� Dre
��� see also Appendix A���� A default
a � b�b is encoded in the nmatms as the justi�cation a � ��b�out � b� The
nmatms computes then extensions of the non�monotonic dependency net�
work� which correspond to the extensions of the encoded default theory�

��� Candidate discrimination

Compared to the work relevant to candidate elaboration� candidate dis�
crimination received less attention until now� In this section we are go�
ing to sketch the work done in �MR
�� which formalized the notion of rel�
evant and discriminating test in hypothetical reasoning and the work from
�dKW��� dKW�
� dK
�� dKRS
�� which addressed the problem on choosing
the next point of observation based on the information gain� Further work
on test pattern proposal for discrimination purposes is in �Str
	��

�This is the encoding given in 	DS��� which corrected the one from 	DS����

��

����� Discriminating tests for hypothetical reasoning

The work described in �MR
�� McI
	a� characterizes the tests that might
con�rm or refute a certain hypothesis and that might� or are guaranteed
to discriminate among a set of competing hypotheses� The characterization
is� again� in terms of prime implicates of a �rst�order theory� thus allowing
atms�based implementations�
The formalism assumed a �rst�order propositional language� � is a set

of �rst�order sentences denoting the background knowledge� In the case
of diagnosis� more precisely of the candidate discrimination� � corresponds
to the system description and the current set of observations �i�e� � �
SD�Obs�� Moreover� it is assumed that there exists a �xed set of hypotheses
Hyp� and that each element of the hypothesis set can be consistently added
to �� In diagnosis these hypotheses are the possible candidate diagnoses�
i�e� the result of the candidate elaboration� Usually� each element of Hyp is
a conjunction of literals from the language� e�g� a candidate diagnosis is a
conjunct of mode assignments or of AB�literals�
The formalism further de�nes two sets of literals� the set of� so called�

achievable literals and the set of observable literals� The achievable literals
correspond to properties that an external agent can� at some time� enforce
in the world�
The observable literals correspond to properties whose truth an external

agent can observe� given some achievable conditions in the world� and whose
value of truth can be added to the theory ��

De
nition ����� A test is a pair �A� o� where A is a conjunction of achiev�
able literals and o is an observable	

De
nition ����� The outcome of a test �A� o� is one of o��o	

The tests as de�ned above determine the truth value of a literal� Important
is� however� that the outcome of a test is one of several mutually inconsistent
values�

De
nition ����� The outcome � of a test �A� o� con�rms H 	 Hyp i�
� � fAg � fHg is satis�able� and � � fAg j� H
 �	 � refutes H i�
� � fAg � fHg is satis�able� and � � fAg j� H
 ��	

The requirement that � � fAg � fHg is consistent makes sense� since in
general not all the conjuncts of achievable literals are consistent with the
theory � and a certain hypothesis�

��

A refuting outcome for H allows one to reject H as a possible hypothesis�
However� in general� a con�rming outcome for H is not strong enough to
de�nitely accept or to reject H � at most� in a probabilistic framework� this
might increase the probability of H�

Theorem ����� The outcome of a test �A� o� con�rms �refutes� H 	 Hyp
i�

�	 There is a prime implicate of � of the form �A���H ��� ��A���H ��
��� where A� is a subconjunct of A and H � is a subconjunct of H� and

	 No prime implicate P of � subsumes �A��H� i	e	 ��P
 �A��H�	

The requirement that no prime implicate of � subsumes �A � �H implies
that � � fAg � fHg must be consistent�
The theorem tells us that in order to �nd a test that might con�rm or

refute a certain hypothesis one can search certain prime implicates of �� Since
o is propositional one can search some minimal support clauses of o given �
�cf� �RdK����� Such a task can be accomplished using an atms� Namely�
if the achievable literals and the literals that appear in the hypotheses are
assumptions in an atms then one can inspect the label of the node o in
order to �nd the minimal support clauses for o� Thus� the outcome � of
�A� o� con�rms �refutes� H if the label of the node corresponding to � ����
contains a subset of A �H�

De
nition ����� A test �A� o� is a discriminating test for the hypothesis set
Hyp i� � � fAg � fHg is satis�able for each H 	 Hyp� and there exist
Hi�Hj 	 Hyp such that the outcome � of the test refutes Hi if � � o or Hj

if � � �o	

Thus� a discriminating test is guaranteed to refute at least one of the com�
peting hypotheses� irrespective of the outcome of the test� A weaker kind of
test is a relevant test� A relevant test can con�rm or refute some hypotheses
from a set� depending on its outcome� The relevant and discriminating tests
were characterized in terms of prime implicates in �MR
���

����� Choosing the next measurement

In �dKW��� dKW�
� dKRS
�� a decision theoretic methodology for choosing
the best next measurement is presented� The goal of diagnosis is to identify�

��

as far as possible� the actual candidate diagnosis� Usually� a single mea�
surement is not enough to achieve that and a sequence of measurements are
required� The method makes the simplifying assumption that probing has
equal cost and that the computation cost is much smaller than the probing
cost�� In these conditions the best sequence of measurements is one that
has minimal length and achieves the desired e�ect� In order to guarantee
the optimum usually full lookahead is required� i�e� all measurement se�
quences and all possible measurement outcomes must be considered� The
full lookahead is� however� very expensive� As some empirical results show
�cf� �dKRS
�� Out
��� an approximate criterion for probe selection which is
much cheaper to compute behaves very well� namely� the one�step lookahead
based on the information entropy� The information entropy is a measure of
the uncertainty in a space of hypotheses� The method always proposes the
measurement that most decreases the information entropy about the possible
diagnoses�
The approach uses probabilistic information about the modes of behavior

of the components and assumes further that these probabilities are indepen�
dent� In this conditions the �prior� probability of a candidate is given by the
product of the probabilities of the candidate�s mode assignments�
The entropy of the current set of competing candidates is given by�

H�Hyp�Obs� � �
X

c�Hyp

p�cjObs� log p�cjObs�� �����

where p�cjObs� is the probability that the candidate c is the actual diagnosis
given the current observations Obs� The proposed measurement is at a vari�
able xi where the outcome � of the measurement decreases� on the average�
at most the above entropy� i�e� where H�Hyp�Obs�f�g� is minimum on the
average� Consider that the variable xi takes values from a domain Dom�xi��
The average entropy after measuring xi is given by�

H�xi� �
X

vik�Dom�xi�

p�xi � vikjObs�H�Hyp�Obs � fxi � vikg�� �����

where p�xi � vikjObs� is the likelihood that the outcome of the measurement
will be vik and H�Hyp�Obs � fxi � vikg� is the entropy after the measure�
ment� computed as in the formula ����

�In many cases these assumptions� especially the �rst one� do not hold in practice�

�	

The best measurement to make is the one that minimizesH�xi� �for more
details see �dKW�
���
�dK
�b� showed how the entropy computation can be further simpli�ed

under additional restrictions� such as the assumption that one does not ex�
actly know the prior mode probabilities� but one can partition these in several
classes between which the probabilities di�er with orders of magnitudes�

��

Chapter �

Aspects of E�ciency in an

RMS�Based Diagnostic Engine

��� Introduction

The rms systems provide useful services at the propositional level like� con�
sistency checking� entailment checking� prime implicate generation �see ��	��
notions that are at the basis of the di�erent formalizations of diagnosis� as we
have seen in the previous chapter� Moreover� they o�er attractive features
like� incremental operation� support for dependency�directed backtracking�
explanation� etc� It is thus no wonder that many of the model�based diag�
nostic engines developed so far are rms�based �e�g� GDE �dKW���� GDE�
�SD�
�� Sherlock �dKW�
�� XDE �Ham
�b�� DDE �DS
	���

In this chapter we discuss�

� the e�ciency of the rms� and

� the e�ciency of candidate generation�

����� The contents of this chapter

Section 	����
loosely� speci�es an rms�based diagnostic engine that provides
the framework for the discussions of this chapter�

Section 	�� suggests a new kind of rms� namely the �vrms� that has the
power required for ful�lling the tasks relevant for diagnosis but o�ers more
�exible control facilities�

��

Section 	�� discusses an e�cient algorithm for the generation of a few most
plausible �critical diagnostic candidates� In 	���	 we analyze the properties of
the candidate generator with respect to the framework of propositional logic�
We also discuss there the usefulness of increasing the formula completeness
of the candidate generator� We conclude that� in case candidate generation is
distributed among several modules� the increase of the formula completeness
could be useful in order to detect minimal con�icts among choices committed
by other modules� and we give an e�cient algorithm for this purpose�
Section 	�	 analyses the combination of the �vrms and the candidate

generator� It shows that the combination is a more powerful propositional
reasoner that can support �heuristically�guided� satis�ability checking and
�multiple� model construction for arbitrary propositional clause sets�
Section 	�� discusses the relationship with other work� In 	���� we also

suggest an extension of the candidate generator with� so�called�
secondary
choice�sets�� i�e� choice sets where no preference among the elements is spec�
i�ed� The search in the secondary choice spaces is similar to the techniques
used in constraint satisfaction� and the relationship is discussed there�

����� The framework

Figures 	�� and 	�� describe a simple focusing diagnostic engine that we can
use as a framework for our discussions� The engine interleaves prediction�
con�ict detection and candidate generation in a similar way as Sherlock �cf�
�dKW�
�� does� Figure 	�� gives an rms�based description of the task of
candidate testing� Firing an rms�consumer is supposed here to implement
value �constraint� propagation �for more details� see Appendix A���� While
the rms alone usually works only at the level of propositional logic� the
consumer mechanism provides the mean to link more general inference pro�
cesses on top of the rms and to go beyond the expressiveness limitations of
the propositional logic�

��

Algorithm DiagnosticEngine ��
Focus is a global data structure containing a list of diagnostic candidates� The
Focus is maintained by the procedure CandidateGeneration� CandidateTesting
removes from the Focus those candidates that failed to
explain� the observa�
tions�

��� initialize the data structures corresponding to the system description and
the initial observations� initialize the Focus�

��� while not ResultDecided�� do�

�� candidate elaboration

�	� repeat

��� call CandidateGeneration�� to update the Focus candidates�
�
� call CandidateTesting���

until
enough� competing consistent candidates are found�

�� candidate discrimination

��� while not enough
good� tests are found and
it is worth� searching
for a better one do�

��� generate a discriminatory �relevant� test for the current focus�

endwhile

��� propose the best test�s�� acquire the actions and the observations per�
formed by the repair and testing agent�

endwhile

Figure 	��� A simple diagnostic engine�

��

Procedure CandidateTesting ��
CandidateTesting use the focus candidates to predict new values for them and
to check if they are consistent with the observations� The Focus candidates that
fail the testing are removed from the focus� The con�icts discovered by the rms
may be communicated to the candidate generator in order to guide the further
proposals� The following is an rms�based description of this function� Agenda is
a data structure containing an ordered list of activated consumers�

��� focus the rms on the Focus candidates�

��� while Agenda is not empty and Focus is not empty do�

�	� pick a consumer P and its associated rms node n from the Agenda�

��� if n holds in the rms focus then

�
� �re P�n��

else

��� reattach P to n�

��� if a contradictory node of the rms holds in the current focus then

��� compute �minimal� nogoods for the current focus�
��� remove the inconsistent candidates from Focus and communicate

the con�icts to the candidate generator�

endwhile

Figure 	��� rms�based candidate testing�

�

��� Reducing the costs of reason maintenance

����� On choosing the RMS for diagnosis

Apart from application dependent particularities� diagnostic problems usu�
ally require many context changes� They also require in general the elab�
oration of several diagnostic candidates� when several can be elaborated �
either for the sake of guiding the information providing actions for candidate
discrimination� or for providing the user a better picture of what is known
and what is still unknown about the system under diagnosis� These features
stress the preference for the multiple�context rmss�

The supposition that usually a large number of context changes would
be required until the �nal solution is identi�ed� stresses the importance of
the dependency�directed backtracking� This� and the e�ciency of the pro�
cedures that generate candidates� depend strongly on the identi�cation of
the minimal nogoods� In this respect the atms�like rmss seem to be more
attractive�

The basic atms and the cms must be ruled out due to the prohibitive
costs of using them in almost anything else but toy�problems� The search in
all of the possible contexts in parallel is �rst too expensive� and second not
needed� In order to guide the action�proposal usually only a few alternative
diagnoses need to be elaborated� Also� more than being interested in all
of the possible diagnoses� since they are usually too many� a user is more
interested in some of the most plausible of them� A focusing atms seems to
be the most attractive from this perspective�

It is questionable� however� if in diagnosis one needs at all times and for
all the nodes the full information that a focusing atms maintains in a label�
During candidate elaboration� as long as some focusing candidates are incon�
sistent� the discovery of the minimal con�icts is important� For this purpose
it is su�cient to maintain the label completeness and consistency for the
contradictory nodes only� But� what about the rest of the nodes� Is it re�
ally necessary to maintain by default the complete and consistent �focusing�
atms labels for them� In our opinion the answer is no� The con�icts usually
involve a relatively small part of the components� Propagating labels in the
justi�cation network built using components not involved in the nogoods is
not really relevant� Moreover� other tasks performed by a diagnostic engine�
like the candidate discrimination� or the elaboration of repair plans� build
inference structures in consistent contexts� For such inferences� the compu�

��

tation of the detailed minimal supporting environments might again not be
relevant� even if it makes sense to cache these inferences in the rms network�
According to our experience� a signi�cant part of the labeling e�ort spent by
the focusing atms is not relevant for the diagnostic engine�

.
Wx=

Figure 	��� Irrelevant label computations�

Example ����� Consider Figure �	� in which an electrical circuit contain�
ing power supplies� wires� bulbs� etc	 is partially depicted	 Let the focus of the
diagnostic engine contain the candidate assuming that the wire Wx is broken	
If this candidate is consistent with the observations then no value predicted
as a consequence of this fault need be labeled	 Suppose further that the as�
sumption broken�Wx� is contradicted by a measurement from the right part
of the circuit �the shadowed area�	 In this case� �a part of� the consequences
of this fault must be labeled in the right network� but� at least� they need not
be labeled in the left part of the circuit	

In the context of a diagnostic engine like the one from the previous section�
the rms is expected to support the following tasks�

� consistency check for sets of clauses Ai�J � where Ai is �a superset� of
a focusing candidate and J represents �part of� the logical description
of the system under diagnosis and of the observations�

� in case of consistency� the entailment check is important for observa�
tion and test�pattern proposal� and also for triggering the activation
of consumers that can implement more general inference rules in the
engine�

� in case of inconsistency� there must exist some negative prime impli�
cates of J that involve literals from Ai �i�e� the con�icts�� The rms

��

should be able to compute one �all� such con�ict�s� for each inconsis�
tent candidate� However� in many cases in practice� only a relatively
small part of the justi�cation network is involved in the derivation of
the inconsistency � the computation of labels outside the responsible
subnetwork seems to be an overzealous e�ort�

The problem of the focusing atms is that it bases the consistency and the
entailment checks on the expensive computation of minimal supporting en�
vironments� An ltms� jtms� and a jtmsset solve these tasks much more
e�ciently�
The improvedrms that we are going to describe in the following combines

the features of the jtmsset� of the focusing� and of the lazy atms� It can solve
the consistency and the entailment checks with an e�ciency comparable with
the one of an jtms� while also being able to support at request the more ex�
pensive computation of the minimal supporting environments� usually more
e�cient than any of the discussed members of the atms family�

����� The �vRMS� combining focusing with lazy label

evaluation

We assume that the problem�solver �ps� does not need the full �focusing�
atms node labels for all the nodes at all times� but it might be interested
to compute this information for particular nodes at particular times� More
precisely� the requirements that we would like to be satis�ed by our rms are�

� it should support reasoning in a speci�ed set of focusing contexts�

� for each node� at all times� the ps is interested if the node holds in the
current focus� but not necessarily in the detailed dependence on the
assumptions�

� for some nodes� at some times� the ps is interested in the detailed
dependence on the assumptions� but only with respect to the current
focus�

The hope is that using these relaxed requirements the rms algorithms will
become less expensive� The focusing atms was already shown to reduce
tremendously the time and space required in diagnostic problems over the
basic atms �see �FdK��� DF
���� However� since the fatms maintains by
default the completeness and consistency with respect to the focus for all

��

of the nodes� it does more work than necessary in order to ful�ll the above
requirements� The Lazyatms computes node labels only by request and
seems appropriate to ful�ll the third requirement listed above� Signi�cant
reductions of e�ort due to the usage of the Lazyatms compared to the ba�
sic atms are reported in �KvR
�� KvdG
��� However� a Lazyatms cannot
answer whether a certain node holds in the current focus �the second require�
ment listed above� without querying the node label� If one has to constantly
query the node labels in order to �nd the support in the focus� then the
lazy label evaluation brings no advantage� Thus� a direct combination of the
focusing idea and of the lazy label evaluation is not going to solve all of the
requirements that we want to ful�ll in a convenient way�
In this respect� the proposed architecture integrates another rms� namely

a jtmsset� The jtmsset is used to decide the membership to the focusing
contexts� i�e� without computing the detailed dependence on the assumptions
as in an atms�like rms� When a query about the detailed dependence on the
assumptions of a certain node is posed� the �vrms acts like a combination of
a focusing and a lazy atms� However� the �vrms is more than a sum of three
di�erent rmss� More than just sharing the nodes and the justi�cations� the
labeling procedures are integrated� The information computed by the cheaper
jtmsset view is used during query answering to control the computations
performed in the lazy�focusing atms view� This way� a tight control on the
environment propagation is achieved� and� as our empirical experience with
an implementation of these ideas showed� the costs of reason maintenance
can be further reduced in diagnostic problems�

The two�view RMS

The �vrms �two�view rms� tightly integrates the view of a jtmsset� called in
the following the focus view� and the one of a combination of a focusing and
a lazy atms� called in the following the detailed view� The views share the
nodes and the justi�cations but attach distinct labels to the nodes� the fLabel�
respectively� the dLabel� The fLabels can be regarded as an abstraction of the
dLabels and the �vrms exploits this logical dependence for control purposes�
The �vrms works in a speci�ed set of focusing contexts� speci�ed by

the ps in the same way as it was done in the jtmsset �see ������� i�e� by
enumerating a set of focusing environments�
The fLabel is the label that a jtmsset would attach to its nodes� i�e�

it contains the set of �identi�ers� of the focusing contexts where the node

��

is believed� The constraints among the fLabels are exactly those of the
jtmsset�

n�fLabel �
�

J�n�justifications

J�fLabel�

J�fLabel �
�

n�J�antecedents

n�fLabel�

The dLabels are like the labels computed by a focusing atms� However�
their maintenance is done by request� like in the Lazyatms� The addition
of a justi�cation triggers the update of the fLabels� but not of the dLabels�
When a certain dLabel is queried� the �vrms steps backward in the network
of dependencies as long as delayed environment propagations exist� like the
Lazyatms did� During query processing� some delayed dLabel propagations
are restarted� but their propagation is restricted to the set of justi�cations
that are required to answer the query�

Maintaining the relationship between the two views

In order to keep track of which computations have already been done in
the detailed view and which not� the �vrms attaches another slot to the
nodes� the fStatus� The fStatus of a node tells for which focusing contexts
the dLabel of the node might not be currently updated�� It is clear that
for each node the fStatus is a subset of the fLabel� If a certain focusing
context is mentioned in a node�s fStatus this means that the dLabel of that
node might not be updated with respect to that context� If a node has an
empty fStatus this means that the dLabel is complete with respect to the
focus� The fStatus makes the connection between the two views� its value
being in�uenced by both of them� The addition of new justi�cations and the
addition of new focusing environments cause the addition of new elements to
the fLabels and to the fStauses �but not to the dLabels�� A dLabel query
causes the update of some dLabels and the deletion of some elements from
the fStatuses �but no change in the fLabels��
We specify in the following the constraints that determine the value of the

fStatus slots� There are two ways of delaying the environment propagation
in the �vrms� These are inherited from the fatms and the Lazyatms �see
also Section ����� and �������

�The role of the fStatus is similar to the one of the marks attached by the Lazyatms
to the nodes� but these �marks� are maintained here independently for each focusing
context�

�	

� the environments propagated to a node� that do not hold� in the current
focus are stored in the node�s blockedLabel� like in the fatms�

� the propagation tasks �J� n� envs� mentioning a justi�cation J that is
not required for answering the current query� are stored in the justi��
cation�s delayedConstraints� like in the Lazyatms�

In the fatms the elements of the blocked labels were moved to the labels
as soon as the focus changed and the blocked environments entered the new
focus� We decided in the following to delay as well this operation until a
node is required for query answering� We can now specify the constraints
that govern the computation of the fStatuses�

n�fStatus � propagS�n� � localS�n�� �	���

J�fStatus � propagS�J� � localS�J�� �	���

propagS�n� �
�

J�n�justifications

J�fStatus�

propagS�J� � J�fLabel
��� �

n�J�antecedents

n�fStatus

�
A �

localS�n� � fi j �e 	 n�blockedLabel s�t� e holds in the focusing context ig�
localS�J� � fi j exists an environment ementioned in J�delayedConstraints

s�t� e holds in the focusing context ig�

In fact� the above fStatus speci�cation is quite strong� i 	 n�fStatus
means not only that
the dLabel of n might not be updated w�r�t� the
focusing context i�� but also that�
an antecedent �node or justi�cation� of
n really blocked the propagation of an environment holding in the context
i�� One may relax the fStatus constraints 	��� 	�� as bellow�

n�fStatus
 propagS�n� � localS�n�� �	���

J�fStatus
 propagS�J� � localS�J�� �	�	�

without losing the completeness of the dLabel computation� In the relaxed
version� i 	 n�fStatus has the meaning that
an antecedent of n might have

�We say here that an environment holds in a context if all of the environment�s as�
sumptions are in that context�

��

blocked the propagation of an environment holding in the context i�� It
seems that there is a trade�o� between making the fStatus update easy �i�e�
making the update of the focus view easy�� on the one side� and making the
query answering �i�e� the update of the detailed view� easy� on the other� For
instance� the tighter fStatus constraints require more checks� but no node �
justi�cation is marked
unupdated� without a real reason� while some relaxed
fStatus constraints can be easier enforced� but may mark as
unupdated�
more nodes and justi�cations than necessary� In this respect� there is a
possible spectrum of �vrms implementations that choose a di�erent degree
of
tightness� for the fStatus constraints�

fStatus update at justi
cation addition

When a new justi�cation is added� its fStatus is set equal with its fLabel�
since the justi�cation blocks any environment propagation by default� The
�vrms further propagates the fStatuses� as well as the fLabels� incremen�
tally� i�e� reusing the old labels and propagating at the followers only the
local incremental changes� if any� Also we avoid to compute the sets localS�
when possible�

The degree of completeness and consistency and query answering

The ps may add and delete arbitrary environments to� respectively from�
the focus� Like in the jtmsset� when an environment is deleted from the
focus its identi�er is simply added to the set tms�obsoleteFocus� Because
the focus view is maintained by default� the activation of the consumers is
triggered by the changes of the fLabels� Like in the jtmsset� we stop the
consumer activation in the contexts that are known to be inconsistent� or
that were removed from the focus by the ps� In the jtmsset we used the
set tms�activeFocus containing the focusing environments that were still
consistent and not obsolete� In the �vrms we store independently for each
view its own active set of focusing environments� the fActiveFocus for the
focus view� and the dActiveFocus for the detailed view� The motivation
for this decision is that it supports more �exible control strategies over the
environments computed and the nogoods searched in inconsistent contexts�
The semantics for these two foci is more precisely stated as�

�� No obsolete focusing environment is in fActiveFocus� dActiveFocus�

�� The consumers are activated for the nodes holding in the fActiveFocus�

��

�� If a node is queried �i�e� its dLabel is computed� the completeness of
the dLabel must be ensured with respect to the dActiveFocus�

	� If a focusing environment is discovered inconsistent in the focus view
it will be removed from fActiveFocus� but not from dActiveFocus�

�� If one nogood� several� or all minimal nogoods � depending on the
control strategy � is found for some inconsistent contexts �i�e� due to
a query of a contradictory node�� then the focusing environments that
are supersets of the nogood�s� are removed from the dActiveFocus�

Because the focus view is maintained by default� while the detailed one is
not� always a context will be discovered inconsistent �rst in the focus view
and only eventually� if the contradictory nodes are queried �i�e� if the ps

wants� that� the search for �minimal� nogoods will be initiated and the
contexts will be
discovered� inconsistent by the detailed view� This means
that at all times we have fActiveFocus � dActiveFocus�
At query time� the subnetwork of nodes and justi�cations that are relevant

for answering the query is determined and the dLabels are incrementally
updated in the relevant network� Like in the Lazyatms� we will �rst mark
the nodes and the justi�cations that are required� However� di�erent focusing
contexts have di�erent relevant subnetworks� Due to this fact� the
required�
mark is� for each node and justi�cation� a set with the meaning�
the node
� justi�cation is required for computing �d�labels in the context i� if i is in
the set�� Thus these slots are also a subset of the fLabels� actually a subset
of the fStatuses� The constraints that specify the assignment of these slots
during query answering are�

� by default each node and justi�cation stores an empty set in the �eld
req� but for the queried node n� we have

n�req � n�fStatus� tms�dActiveFocus�

� for all justi�cations J�req � J�fStatus� J�consequent�req�

� for all nodes

n�req � n�fStatus
��� �

J�n�consequences

J�req

�
A �

A node � justi�cation
required� in context i restarts the delayed environ�
ment propagation for the context i� i�e� the constraints among the dLabels
of the nodes connected by justi�cations required in a focusing context i are

��

the same as the constraints among the node labels of a focusing atms having
the context i in focus �see Section ������� After the query is processed and
the required dLabels are updated� the fStatuses for the required net are up�
dated by removing from the fStatus the req set� Afterwards� the req �elds
are set to the empty set�
For reasons of �exibility we do not maintain by default the consistency of

the detailed view� We do maintain the consistency of the dLabelswith respect
to the nogoods stored in the nogood data base� but we do not necessarily
query the contradictory nodes immediately when the focus view discovers a
context inconsistent� Of course� the default dLabel consistency maintenance
is easy to perform� the function that signals the contradictions in the focus
view just has to query the dLabel of the contradictory node� However� we
leave the decision of ensuring this degree of consistency to the ps because
sometimes it is more e�cient to delay the search for the nogoods �e�g� when a
set of justi�cations have to be added in block�� or the ps may not necessarily
want to �nd the nogoods� In exchange� the �vrms supplies a function to the
ps that� on demand� checks and ensures the consistency of the detailed view
and performs the search for �minimal� nogoods in the inconsistent contexts�

Context changes

Due to the embedded jtmsset� the justi�cations also store the set of �focus�
ing� contexts where they provide a well founded support for the consequent�
As in the jtmsset� the retraction of assumptions is performed at the time

when a new focusing environment replaces an old obsolete focus environ�
ment� This helps to process in an incremental way the relabeling performed
at context changes� As usual� when an assumption is retracted from a certain
focusing context� �rst the identi�er of that context is removed from all the
assumption�s followers whose well founded support depends on the assump�
tion� Afterwards� the nodes touched at the previous step are examined once
more for additional support in that context �the operations are similar to the
ones performed in the jtmsset��
While the fLabel propagation at context changes raises no speci�c prob�

lems� the fStatus computation deserves a closer look� When the focusing
context i changes� a new environment Enew replaces an obsolete focusing en�
vironment Eold� The assumptions from Eold �Enew must be retracted in the
context i� the assumptions from Enew �Eold must be enabled in the context
i� all the other assumptions remain as they were before�

��

fStatus update at assumption retraction

At assumption retraction� if one sticks to the tight fStatus constraints �i�e�
	��� 	���� the fStatus update cannot be done incrementally in some cases�
The following example shows such a case�

Example ����� Suppose we have a justi�cation network including the as�
sumptions A�B� the derived nodes p� q� and the justi�cations J� � A � p�
J� � B � p� and J� � p � q	 Suppose the current state of the dLabels is
as follows
 A�dLabel � ffAgg� B�dLabel � ffBgg� p�dLabel � ffAg� fBgg�
q�dLabel � ffAgg� i	e	 J� delayed the propagation of fBg from p to q	
Suppose we have a single focusing environment �with identi�er ��� namely
fA�Bg	 In such a case� all the fLabels are set to f�g� and all the fStatuses
are empty� except those of J� and q which are set to f�g	 Furthermore� as�
sume that J� supplies the well�founded support to p in the context � �this is
important��	

Suppose we retract now the assumption B from the focusing environment	
� is removed from the sets B�fLabel� and J��fLabel� but no incremental
change has to be performed at p	 However� the tight fStatus constraints
would require to remove � from the fStatus of J� and q� thus would require
to inspect even the followers of the nodes where no incremental change was
done	 Failing to remove � from the above fStatuses would violate the strong
fStatus constraints� but not the relaxed ones	

Of course� if we agree to use a relaxed form for the fStatus constraints� the
fStatus update can be performed incrementally� The above case appears
relatively seldom� and we think that the amount of additional work required
to impose the tight fStatus constraints after assumption retraction does not
justify the somewhat smaller e�ort required to answer a query that involves
some nodes marked unnecessarily as unupdated� In the detailed description
of the �vrms that will follow� we chose to keep the incremental fStatus
update during assumption retraction�

fStatus update at assumption enabling

When an assumption a is enabled in the context i� i has to be added to the
fLabel of a and the fLabel change should be incrementally propagated at the
followers� Although after assumption enabling the fStatuses can only grow�
the fStatus update at a and its followers cannot be performed incrementally

�

in all the cases if we want to work with the tight fStatus constraints� The
following example shows such a case�

Example ����� Suppose we have a justi�cation network like in Example
�	
	
� i	e	 including the assumptions A�B� the derived nodes p� q� and the
justi�cations J� � A� p� J� � B � p� and J� � p� q� and having the current
state of the dLabels as follows
 A�dLabel � ffAgg� B�dLabel � ffBgg�
p�dLabel � ffAg� fBgg� q�dLabel � ffAgg� i	e	 J� delayed the propagation
of fBg from p to q	 Suppose we have a single focusing environment �with
identi�er ��� namely fAg	 Assume� all the fLabels are set to f�g� except that
of B and J� which are empty� and all the fStatuses are empty � of course�
this is a consistent labeling	

Suppose that in this state we enable the assumption B in the context �
and that we work with the tight fStatus constraints	 The incremental fLabel
propagation adds � to the fLabel of B and J� and stops there	 No change
in the fStatus is required at B� J� or p	 If we would perform only the
incremental addition of elements to the fStatuses� we could not notice that
� must be added to the fStatus of J� �from there on the fStatus can be
propagated incrementally�� Note that if we fail to add � to the fStatus of J�
and q� the consequences might be dramatic
 we loose the dLabel completeness
in the context �	

There are several ways to deal with this situation�

� Use the relaxed fStatus constraints during assumption enabling� If
when enabling an assumption a in a context i� we add i to the a�fLabel
as well as to a�fStatus� this is like if we added a justi�cation for a
that has i in its fLabel� The fLabel and fStatus update can be
performed incrementally like at justi�cation addition� The drawback
of this solution is that it marks a and some �or all� in the worst case�
of its followers as unupdated in i� even when this is not the case�

� Keep the strong fStatus constraints� but �nd all the nodes or justi��
cations that block the propagation of an environment containing the
just enabled assumption� i must be added to the fStatus of these
nodes and justi�cations� but this time the addition can be performed
incrementally� We used this variant in the detailed description that
follows�

��

�vRMS data structures

�vRMS instance �

assumptions� contradictions � store the set of assumptions� respectively�
contradiction nodes� like in all the rmss�

focusEnvironments � an ordered collection of environments� The index of
the focusing environments in this collection is used as an identi�er for
that environment �like in the jtmsset��

obsoleteFocus � the �bit� set with the identi�ers of the focus environments
that are no longer in the focus of the ps� like in the jtmsset�

fActiveFocus � the �bit� set with the identi�ers of those focusing environ�
ments that are consistent in the focus view and are not obsolete �like the
activeFocus of the jtmsset��

dActiveFocus � the �bit� set with the identi�ers of those focusing envi�
ronments that are not obsolete and are either consistent� or if they are
inconsistent� the contradictory node�s� was �were� not yet queried� i�e�
in other words� this set speci�es those focusing environments that are
not obsolete and are not superset of any nogood stored in the nogood
database�

checkForSupportStack � a stack of nodes temporarily used during assump�
tion retraction� The well founded support with respect to some focusing
context must be checked for these nodes� like in the jtmsset�

sleepingConsumers � a collection of associations �i� n�� where i is the identi�
�er of a focusing context that is not in fActiveFocus and n is a node that
holds in that context and has attached consumers� like in the jtmsset�

envDB� nogoodDB � the environment and the nogood databases � like in
the atms �see Appendix A���� family�

checkStack � like in the atms family� It contains those incremental la�
bel updates that must be processed by the labeling algorithm �in the
detailed view�� This slot contains a collection of triples �J� n� newEnvs�
specifying the justi�cations where the addition of a set of environments
newEnvs to the dLabel of the antecedent node n was not propagated to
the consequent� �see also this slot in the atms��

reqJusts� reqNodes � during query answering this slots contain the justi�
�cations� respectively the nodes� that are needed in order to compute
thedLabel of the queried node�

��

�vRMS node � the datum� justi�cations� consequences� contradiction� as�
sumption� consumers have the usual meaning like in any rms �e�g� see the
jtms in Appendix A����

fLabel � like the jtmsset label� i�e� the �bit� set with the identi�ers of the
focusing contexts where the node is derivable�

dLabel � minimal and
consistent�� set of environments� It is updated only
when a query is processed and the node is used to compute the query�

fStatus � a subset of the fLabel � Indicates the focusing contexts with
respect to which the dLabel of the node might not be updated�

blockedLabel � as in the fatms� A set of environments whose addition to
the node�s dLabel was not performed because they did not hold in the
focus� A design choice is whether to update this �eld when the focus
changes� or to wait until the node is needed for some query� We decided
for the second variant in the following�

req � during the query answering this slot contains the set of focusing
contexts with respect to which the dLabel completeness must be ensured
in order to answer the query� It is always a subset of the fStatus�

�vRMS justi
cation � except the usual antecedents and consequence it
contains�

fLabel � as in the jtmsset� i�e� the intersection of the fLabels of justi�ca�
tion�s antecedents�

wfSupport � as in the jtmsset� i�e� the �bit� set with the focusing contexts
in which this justi�cation is currently providing a well founded support
to the consequence �it is a subset of fLabel��

fStatus � as discussed above� i�e� the �bit� set of focusing contexts with
respect to which the consequent might not have updated label because�
�a� some antecedents of this justi�cation do not have updated labels� or
because �b� this justi�cation did not propagate some label updates�

delayedConstraints � as in the Lazyatms� A collection of unprocessed
�d�label updates at the antecedents of this justi�cation� It is a collection
of triples �J� n� newEnvs� with the same meaning as the entries in the
�vrms�s checkStack �see above��

�The consistency is ensured only with respect to the nogoods stored in the nogood
database�

��

req � during query processing it contains the set of focusing contexts with
respect to which the justi�cation must propagate the label updates in
order to ensure the dLabel completeness of the queried node��

Basic Operations

The operations performed at the addition of a justi�cation �Figure 	�	� 	���
	��� have similarities with the ones performed in the jtmsset �for updating
the fLabels� and in the Lazyatms �for updating the fStatus�� The function
NewConstraint is similar to the one of the Lazyatms� it pushes the update
either on the tms	checkStack for immediate processing in case the justi�ca�
tion involved is required for a query� or� otherwise� it delays the update by
storing it in the delayedConstraints of the justi�cation� In addition� here it
is considered that a justi�cation could be required for only some subset of
focusing contexts �i�e� the ones mentioned in the set J	req� and consequently
only the updates relevant to those contexts are immediately processed�
The procedure SetFViewBelief �Figure 	��� performs the incremental

propagation of the fLabels and fStatuses� The procedure also updates the
well founded support� signals the contradictions and activates the consumers
if necessary� Line ���� respectively ���� and ��	�� of SetFV iewBelief add
to the fStatus the incremental set propagated from the ancestors� while the
lines �	� and ����� eventually check the local fStatus� Since this test �see
ChkNodeStatus� ChkJustStatus in Figure 	��� can be relatively expensive� it
is avoided to perform it when not necessary� the test is done only for the
contexts newly added to the fLabel that are not already in the fStatus� if
any�
Note that if one chooses to work with the relaxed fStatus constraints

during the assumption enabling� then in all the calls of SetFV iewBelief
we have newFLabel � newFStatus� In such a case no check for the lo�
cal fStatus is needed and the lines �	�� ��	� and ���� can be removed
from SetFV iewBelief since always newFLabel� n�fStatus and newFL�
J�fStatus will be empty�
The function that adds a new environment to the focus �Figure 	��� is

almost identical with the one of the jtmsset �Figure A����� The only di�er�
ence appears at the lines ������� because here the fStatus must be updated

�The �led is analogous to the same one of the Lazyatms� but there it was a simple
boolean� Here the same information is stored for each focusing context individually� thus
the �eld is a set�

��

as well� Lines ���� and ���� are present only if we work with the strong
fStatus constraints during the assumption enabling� We can dispense with
them if we work with the relaxed variant� in which case the third parameter
in the call to SetFV iewBelief must be equal with the second one in line
�����
The functionWakeUpConsumers is identical with the one of the jtmsset�

and we do not reproduce its code once more �see Figure A����� The functions
RemoveBelief and CheckAdditionalSupport �Figure 	��� are similar to the
ones of the jtmsset �Figure A���� with slight di�erences introduced by the
management of the fStatus�
The function that queries a node label �Figure 	�
� has similarities with

the one of the Lazyatms �Figure A����� This function is more complicated
here because the nodes and justi�cations can be required for di�erent con�
texts independently�
The functions V erifyConstraints� NewEnvsForConseq and Nogood�

relevant for the environment propagation in the detailed view� are identical
with the ones of the basic atms �see Figure A��� and A����� The func�
tion WakeUpReqConstraints reconsiders the delayed environment propa�
gation within the required subnetwork� The dLabel propagation performed
by V erifyConstraints� is restricted to the required nodes� justi�cations and
contexts �see in this respect the functions NewConstraint � in Figure 	�	�
and SetBelief � in Figure 	�����
The procedure SetBelief which is almost identical with the one of the

fatms� also updates the active focus for the detailed view� Note that� al�
though the dActiveFocus may change during the environment propagation
performed while querying a contradictory node� the contents of the req �elds
does not change during environment propagation# The function FindReqNet
uses the dActiveFocus at the beginning of the query and �nishes to mark
the
required� net before the environment propagation is done� This justi�es
the correctness of the fact that after the environment propagation is �nished
we can subtract the req sets from the fStatus �the functions responsible for
the environment propagation� i�e� NewConstraint and SetBelief work with
the individual
req� �elds of the nodes and the justi�cations and not with
the global dActiveFocus��
The procedure FindNogoods starts the search for �minimal� nogoods in

the inconsistent contexts for which no contradiction was queried yet� The ps
has the liberty to call this procedure whenever it evaluates this operation as
cost e�ective�

�	

Procedure AddJusti�cation �J� tms�
J is a �vrms justi�cation

��� Add J to the slots consequences of each node from J�antecedents and to
the slot justifications of the node J�consequent�

��� set J�fLabel �� J�fStatus ��
T
n�J�antecedents n�fLabel�

�	� set J�wfSupport �� J�fLabel � J�consequent�fLabel�

��� set J�req to the empty set�

�
� call NewConstraint�J� nil� ffgg� tms��

��� call SetFV iewBelief�J�consequent� J�wfSupport�
J�fStatus � J�conesquent�fStatus� tms��

Procedure NewConstraint �J� n� envs� tms�
J�req is a non�empty set only during query processing� The addition of the en�
vironments envs at the dLabel of n was not propagated through J � Splits the
set of environments envs in two disjoint subsets� the updates that hold in the
focus contexts mentioned in J�req are pushed to tms�checkStack for immediate
processing� the rest of updates are delayed and stored in J�delayedConstraints�

��� if �a � J�antecedents s�t� a�dLabel is empty then return �

��� let fEnvs be the subset of envs containing the environments that hold in
the focusing contexts J�req� let dEnvs �� envs � fEnvs�

�	� if fEnvs �� fg then push �J� n� fEnvs� to tms�checkStack�

��� if dEnvs �� fg then push �J� n� dEnvs� to J�delayedConstraints�

Figure 	�	� Adding a justi�cation in the �vrms

��

Procedure SetFViewBelief �n� newFLabel� newFStatus� tms�
newFLabel is a set of new focus environments that have to be added to n�s fLabel�
newFStatus is a set of new focus environments that have to be added to n�s
fStatus� Checks for contradictions� eventually activates consumers� and propagates
the incremental change further�

��� if �newFLabel � fg � newFStatus � fg�� n is premise then return �

��� n�fLabel �� n�fLabel � newFLabel �

�	� n�fStatus �� n�fStatus � newFStatus �

��� newFStatus �� newFStatus �

ChkNodeStatus�n� newFLabel� n�fStatus� tms��

�
� if n�contradiction is true then

��� if newFLabel � tms�fActiveFocus �� fg then

��� call SignalContradiction�n� newFLabel� tms�fActiveFocus��
��� tms�fActiveFocus �� tms�fActiveFocus � newFLabel�

��� return �

���� for J � n�consequences do�

�� Propagate the update further

���� newFL �� newFLabel �
T
a�J�antecedents a�fLabel�

���� J�fLabel �� J�fLabel � newFL�

��	� J�fStatus �� J�fStatus � �newFStatus � J�fLabel��

���� J�fStatus �� J�fStatus � propagS�J� newFL� J�fStatus� tms��

��
� call ChkJustStatus�J� newFL � J�fStatus� tms��

���� newFL �� newFL� J�consequent�fLabel�

���� J�wfSupport �� J�wfSupport � newFL�

���� call SetFV iewBelief�J�consequent� newFL�
J�fStatus � J�conesquent�fStatus� tms��

endfor

���� if newFLabel � tms�fActiveFocus �� fg then

���� activate all consumers from n�consumers� empty n�consumers�

else

���� if n�consumers is not empty then

���� add �i� n� to tms�sleepingConsumers for each i � newFLabel�

Figure 	��� Propagating the updates in the focus view in the �vrms

��

Function ChkNodeStatus �n� fSet� tms�
checks the
local� fStatus of n w�r�t� the focusing contexts named by fSet�

��� let retV alue �� fg�

��� for i � fSet do�

�	� if �env � n�blockedLabel s�t� env is a subset of the focusing environ�
ment i then

��� add i to retV alue�

endfor

�
� n�fStatus �� n�fStatus � retV alue� return retV alue�

Function ChkJustStatus �J � fSet� tms�
checks the
local� fStatus of J w�r�t� the focusing contexts named by fSet�

��� let retV alue �� fg�

��� for i � fSet do�

�	� if ��J� n� envs� � J�delayedConstraints s�t� �env � envs s�t� env is a
subset of the focusing environment i then

��� add i to retV alue�

endfor

�
� J�fStatus �� J�fStatus � retV alue� return retV alue�

Function propagS �n� fSet� tms�
returns the fStatus propagated from n�s justi�cations �for the contexts fSet��

��� if fSet � fg then return fg�

��� return
�S

J�n�justifications�J�fStatus � fSet�
�
�

Function propagS �J� fSet� tms�
returns the fStatus propagated from J �s antecedents �for the contexts fSet��

��� if fSet � fg then return fg�

��� return �
S
n�J�antecedents�n�fStatus � fSet�� �

Figure 	��� Checking the
local� and the
propagated� fStatus in the �vrms�

��

Procedure RemoveFromFocus �fEnv� tms�
fEnv is an old focusing environment of tms�

��� let i be the index of fEnv in tms�focusEnvironments�

��� remove i from tms�fActiveFocus and from tms�dActiveFocus�

�	� add i to tms�obsoleteFocus�

Procedure AddToFocus �fEnv� tms�
fEnv is a set of assumptions de�ning a new focusing environment for tms�

��� if tms�obsoleteFocus is empty then

��� let i be the index of the next free entry in tms�focusingEnvironments�

�	� initialize oldFEnv with the empty set�

else

��� let oldFEnv be an arbitrary element of tms�focusingEnvironments

whose index is in tms�obsoleteFocus� let i be the index of oldFEnv in
tms�focusingEnvironments �

�
� assToRetract �� oldFEnv � fEnv� assToEnable �� fEnv � oldFEnv �

��� store fEnv in tms�focusEnvironments at the index i�

��� remove i from tms�obsoleteFocus�

��� add i to tms�fActiveFocus and tms�dActiveFocus�

��� call RemoveBelief�n� i� tms� for each assumption n � assToRetract�

���� call SetFV iewBelief�n� fig� n�fLabel� fg� tms�
for each assumption n � assToEnable�

���� call CheckAdditionalSupport�i� tms��

���� call SetFV iewBelief�n� fg� fig� n�fStatus� tms� for each node n s�t�
�env � n�blockedLabel� env � assToEnable �� fg� env � fEnv�

��	� call SetFV iewBelief�J�consequent� fg�
ChkJustStatus�J� fig� tms�� J�consequent�fStatus� tms�

for each J s�t� �env � J�delayedConstraints� env � assToEnable �� fg�

���� if i � tms�fActiveFocus then call WakeUpConsumers�i� tms��

Figure 	��� Changing the focus in the �vrms�

��

Procedure RemoveBelief �n� i� tms�
n is a node that must be retracted in the context i�

��� remove i from n�fLabel and n�fStatus�
push n to tms�checkForSupportStack�

��� for J � n�consequences do�

�	� remove i from J�fLabel and J�fStatus�

��� if i � J�wfSupport then

�
� remove i from J�wfSupport �
��� call RemoveBelief�J�consequent� i� tms��

endfor

Procedure CheckAdditionalSupport �i� tms�
looks for support in context i�

��� while tms�checkForSupportStack is not empty do�

��� pop node n from tms�checkForSupportStack�

�	� for J � n�justifications do�

��� if i � n�fLabel then break the for�loop�
�
� if i � J�fLabel then

��� add i to J�wfSupport�
��� call SetFV iewBelief�n� fig� propagS�n� fig� tms�� tms��

endfor

endwhile

Figure 	��� Removing and checking for support in the �vrms�

�

Function QuerryLabel �n� tms�
incrementally updates the dLabel of n with respect to the dActiveFocus�

��� call FindReqNet�n� n�fStatus � tms�dActiveFocus� tms��

��� call WakeUpReqConstraints�tms�� call V erifyConstraints�tms��

�	� J�fStatus �� J�fStatus � J�req� J�req �� fg�

for all J � tms�reqJusts� empty tms�reqJusts�

��� n�fStatus �� n�fStatus � n�req� n�req �� fg�
for all n � tms�reqNodes� empty tms�reqNodes�

�
� return n�dLabel�

Procedure FindReqNet �n� relevCtxs� tms�
steps back in the justi�cation network and determines the justi�cations and nodes
that are required to compute the dLabel of n in the contexts relevCtxs� The
relevant justi�cations and nodes are stored in the tms�reqJusts� respectively
tms�reqNodes� The slots req of the required nodes and justi�cations contain
subsets of relevCtxs stating individually with respect to which contexts should
the delayed constraints be reprocessed�

��� if relevCtxs is empty then return �

��� if n�req is empty then push n to tms�reqNodes�

�� this ensured that each node appears at most once in tms�reqNodes�

�	� n�req �� n�req � relevCtxs�

��� for each J � n�justifications do�

�
� let newRelevCtxForJ �� �J�fStatus � relevCtxs�� J�req�

�� the update of the req �elds is also performed incrementally�

��� if newRelevCtxForJ �� fg then

��� if J�req � fg then push J to tms�reqJusts�
��� J�req �� J�req � newRelevCtxForJ �
��� FindReqNet�a� �a�fStatus � newRelevCtxForJ�� a�req� tms�

for a � J�antecedents�

endfor

Figure 	�
� Querying a node label in the �vrms�

��

Procedure WakeUpReqConstraints �tms�
For each required justi�cation the collection of unprocessed dLabel updates
J�delayedConstraints relevant to J�req is moved to the tms�checkStack� For
each required node the collection of blocked environments n�blockedLabel implied
by n�req is moved to n�s dLabel �and is further propagated�� The consistency of
the environments that are restarted is checked here�

��� for n � tms�reqNodes do�

��� remove any inconsistent environment from n�blockedLabel�

�	� fEnvs �� fenv � n�blockedLabel j env holds in n�req g�

��� n�blockedLabel �� n�blockedLabel� fEnvs�

�
� call SetBelief�n� fEnvs� tms��

endfor

��� for J � tms�reqJusts do�

��� remove any superset of a nogood from envs�
where �J� n�� envs� � J�delayedConstraints�

��� move all entries from J�delayedConstraints to tmpStack�

��� call NewConstraint�J� n�� envs� tms�
for all �J� n�� envs� � tmsStack

endfor

Figure 	���� Reconsidering delayed updates in the detailed view of the
�vrms�

��

Procedure SetBelief �n� newEnvs� tms�
adds the elements of newEnvs that hold in the contexts n�req to n�s dLabel�
respectively to n�s blocked label� creates more triples �J� n� newEnvs� for the in�
cremental dLabel updates at the outgoing justi�cations�

��� remove from n�dLabel� n�blockedLabel the supersets of any member of
newEnvs�

��� remove from newEnvs the supersets of any member of n�blockedLabel�

�	� let fEnvs �� fe � newEnvs j e holds in n�reqg�

��� n�blockedLabel �� n�blockedLabel � �newEnvs� fEnvs��

�
� if fEnvs is empty then return �

��� if n�contradiction is true then

��� call Nogood�e� tms� for each e � fEnvs�

��� for i � n�fLabel � tms�dActiveFocus do�

��� if �e � fEnvs s�t� e is included in the focusing environment i
then

���� tms�dActiveFocus �� tms�dActiveFocus� fig�

endfor

���� return �

���� add the elements of fEnvs to n�dLabel�

��	� call NewConstraint�J� n� fEnvs� tms� for each J � n�consequences�

Figure 	���� dLabel update in the �vrms�

Procedure FindNogoods �tms�
checks and ensures the consistency of the detailed view and �nds the �minimal�
nogoods for the set of inconsistent contexts from dActiveFocus�

��� call QueryLabel�n� tms�� for all n � tms�contradictions s�t�
n�fStatus � tms�dActiveFocus �� fg�

Figure 	���� Searching for the nogoods in the �vrms�

��

����� Advanced control techniques in the �vRMS

The �vrms can ensure the label completeness with respect to some focusing
contexts on request� while o�ering cheaper means for deciding the member�
ship of the nodes to the focusing contexts�

In this section we explore alternatives for further controlling the labeling
tasks performed in the �vrms�

After a certain node is queried� and if the detailed view is currently in a
consistent state with respect to the focus then the �vrms behaves towards the
pslike a focusing atms� This means that� the dLabel will be minimal� sound�
complete and consistent with respect to the active focus� It is questionable if
even this degree of completeness is sometimes not too strong� namely� there
can be in principle a large number of minimal supports for a node even in
one single context� Finding all of them may be both� �a� very expensive�
and �b� not relevant�

These arguments motivate our interest in a strategy that computes the
supports with respect to the focus in an incremental manner� This way�
the ps will be given the possibility to control also the number of �minimal�
environments per context computed in response to a node query�

Computing one minimal size minimal environment per context

In the following we present the changes that have to be done in the �vrms
such as to compute always one �more� minimal environment for each focus�
ing context for a queried node� Moreover� it may also be of interest that the
minimal environment also has the smallest size across the not yet computed
supports� If several queries are successively posed to a node then eventually
all the minimal environments supporting the node in the focus may be com�
puted �starting with the ones with the smallest size�� but this decision is up
to the ps�

In order to implement this control strategy we add two other slots to the
tms data structure� the qResidualFocus and the qOriginalFocus�

The tms�qResidualFocus holds during query processing the set of focus�
ing contexts for which the �next� minimal environment was not yet computed�
Its value changes dynamically during query processing and controls the en�
vironment propagation� together with the local contents of the
req� �elds
stored in the relevant nodes and justi�cations�

The qInitialFocus stores the value of the initial value of the qResidual�

��

Focus� At the beginning of the query for a node n the tms	qResidualFocus
and the tms	qInitialFocus are initialized with n�fStatus�tms�dActiveFocus�
The functions FindReqNet and WakeUpReqConstraints do not have to be

changed� However� the functions NewConstraint �Figure 	�	� and SetBelief
�Figure 	���� must take the set tms	qResidualFocus into account� Instead
of �ltering the environments that hold in the contexts J�req �line ��� of
NewConstraint�� respectively n�req �line ��� of SetBelief�� they should �lter
the environments holding in� J�req � tms�qResidualFocus� respectively in
n�req � tms�qResidualFocus�
Additionally� SetBelief should remove from qResidualFocus the contexts

for which some environments were propagated to the queried node� Each time
when the qResidualFocus is reduced� the stack with incremental �d�label
updates �i�e� tms	checkStack� can be �ltered by removing the sets of envi�
ronments that are no longer in the qResidualFocus� The tuples �J� n� envs�
that ran out of the qResidualFocus can be again delayed by storing them in
the slots J	delayedConstraints�
The changes performed so far ensure that the environment propagation

in a queried context stops as fast as a �rst environment for the queried
node is computed� In the following we describe� �a� how to ensure that the
propagated environment is minimal and has a smallest size� and �b� how to
correctly update the fStatus �elds�
In order to ensure the minimality of the computed environments the func�

tion VerifyConstraints �Figure A���� has to be changed such as to perform
a best �rst propagation� At each step of the cycle VerifyConstraints should
pick up only one environment with a smallest size to propagate it further�
One still cannot be sure that the �rst environment propagated in this

way to the queried node is a minimal environment� In order to ensure that�
V erifyConstraints should continue the best��rst propagation until it prop�
agates all the environments smaller then the best new environment computed
for the queried node�
Note� however� that in the worst case computing one �more� minimal

environment at a query is as hard as computing all the minimal environ�
ments� The requirement of minimality alone makes the problem hard� A
single� not necessarily minimal� support is easy to �nd� e�g� just following
the well�founded supports in the queried contexts� Thus� the requirement of
minimality should be regarded as a requirement that could be traded against
e�ciency in query processing�
Because the environment propagation can end without performing all the

�	

updates that are relevant for the qInitialFocus� it is no longer correct to
remove the �elds req from the fStatus at the end of a query � as was done
in the lines ���	� of QueryLabel �Figure 	�
�� Of course� one could start
and completely recompute the fStatus for the whole subnetwork relevant
for the query� However� even this computation can be optimized� If� for
instance� there is only one environment computed by the query even without
the control strategy described here� then the use of this control strategy
would just add more burden because of the recomputation of the fStatus�
This does not sound very intelligent�

During the query evaluation� the nodes and justi�cations at which the
procedures NewConstraint and SetBelief block �delay� updates which are
in the qInitialFocus should be stored for later inspection� At the end of the
environment propagation the fStatus can be updated as follows�

�� for all the relevant network the req sets are subtracted from the fStatus
sets�

�� the nodes and justi�cations with delayed updates� stored previously�
have to be checked for the local fStatus that has to be incrementally
propagated to the followers�

����� Experimental results

We have performed a series of tests with two prototypical implementations
of the �vrms in diagnostic problems� The results are depicted in Table 	��
and 	���

Table 	�� shows the results of running the candidate elaboration for sev�
eral input�output settings in the system depicted in Figure 	���� These tests
were obtained using a tiny diagnostic engine developed during my research
period at the Technical University of Cluj�Napoca�

In all cases described in Table 	�� the diagnostic engine focused only on
the �rst most probable candidate from the preferred ones �cf� Section 	����
but several diagnoses were added to focus if they were equally probable�
The table compares the performance of using the focusing atms vs� the
�vrms� Column � compares the total number of environments� i�e� the
sum of the environment database size and of the nogood database size at
the end of diagnosis� Column � compares the average length of the labels�
computed as the total label �dLabel� length divided by the total number

��

M11

M12

M13

M14

A1

A2

A3

M21

M22

M15

M16

A4

A5

M23

M24

x

y

z

u

a

b
.
.
.

Figure 	���� A pyramid of multipliers and adders� The inputs a and b are
linked to the left respectively the right input of the multipliersM�i�

Test pattern Environments Avg� label length Time in seconds
� � ratio � � ratio � � ratio

�� ��� ��� ��� ��
� ���� ��� ���� ���� ���
�� ��� 	� ��� � ��� ��� 	��� ��� ���
�� ��� �� ��	 ���
 ���� ��	 � � �
	� �	� �� ��� ��	 ���� ��� ��� ���� ���

Table 	��� � focusing atms � �vrms�

of rms nodes� Column 	 compares the total amount of time� spent within
the rms during candidate elaboration� The focusing atms and the �vrms
discovered the same nogoods and received the same sequence of justi�cations
in these problems� The test patterns used are given in Table 	��� The �vrms
prototype used for these tests did not embed all the ideas presented here
and the implementation di�ered at several places from the description of this
chapter�

More convincing results were observed for a series of more complex and
practically relevant problems� These tests were performed using a signi��
cantly more elaborate diagnostic engine �mds� developed at the Daimler�
Benz Research Center in Berlin� The �vrms implementation used by mds

�The tests were run on a pc��� under dos� The �vrms prototype used in these tests
was implemented in c���

��

Test pattern Diagnosis
a b x y z u

�� � � �		 �� �� ��� fr�M���� r�A��g
�� � � �		 ��� �� ��� fr�M���g
�� � � �� �� �� �� fs��A��� s��A��g
	� � � �	 �		
� �	 fs��M���� l�M���g

Table 	��� The test problems for Table 	��� Every component had � modes
of behavior� ok � probability ���� � the correct behavior� s� � ��� � output
stuck at �� s� � ���� � output stuck at �� l � ���	 � output equal with the left
input� r � ���	 � output equal with the right input� s � ����� � output equal
with the correct result shifted with one bit to the left� u � ����� � unknown
failure�

was also closer to the description given here�
In addition to the tasks of candidate elaboration and probe selection�

commonly supported by most of the nowadays diagnostic engines� mds also
integrates test�pattern proposal in the diagnostic cycle� In addition to the
behavior and structure descriptions� mds makes use of descriptions of the ob�
servable and controllable parameters� descriptions of the situations in which
an external agent is allowed to perform observation and control actions� as
well as situation�dependent costs associated with these actions� Without go�
ing into details that go beyond the scope of this thesis� one could characterize
the test�pattern proposal of mds as a heuristic guided search in the space of
possible input settings for a certain number of tests which provide a
good�
balance between the information gain and the cost of performing the test
�the cost include the cost of performing the control actions that change the
inputs and the cost of performing the measurement action�� Interesting to
note here is the fact that this task is realized without computing detailed
labels in the �vrms� i�e� only the information provided by the fLabels is
necessary�
The candidate elaboration of mds uses the focusing strategy described

later in this thesis� i�e� it focuses on a few preferred candidates with highest
priority �cf� Section 	���� Prediction is realized as constraint propagation�
not necessarily for �nite domains�
In addition to the on�line computation of diagnoses� mds can be used in

an o��line mode to compile diagnostic �decision� trees for a speci�ed set of

��

considered faults� For this purpose the test�pattern proposal and the candi�
date testing are run recursively� candidate testing being performed for all of
the possible outcomes of the best test proposed previously� until no discrim�
inating test is found� During the diagnostic tree construction no candidate
generation is done� i�e� the faults considered are only the ones that were ini�
tially speci�ed� for instance� all the single faults� The test�pattern proposal
is like during on�line diagnosis�
The test results presented here were obtained on an electrical system re�

sembling the one depicted in Figure 	��	 which contains part of the electrical
system for an abs� The system contains �� components such as� power sup�
plies� wires� bulbs� resistors� plug connectors� diodes� switches� relays� and
an electronic control unit� The faults considered were� broken wires� bulbs
or connectors� shorted to ground wires� stuck to open or closed switches and
relays� etc� A combination of qualitative� quantitative and interval�based
modeling was used�� Control actions� with di�ering costs� were associated
with switches� plug connectors� and some controllable settings of the elec�
tronic control units� Observation actions are� for instance� visual inspection�
for instance for bulbs� or� under certain security conditions and with addi�
tional costs� voltage and resistance measurements at certain accessible ports�
Table 	�� compares the performance of using the focusing atms vs� the

�vrms� The second column compares the total number of environments
de�ned in the rms� i�e� the sum of the size of the environment and the nogood
database� The third column compares the total label �dLabel� length �the
sum of the dLabel length over all of the nodes�� The fourth column compares
the time required to solve the problems��

The problems CE��CE� represent candidate elaboration problems� the
problems CD��CD� represent candidate discrimination �test�pattern pro�
posal� problems� A pair candidate elaboration � candidate discrimination
is performed at each diagnostic cycle in mds� The problems CDi were per�
formed in the situation resulting after running CEi� the problemsCEi �i � ��
added the result of the best test proposed at the step CDi���

T�� T� were problems requiring the generation of a diagnostic tree for
an initial set of ��� respectively ��� single faults� At the end of T�� for

�The interval�based reasoning takes advantage of the �shadowing� techniques �cf�
	Gol���� 	Ham��a��� which use� however� only the focus view of the �vrms� The shad�
owing technique is also extended to inhibit the propagation of approximately equal values�
where the approximately equal relation can be de�ned in a qualitative way�

�mds is implemented in Smalltalk� The tests were run on a Sparc���

��

Figure 	��	� A part of the electrical system of an ABS�

instance� both the focusing atms and the �vrms discovered �� nogoods� and
the dependency networks contained 	�
� justi�cations and �	
� nodes �i�e�
this meant an average label length of �	�� in the focusing atms� respectively
��	 in the �vrms��

The results given here used a variant of the �vrms that computed all

�

Problem Environments Total label length Time in seconds
� � ratio � � ratio � � ratio

CE�
�� �
� 	�� �
�� ��� ���� �� � ���
CD�
�� �
� ��� 	�	� ��� ���	 	� � �
CE� ���
 ��� ��	 	
�� ��� ���� 	� 	 ��
CD� ���	 ��� ��
 ���� ��� ���� 	
 � �
CE� ���	 	
� 	�	 ���� ��� ���
� �	 ���
CD� ���� 	
� 	�� ���� ��� ���� �� � ����
CE	 ���� ��� ��� ���	 ���� � �	 �� ���
CD	 ��	
 ��� ��� ��

 ���� ��� �� � �
T� ���� ��� ��
 ����� ���	 ���
�� �	� ��	
T� ���
 ��	� 	�� ����� ��	� ���� �
�� 		� ��

Table 	��� � focusing atms � �vrms�

the minimal nogoods for an inconsistent context �i�e� without the control
techniques described in 	������ used the relaxed fStatus constraints at as�
sumption retraction and the tight ones at assumption enabling� The results
reported here for the �vrms did not vary signi�cantly in the above test prob�
lems when these control parameters were changed�
The �vrms achieved up to �� times reductions of the time and memory

consumed by the rms in diagnostic tasks when compared to the fatms�
The temporal representation used by mds at the time the tests reported

here were performed was a simpli�ed form of the one required by the �nite�
state machine approach �cf� Chapter ��� The prediction sharing across time
�or input settings� was an essential feature in order to obtain acceptable
response times for the test�pattern proposal�

�

��� E	cient candidate generation

����� Introduction

The candidate generator receives knowledge about the di�erent components
and their possible modes of behavior� Additionally the candidate generator
receives knowledge about the con�icts� Its main task is to propose a certain
number of candidates that do not include any of the known con�icts� where
by
candidate� we understand a set of mode assignments such that each
component is assigned exactly one mode of behavior� Another desired feature
refers to the incremental way of operation� since the set of discovered con�icts
grows during diagnosis�

Usually in diagnosis there are very many possible candidates that are
consistent with the observations� especially in the early diagnostic steps when
there is not enough evidence about the system� It is not feasible to consider
all of the possible candidates in parallel� A currently followed approach
restricts the attention to a small set of candidates currently in the focus�
A smaller focus requires smaller computational costs because the prediction
of values and the rms labeling can be performed only with respect to this
focus� However the focus cannot be arbitrarily small� the elaboration of
several alternatives is essential for guiding the further information gathering
process� Current techniques of candidate generation attempt to generate a
few of the most plausible � critical candidates from the ones that are possible�

We use a diagnostic framework where each component can be character�
ized with several modes of behavior� Each candidate chooses exactly one
mode of behavior for each component� The plausibility � criticality informa�
tion that we use to control the selection of the focus candidates is encoded by
two relations� preference and priority� The algorithms we discuss can gen�
erate in an incremental way a few �say k� of the most preferred candidates
having the highest priority�

The preference relation is as de�ned by Dressler and Struss �cf� �DS
����
a preference order among the modes of each component is used to induce a
preference order among candidates� The partial order de�ned by the can�
didate preference imposes a lattice structure on the candidate space� The
preferred diagnoses de�ne a lower bound for the consistent candidates in the
preference lattice� Our algorithms manipulate such lower bounds�

The preference alone can only encode knowledge about the plausibility of
the modes of a single component� e�g� it can encode knowledge saying that�

�

�a wire is most probably correct� but if it is defect then it is more likely to be
broken than shorted to ground�� The focus selection heuristic based on the
preference alone is in many cases not sharp enough� for large systems the set
of preferred candidates is very large� In order to gain more control over the
selection of the focusing candidates we de�ne an additional priority relation
among mode assignments� The priority relation increases the expressiveness
of the control knowledge� Knowledge expressing that� for instance� �the bulbs
break more often than the switches� which� in turn� break more often than the
wires� cannot be expressed using the preference� but can be encoded using
the priority�

The proposed algorithms generate a few of the most preferred candidates
having the highest priority� without computing all the preferred diagnoses
and applying a �lter afterwards� Dressler and Struss used a default logic
framework to characterize the preferred diagnoses and a non�monotonic atms
to compute them �cf� �DS
���� Our algorithms are conceptually equivalent
with their
incremental construction of the preferred diagnoses� from �DS
	��
but do not use the non�monotonic atms�

We analyze the properties the candidate generation algorithms with re�
spect to the framework of propositional logic� The relations between the pos�
sible behavioral modes of a component can be abstracted to� what we call�
choice sets� i�e� purely positive propositional clauses with additional control
information encoded in the preference�� We used such choice sets instead
of components and modes of behavior� because the relevance of the algo�
rithms exceeds the domain of diagnosis� Namely� we argue that they provide
complementary functions to the rms in a general rms�based problem�solver�

The �vrms �as well as the atms family and the jtms� can perform sat�
is�ability checking and model construction for Horn theories� The candidate
generator can perform satis�ability checking and model construction for non�
Horn theories consisting of purely positive and purely negative clauses� The
combination �vrms �atms or jtms� and the candidate generator can be
used as a �heuristically guided� satis�ability checker and �multiple� model
builder for arbitrary propositional theories� thus removing the expressiveness
limitations of the rms and of the candidate generator alone�

�In default logic this was encoded using a set of default rules�

�

����� Preferred candidates� basic de
nitions and prop�

erties

De
nition ����� A choice space is a tuple CS � �L�Choices� Confl��pri�
where

� L is a �nite set of symbols �the assumptions��

� Choices is a set of choice sets
 Choices � fC�� � � � � CNg� where Ci � L	
The elements of each choice set Ci � fai�� � � � ainig are ordered according
to a total and strict order �the preference among the elements of a
choice set�� i	e	 ai� �Ci

ai� �Ci
� � � �Ci

aini�

� Confl� the set of con�icts� is a set of sets of symbols from L� i	e	
Confl � �L�

� �pri� the priority order� is a �partial� order relation on the sets of sym�
bols� i	e	 �pri� �L � �L which agrees with the preference among the
candidates as de�ned subsequently	

The semantics of a choice set is that of a logical disjunction among the
elements� i�e� at least one of them must be true� The semantics of a con�ict
is that of disjunction over the negation of the symbols� i�e� at least one
assumption from a con�ict must be false� In many cases the elements of
a choice set are also mutually exclusive� case in which the set of con�icts
contains also the combinations of the mutually inconsistent elements� Note
that we did not require the choice sets to be disjoint� i�e� an assumption
a 	 L can appear in several choice sets� This represents a generalization
compared to the way the preference was de�ned in diagnosis �cf� �DS
����
In the case of diagnosis each choice set corresponds to the possible be�

havioral modes that each component can have� In this case the choice sets
are disjoint and the elements of a choice set are usually mutually exclusive�
The con�icts correspond in diagnosis to the con�icts among the mode as�
signments�

De
nition ����� �candidate� A candidate for a choice space
�L�Choices� Confl��pri� selects exactly one element from each choice set of
Choices� i	e	 A � f�Ci� ai� j Ci 	 Choicesg� where ai 	 Ci	

The space of candidates is the set product of the choice sets� The prefer�
ence among the elements of the choice sets induces a preference among the
candidates�

�

De
nition ����� �preference� Let CS be a choice space and A�B be two
candidates for CS	 A is preferred to B� noted A � B� i�

�Ci 	 Choices
 �ai� a�i 	 Ci s	t	 �Ci� ai� 	 A� �Ci� a
�
i� 	 B and

ai �Ci
a�i � ai � a�i	

The priority order of a choice space is assumed to
agree� with the prefer�
ence among the candidates� i�e� for any two candidates A � B
 B �pri A�
i�e� a candidate that is preferred must also have a higher priority�	

Note that� although the preference among the elements of a choice set is
total� the preference among the candidates is only a partial order� It is easy
to see that the preference among the candidates imposes a lattice structure
on the candidate space�

Example ����� Figure �	�� depicts the candidate lattice corresponding to a
choice space with three choice sets� say C�� C�� C�� each with three elements�
i	e	 Ci � fai�� ai�� ai�g� where ai� �Ci

ai� �Ci
ai�	 In the �gure� an element

ijk stands for the candidate f�C�� a�i�� �C�� a�j�� �C�� a�k�g� for instance ���
represents the candidate f�C�� a���� �C�� a���� �C�� a���g	 ��� is the bottom
element �the smallest in the preference order� of the lattice� ��� is the top
element	 The lines between some candidates denote the preference order� e	g	
��� � ���� ��� � ���� etc	

If A � A� we sometimes say in the following that A� is a successor of
A� Not all of the candidates are consistent� A candidate is de�ned to be
consistent if and only if the set of selected atoms does not include any con�ict�

De
nition ����� �consistency� A candidate A of a choice space
�L�Choices� Confl��pri� is inconsistent if it �includes� a con�ict� i	e	 i�
�c 	 Confl� c � faj j �Ci� aj� 	 Ag�

In logical terms� each consistent candidate solves each positive clause corre�
sponding to the choice sets� and does not violate any negative clause corre�
sponding to the con�icts�

Example ����� Figure �	�� shows the candidate preference lattice for the
choice space of Figure �	�� with � con�icts	 It is assumed here that the

�We hope that the notation is not misleading� preference is noted as minimality� while
�priority� is noted as maximality�

	

333

323

313

222

121

111

332 233

322 232

132

223 133331

321 231 312 213 123

311 221 131 212 122 113

211 112

Figure 	���� A candidate lattice�

three choice sets depicted are disjoint	 The notation k�k�k�� when used to
represent a con�ict� has the interpretation
 fajkj j kj �� �� j 	 f�� �� �gg� for
instance ��� represents the con�ict fa��� a��g� ��� is the con�ict fa��g� and
��� the con�ict fa��g	 The �gure depicts the set of candidates� the consistent
candidates and the preferred consistent candidates� given the three con�icts
above	

We are interested in the following to characterize the set of preferred
and consistent candidates of a choice space� In fact� since we do not want
to compute the whole set of preferred candidates from the consistent ones�
we characterize lower bounds of the set of consistent candidates of a choice
space�

De
nition ����� �lower bound� A lower bound of the consistent candi�
dates of a choice space CS is a set of candidates LB � fA�� � � � � Akg such
that all the consistent candidates of CS are successors of some member of
LB� and no element of the lower bound is a successor of a di�erent element
of the lower bound� i	e	 �i� for any consistent candidate A of CS there exists
Ai 	 LB such that Ai � A� and �ii� �Ai� Aj 	 LB�Ai � Aj
 Ai � Aj	

A lower bound in which all the elements are consistent corresponds to the

�

111

121

222

211

221311

321 231 123

331 322 223
inconsistent
candidates

consistent and
inconsistent
candidates

323

333

212

213312 132

313232 133

332 233

131

112

122 113

consistent candidates: preferred candidates:

{001,110,020}assumed conflicts:

Figure 	���� Preferred and consistent candidates�

preferred diagnoses� provided that the choice sets correspond to the modes of
each component and the con�ict set is complete��
 One could note that the
set of preferred consistent candidates represent a generalization of the mini�
mal diagnoses �cf� �dKW���� for the case where each component has several
behavioral modes� When each choice set has two elements �corresponding
in diagnosis to the correct� respectively the abnormal behavioral mode� the
preference lattice collapses to the lattice of the minimal diagnoses �see also
�dKW�����

�	This corresponds also to the de�nition of preferred diagnoses of Dressler and Struss
from 	DS����

�

Example ����� The set containing only the bottom candidate of the prefer�
ence lattice always de�nes a lower bound for the consistent candidates� e	g	
LB� � f���g for the case depicted in Figure �	��	 LB� � f���� ���� ���g�
LB� � f���� ���� ���g� and LB� � f���� ���� ���� ���g� LB� � f���� ���g
are other possible lower bounds for the consistent candidates of the lattice�
whereas the last one contains only consistent candidates and de�nes thus the
set of preferred consistent candidates for this example	 f���� ���� ���g is not
a lower bound because ��� � ���	 f���� ���g is not a lower bound because not
all of the consistent candidates are in the relation
 � � with some member
of the set �e	g	 ����	

The lower bound can be
pushed� upward by replacing some inconsistent
candidate from the lower bound with some of its direct successors� But� at
this point we must state precisely what a direct successor is�

De
nition ����� �direct successor� Let A be a candidate of CS	 A dif�
ferent candidate A� of CS is a direct successor of A �noted A� 	 DirSucc�A��
i� A � A� and there is no candidate A�� in between� i	e	

���A��� A � A�� � A��	

It is easy to construct all the direct successors of a given candidate� We note
with Next�a�Ci� the next preferred element of Ci after a�

Next�a�Ci� �

�
nil if ���a� 	 Ci� a �Ci

a��
a� if �a� 	 Ci� a �Ci

a� � ���a�� 	 Ci� a �Ci
a�� �Ci

a��

Because the preference within a choice set is total and strict Next�a�C� is a
function� The following is then obviously true�

Property �����	 Let A be a candidate in a choice space	 Then
A� 	 DirSucc�A� i�
 ��Ci� ai� 	 A s	t	 Next�ai� Ci� �� nil and

A� � �A� f�Ci� ai�g� � f�Ci� Next�ai� Ci��g�

The following statement is also immediately following from the de�nitions�

Property ������ Let LB be a lower bound of the set of consistent candidates
of a choice space and A an inconsistent candidate A 	 LB	 Then LB� �
�LB � fAg� � fD 	 DirSucc�A� j ���A� 	 LB � fAg� A� � D�g is another
lower bound for the consistent candidates of the choice space	

�

The above property tells us that one can replace an inconsistent candidate
from a lower bound with its direct successors that are not successors of the
rest of the lower bound and obtain a new bound� Note that one does not
have to check if the newly inserted direct successors are more preferred than
the old elements of the lower bound� since this cannot be the case given that
their parent was in the lower bound before�

Example ������ The lower bound LB� of example �	�	� is obtained from
LB� by replacing ��� with its immediate successors	 LB� is obtained from
LB� by replacing ��� in LB�� LB� is obtained by replacing ��� in LB� with
its successors that are not less preferred than the rest of the lower bound	
Continuing this operation one reaches in the end LB�	

This property can lay the foundation for an algorithm that computes
all � some preferred consistent candidates� One can start with the bottom
candidate of the preference lattice� since this alone always de�nes a lower
bound� and then successively go upwards with the lower bound by replacing
selected inconsistent candidates with the direct successors as stated above�
However� as it is easy to imagine and as also our empirical results in practice
showed �cf� �TI
	a� TI
	b��� this algorithm for computing some preferred
consistent candidates is extremely expensive� This is why we were interested
to further improve the algorithm� and we will do it successively�

The most signi�cant result of this section is provided by the following
lemma� It shows that one need not construct all the successors as above� but
only a subset that also resolve one of the con�icts included the inconsistent
candidate� The set DirSucc�A� c� will be used to denote the set with the
smallest successors of A that do not include c� where c is a con�ict included
inA� If the choice sets are disjoint then alwaysDirSucc�A� c� � DirSucc�A��
But we did not require the choice sets to be disjoint� In the case when one
assumption a 	 c from the con�ict is selected by several choices from A then
some elements of DirSucc�A� c� will be deeper successors of A� In all this
cases the semantic is the same� DirSucc�A� c� contains the smallest �most
preferred� successors of A that do not include c�

De
nition ������ �direct successors w�r�t� a con�ict� Let A be a can�
didate of �L�Choices� Confls��pri� and c � L	 The set of direct successors

�

of A with respect to c is de�ned as
 A� 	 DirSucc�A� c� i� �a 	 c s	t	

Xa � f�Ci� ai� 	 A j ai � ag �� fg�
��Ci� a� 	 Xa � Next�a�Ci� �� nil�

A� � �A�Xa� � f�Ci� Next�a�Ci�� j �Ci� a� 	 Xag

It is easy to see that each element of DirSucc�A� c� does not include c� If the
choice sets are disjoint then DirSucc�A� c� � DirSucc�A�� We now show
that when replacing an inconsistent candidate with some of its successors
only the one with respect to a con�ict included in the candidate must be
considered���

Lemma ������ �con�ict pruning I� Let A be a candidate of
�L�Choices� Confls��pri� and c 	 Confls be a con�ict included in A	 If
S is a successor of A �A � S� that does not include c� then

S is a successor of a direct successor of A with respect to c� i	e

�D 	 DirSucc�A� c�� s	t	 D � S�

We are interested that our lower bounds still characterize the set of all con�
sistent candidates� The previous lemma guarantees that when replacing in�
consistent candidates with successors� only the ones that resolve one con�ict
of the parent are necessary�

Corollary to Lemma ������ Let LB be a lower bound for the consistent
candidates of a choice space	 Let A 	 LB be an inconsistent candidate that
includes a con�ict c	 Then

LB� � �LB � fAg� � fD 	 DirSucc�A� c� j ���A� 	 LB � fAg� A� � D�g

is another lower bound for the consistent candidates	

The above corollary achieves a pruning e�ect during the search for the
consistent preferred candidates �compare it with Property 	������� The num�
ber of candidates that replace an old inconsistent one in the lower bound
depends now also on the size of the con�ict included in the parent� The
smaller the con�ict� the more signi�cant this pruning is� For instance� if all
the con�icts have size one the lower bound will always contain one element�
while the size of the lower bound without using the con�ict pruning can grow

��The proofs are given in Appendix C�

to considerable sizes� Our empirical experiments have shown dramatic re�
ductions of the time and space required by diagnosis due to the consideration
of Lemma 	����	 in several diagnostic problems� In the worst case� when the
con�icts have the size equal with the candidates there is no pruning at all�

Example ������ Consider again the choice space of example �	�	� and �	�	�	
When ��� is replaced with its successors with respect to the con�ict ��� in
LB�� one gets LB�

� � f���g	 When one replaces ��� with its successors with
respect to the con�ict ��� in LB�

�� one gets LB�
� � f���� ���g	 In the third

step� when ��� is replaced in LB�
� with its successors with respect to ��� we

obtain LB� � f���� ���g	

Unfortunately� if a candidate contains more then one con�ict� this pruning
can be applied only with respect to one of them � otherwise the completeness
of the search is lost�
The converse of the implication from Lemma 	����	 is not always true� A

su�cient condition� which is satis�ed in many cases in practice� is when the
choice sets Ci 	 Choices are mutually disjoint�

Lemma ������ �con�ict pruning II� Let A be a candidate of
CS � �L�Choices� Confls��pri� and c 	 Confls be a con�ict included in
A	 Let the choice sets of CS be disjoint� i	e	

�Ci� Cj 	 Choices� Ci �� Cj
 Ci � Cj � fg	 Then if
S is a successor of some D 	 DirSucc�A� c�� i	e	 D � S� then

S is a successor of A that does not include c	

In diagnosis� when the choice sets correspond to the possible mode assign�
ments of the components the choice sets are disjoint� the conditions of Lemma
	����� are satis�ed� This provides us with an interpretation of the meaning
of the pruning achieved by using Lemma 	����	� by avoiding to insert in
the lower bound other successors of A except DirSucc�A� c� we avoid at
later stages of search to generate other candidates that contained the same
con�ict c�
So far we did not take into account the priority order that is de�ned in a

choice space� Having said that we want to build only some preferred candi�
dates� and not all of them �because this is usually too expensive and usually
not even necessary�� the next question to ask� and to answer� is which of these
consistent and preferred candidates to generate� At this point� our goal is
to construct a lower bound that contains some consistent candidates that

���

have the highest priority within the consistent and preferred candidates� but
without computing the complete set of preferred and consistent candidates�
The following statement gives us a hint in this respect�

Lemma ������ Let LB be a lower bound for the set of consistent candidates
of a choice space and assume A 	 LB is a consistent element	 Let also
H�A�LB� be the sets of elements from LB that have a strictly higher priority
than A
 H�A�LB� � fA� 	 LB j A �pri A

�g	 Then the following are true

�	 Let B be a consistent candidate that has a strictly higher priority that
A� i	e	 A �pri B	 Then either B 	 H�A�LB�� or B is a successor of
some element from H�A�LB��

	 Let C be a consistent candidate that is a successor of some element
from LB � H�A�LB�	 Then C cannot have a higher priority than A
has� i	e	 C �pri A	

Corollary to Lemma ������ Let LB be a lower bound for the set of con�
sistent candidates of a choice space	 Let A 	 LB be the candidate having the
highest priority in LB	 If A is consistent� then A has the highest priority
across all the consistent candidates of the choice space	

The corollary tells us that as soon as the element from a lower bound
LB with the highest priority across LB is consistent� we can be sure that�
irrespective if the rest of the LB contains consistent elements or not� the best
element of LB is the best across all the consistent candidates �though� since
�pri can be a partial order� the maximum may not be unique��

Lemma 	����� suggests that in order to �nd a candidate having the highest
priority one can conduct a best��rst search in which at each step the element
of a lower bound with the highest priority is replaced with its successors
as long as the
best� element of the lower bound is inconsistent� If one
wants to continue the search further� towards other preferred and consistent
candidates having the highest priority� then the next
best� elements of the
lower bound that are inconsistent should be successively replaced with �some
of� their successors�

The improvement is that we avoid to build a lower bound where all of the
elements are consistent in order to �nd only the best k of them � the search
procedure can thus stop earlier�

���

Incremental addition of con�icts and choice sets

In practice the con�icts are discovered incrementally� In diagnosis� for in�
stance� one �rst computes a �rst focus �some preferred candidates with high
priority� and then by making prediction focused on those candidates new
con�icts� not evident from the beginning� are found� The new con�icts make
some of the old focus candidates inconsistent� and though� a new focus should
be computed� Fortunately� the computation of the new focus can reuse the
old lower bound�

Property ������ Let LB be a lower bound for the consistent candidates of
�L�Choices� Confls��pri�	 Then LB is also a lower bound for the set of
consistent candidates of �L�Choices� Confls � fcg� �pri�� where c � L	

The addition of new choice sets can also be handled in an incremental way�

Property ������ Let LB be a lower bound of �L�Choices� Confls��pri�	
Let C � L be a new choice set and let aC be the smallest element from C with
respect to the preference �C	 Then LB� � fA � f�C� aC�g j A 	 LBg is a
lower bound for the consistent candidates of �L�Choices�fCg� Confls��pri�	

����� Searching for the preferred candidates having

the highest priority

Based on the properties of a choice space Appendix B�� presents in more
detail some algorithms for the incremental generation of the preferred con�
sistent candidates with the highest priority�
Basically� a candidate generator works on an associated choice space and

maintains a lower bound for it� The lower bound can be split into two sets�
Focus and Candidates�

� Focus contains the preferred and consistent candidates �with the high�
est priority� that should be in the focus of the problem solver�

� Candidates contains the rest of the candidates that together with
Focus de�ne a lower bound for the consistent candidates of the choice
space administrated by the candidate generator� The elements from
Candidates need not be consistent�

Table 	�	 shows the e�ects of the con�ict pruning on four candidate elab�
oration problems for the electrical system from Figure 	��	� Although in

���

electrical systems usually the con�icts have relatively big sizes� and conse�
quently the e�ects of the pruning are less dramatic� the results show signif�
icant reductions of the time and space required in diagnostic problems due
to the consideration of the con�ict pruning�

Problem con�icts size of lower bond Time in seconds
� � � �

� � ��� �� ���� ��
� �� ��� �� ���� �
� �� ��� ��� �� �
	 �� ���	 ��� ��� ��

Table 	�	� Di�erent candidate generators� � no con�ict pruning � with
con�ict pruning�

Further improvements are obtained if we observe that the candidate gen�
erator need not store all of the con�icts in order to decide the consistency
of the candidates� If the choice sets are disjoint� all con�icts expressing ex�
clusive choice sets are not relevant �the algorithms implicitly deal with these
con�icts�� Furthermore� the con�icts that invalidate only candidates that are
below the lower bound can be removed from the collection of stored con�icts�

Example �����	 Consider the choice space from Figure �	�� and consider
again the operations performed in order to �nd the preferred consistent can�
didates �shown in Example �	�	���	 We start with LB� � f���g and have
the con�icts f���� ���� ���g	 After we insert the direct successors of ��� with
respect to ���� we can dispense with the con�ict ��� since no successor of
LB� � f���g can include ���	 After we replace ��� with the successors with
respect to ��� we can dispense with ��� as well	 After the third step we reach
LB� � f���� ���g	 Only ��� is still relevant� and only for the successors of
���	

Removing from the candidate generator the non�relevant con�icts may in�
crease the e�ciency of the consistency test in case the number of con�icts
gets very large�
Another improvement follows the observation that we usually have to deal

with single faults� or with candidates accusing a small number of components
as defective� Then in each candidate most of the choice sets select the best

���

assignment �the most preferred one�� It saves space as well as time " con�
sider for instance the operations that have to be performed when testing the
preference between two candidates " to store internally in a candidate only
the
exception� choice sets� i�e� the choice sets where not the best element
is selected�

����� On the logical completeness of the candidate gen�

erator

In this section we address the following problems�

�� we show that� from a logical point of view� our candidate generator
can be seen as a sound and complete satis�ability checker for proposi�
tional theories consisting of purely positive and purely negative clauses�
Moreover� in case of consistency� our candidate generator builds one or
several �preferred� models�� of the propositional theory�

�� we analyze the usefulness of enhancing the candidate generator with
hyperresolution rules in order to infer smaller implied con�icts and
choice sets� gde� �cf� �SD�
�� embeds such hyperresolution rules into
its candidate generator� With respect to this point we conclude that�

� due to the incremental way in which the space of diagnoses is
explored and in which the con�icts are received by the candidate
generator it does not seem very useful to enhance our candidate
generator with such rules� but

� if one enhances the candidate generator such as to build candidates
consistent with a believed set of propositions Ctx� the extension
with additional inference rules can be useful in order to infer more
con�icts among the Ctx propositions in case of inconsistency� The
Ctx propositions could represent working hypotheses in the spirit
of �Str�
�� or choices already committed by other modules in a
distributed candidate generation architecture �an example of a
hierarchic organization of several candidate generation modules is
given in Appendix B����

��By model� or interpretation� we mean here an assignment of boolean values to the
propositions such that all the formulae of the propositional theory evaluate to true�

��	

�� We give an e�cient algorithm for computing the negative prime impli�
cates among the Ctx propositions for a candidate generator extended
as above�

Logical properties of the basic candidate generator

From a logical point of view� our a candidate generator is testing the satis��
ability of the logical theory � � �p � �n� where�

� �p consists of the positive disjunctions associated with the choice sets�
and

� �n consists of the negative disjunctions associated with the con�icts�

Each candidate is a conjunction of positive literals that solve each positive
clause from �p� The consistent candidates do not violate any of the negative
clauses from �n� We show in the following that � is satis�able if and only if
our candidate generator �nds at least a consistent candidate in the associated
choice space���

De
nition ������ Let CS � �L�Choices� Confls��pri� be a choice space	
De�ne ��CS� to be the following set of propositional clauses
 each set of sym�
bols that appears in Choices corresponds to a positive disjunction in ��CS��
and each set of symbols that appears in Confls corresponds to a disjunction
among the negations of the symbols in ��CS�	

Lemma ������ Let CS � �L�Choices� Confls��pri� be a choice space and
��CS� its associated set of clauses �as in De�nition �	�	
��	 Let v � L �
ftrue� falseg be an assignment of boolean values to the symbols	 Then

the formulae of ��CS� are satis�ed by the assignment v�

�A� where A is a consistent candidate of CS s	t	
fa j �Ci 	 Choices s	t	 �Ci� a� 	 Ag � fa 	 L j v�a� � trueg�

The following is then an immediate consequence of the above lemma�

Corollary � to Lemma ������ Let CS be a choice space and ��CS� be the
propositional theory associated to CS as in De�nition �	�	
�	 Then
 there is
no consistent candidate for CS if and only if ��CS� is not satis�able	

��The proofs are given in Appendix C�

���

In case of consistency� each consistent candidate built by the candidate
generator provides �at least� one model for the propositional theory� Ac�
cording to the above lemma� if A is a consistent candidate� the assignment
v � L � ftrue� falseg� v�p� � true � p 	 fa j �Ci� a� 	 Ag satis�es all the
clauses from �p � �n�

On the usefulness of enhancing the formula completeness of the
candidate generator

Another question that we want to clarify in this section is whether it would
be useful to extend our candidate generator such as to infer more nogoods�
when possible� from the knowledge about the existing nogoods and about
the choice sets� Such additional nogoods can be inferred by hyperresolution�

Example ������ Suppose a choice space has two choice sets
 C� � fa�� a�g�
and C� � fb�� b�g and the con�icts
 c� � fa�� b�g� c� � fa�� b�g	 Applying a
hyperresolution rule on b� � b�� �b� � �a�� �b� � �a�� one �nds c� � fa�g as
nogood	

Model�based diagnostic systems like gde� �cf� �SD�
�� embed such a hyper�
resolution rule into their candidate generator� In principle� these inference
rules are super�uous if all we want to do is to decide consistency and to
build �preferred� models of �� They would bring probably only computa�
tional overhead�

Corollary � to Lemma ������ The set of consistent candidates of a choice
space CS is not a�ected by the addition of con�icts that are implicates of
��CS�	

Some of the new con�icts produced by hyperresolution can be subsets of
several old ones �see Example 	������� Since the complexity of the candidate
generation is a�ected by the size of the con�icts� the use of smaller con�icts
is likely to reduce the search e�ort� However� even if we ignore the additional
e�ort required to perform the hyperresolution� due to the sequential way in
which the con�icts are found� it is likely that the search e�ort cannot be
reduced this way� as we try to illustrate in the following example�

Example ������ Consider again the choice sets and the con�icts of Ex�
ample �	�	
�	 A candidate generator that starts the search using the con�
�ict c� would perform less operations than one using c�� c�	 However� if

���

�rst no con�ict is known� the candidate generator provides the candidate
A � f�C�� a��� �C�� b��g	 Then the con�ict c� is found and the candidate
generator is proposing B � f�C�� a��� �C�� b��g	 Only now� after focusing
on this candidate� the con�ict c� is discovered	 But now the addition of c�
would be performed too late
 the operations that were useless have already
been performed � in this case the generation of the candidate B	

Increasing the completeness of the �prime� implicates computed by a can�
didate generator �module� makes sense� however� if the candidate generator
is extended such as to build only candidates consistent with a
believed� set
of literals Ctx� In case of inconsistency� the beliefs Ctx must be revised�
for such a purpose the knowledge of the �minimal� con�icts among the Ctx
literals might be essential�

Context�dependent candidates

The basic candidate generator described in the previous sections was able to
generate a speci�ed number of consistent and preferred candidates according
to an additional priority order� However� there may be situations where
this �xed scheme is not �exible enough� The centralized control over the
generation of the candidates would not be appropriate� for instance� if a
user of the system should cooperate interactively to the speci�cation of the
focusing candidates�
An interesting idea could be the one of distributing the choice sets among

several candidate generation modules� which could use di�erent generation
strategies� One such module� for instance� could represent the user� if the user
is supposed to play a more active role in guiding the search for a solution���

As a mean of communication� we assume that the modules that comprise the
candidate generator can exchange focus candidates and con�icts�
Suppose we have two candidate generation modulesCG�� CG�� each main�

taining its own choice space� One useful service that one module� say CG��
may ask the other one would be to extend a generated candidate Ctx of CG�

with the
best� consistent candidates of CG�� If no consistent extension
exists� then this means that a con�ict among the assumptions of Ctx exists

��For instance� in a reasoning system that is supposed to assist a human in design tasks�
the decisions taken by the human should be followed by the system as long as they are
consistent� The assistant would then play more the role of a consistency checker� but could
as well accomplish some more routine tasks�

���

�as a consequence of Corollary � of Lemma 	������� and this con�ict should
be communicated to CG��
In the following we extend the candidate generator such as to�

�� generate only candidates that are consistent with a certain speci�ed
set of symbols � possibly already chosen by other candidate generator
modules� or representing working hypothesis in the spirit of �Str�
��
More precisely� if CS��L� Ch� Con�� �pri� is a choice space and Ctx �
L is a set of literals� we are only interested in the candidates of CS
that can consistently extend Ctx� i�e� in the candidates A such that�

���c 	 Confls s�t� c � Ctx � fai j �Ci� ai� 	 Ag�� �	���

Of course� we are only interested in some of the preferred candidates
from the above set� namely in the ones with the highest priority�

�� report the minimal con�icts among the Ctx symbols when Ctx cannot
be consistently extended with any candidate of the module�

It is trivial to extend the candidate generator described in 	���� �see also
Appendix B��� in order to construct candidates consistent with a certain set
of literals Ctx�

� instead of testing if the generated candidates are consistent� the test
from the equation 	�� should be used� If there is a con�ict c 	 Confls
that violates the condition� then the successors of the candidate with
respect to the set c� Ctx should be computed���

If a certain set of literals Ctx cannot be consistently extended with any
candidate from a certain choice �sub��space there must be a con�ict among
the literals of Ctx� The discovery of the minimal con�icts from Ctx may
signi�cantly increase the e�ciency of the search in the modules that chose
the Ctx literals�
The next subsection presents an e�cient algorithm that computes the

negative prime implicates among the Ctx literals� The algorithm avoids to
generate the complete set of prime implicates or the complete set of nega�
tive prime implicates and to apply a �lter afterwards� The application of
this algorithm could be delayed until a candidate generator cannot consis�
tently extend the set of literals Ctx� As long as Ctx still can be consistently
extended� one cannot derive any con�ict included in Ctx� of course�

��It is easy to see that the new candidate generator is more general than the old version�
namely� the old version is obtained from the new one by making the associated set of literals
Ctx an empty set�

���

An e�cient algorithm for computing the con�icts among the Ctx
literals

We note that�

�� It is possible to reuse some control techniques developed in the litera�
ture dedicated to the prime implicate �prime implicand� generation �cf�
�KT
�� Tis��� FdK
��� in order to avoid useless computations � without
violating the completeness of the �prime� implicate generation�

�� Since we are� in fact� interested only in some negative prime implicates�
namely in those involving only literals of Ctx� we show that we can fur�
ther restrict the inference " this is going to give up the completeness of
the �prime� implicate generation� but still guarantees the completeness
with respect to the negative clauses involving only the Ctx literals�

Whenever all the elements from a choice set C are involved in some con�
�icts a hyperresolution rule can be applied in order to obtain new con�icts
free of the literals from the choice set C� Namely� if one has a choice set
Ci � fa�� a�� � � � � akg and each ai is part of a con�ict� i�e� there exist negative
clauses having the form �ai�NCi� where NCi are negative clauses� one gets�

R� �
a� � � � � � ak� �ai �NCi� for all i

NC� � NC� � � � � � NCk

�	���

The new clause represents a con�ict that may be interesting if it is not a
superset of an already discovered con�ict� It is easy to implement R� using
an atms� for each member ai of a choice set an associated node is created
�having the semantics of the negation of the symbol� i�e�
�ai��� Each
con�ict involving ai� say fai� am� � � � � ang is used to create a justi�cation�
am� � � � � an �
�ai�� and each choice set Ci � fa�� a�� � � � � akg is associated
an additional justi�cation�
�a���
�a��� � � � �
�ak�� ��
However� it is not necessary to apply this rule exhaustively� A con�ict

c should be considered at a choice point Ci only if c � Ci �� fg� But� if
jc � Cij � �� then the consideration of c at Ci is not going to derive any
useful con�icts �the proofs are given in Appendix C��

Property ������ Let C � fa�� � � � � akg be a choice set and c be a con�ict
such that jc � Cj � �	 Then any new con�ict obtained by hyperresolution
at C and involving c and possibly other con�icts is a superset of an already
known con�ict	

��

Obvious sources of such con�icts are the exclusive choice sets� i�e� choice sets
where the literals are pairwise inconsistent� As the above property shows�
it is not necessary to encode these con�icts in the justi�cation network that
implements the hyperresolution���

As proved in �Tis��� KT
�� �see also Chapter �� from �FdK
��� in order to
obtain all the prime implicates of a set � of clauses one can use the following
algorithm �which we refer in the following as PI��

�� Initialize Cls with the set of unsubsumed clauses of ��

�� Iterate on the symbols from � in some order� for each symbol a do�

�a� Perform all the binary resolutions w�r�t� the symbol a �i�e� res�
olutions that resolve the clauses containing a positively with the
ones that contain a negatively�� Add the new unsubsumed clauses
to Cls� Remove the subsumed clauses from Cls�

�� Return Cls�

The algorithm avoids to execute all the possible binary resolutions� This
does not a�ect the completeness of the prime implicate generation because
the same implicates can be derived in very many ways from an initial set of
clauses � due to the fact that the binary resolution is often commutative and
associative�
One could use PI to compute all prime implicates and then �lter out

the ones we are not interested in� But� since we are not interested in the
complete set of prime implicates� we can do much better�
The function NPI��CS�Ctx� �Figure 	���� returns all the minimal con�

�icts among the Ctx symbols entailed by the logical theory ��CS�� The
function applies only the hyperresolution rule R�� and thus derives only neg�
ative implicates� but not all of them�
The function iterates on the symbols from Choices �the order of itera�

tion is not important from a logical point of view� but it could let place for
heuristics�� For each symbol the con�icts involving that symbol are consid�
ered for the hyperresolution R� at the choice sets involving that symbol� If
the current symbol is not in Ctx� the con�icts considered at that step are
removed from Cfls and are prevented thus from being encoded later with
respect to other unprocessed symbols �see lines ��� of NPI��� The removing

��If the choice sets are disjoint then it is not necessary to communicate these con�icts
to the candidate generator at all � they cannot be part of any generated candidate�

���

Function NPI� �CS�Ctx�
CS � �L�Choices� Confls� �pri� is a choice space� and Ctx � L� Returns the set
of minimal con�icts among the symbols from Ctx entailed by ��CS��

��� let ChSym �� faij � Ci j Ci � Choicesg�

��� let Cfls �� fc � Confls j c � Ctx � ChSymg�

�	� for each symbol a � ChSym do�

��� for each con�ict c � Cfls s�t� a � c do�

�
� encode c for hyperresolution at all Ci � Choices s�t� Ci�c � fag�
��� if a �� Ctx then

��� remove c from Cfls�

endfor

��� add each new minimal con�ict discovered by hyperresolution to Cfls�
remove from Cfls the supersets of the new con�icts�

endfor

��� return Cfls�

Figure 	���� Computing the negative prime implicates of ��CS� among the
Ctx symbols�

���

of the con�icts performed in the steps ��� of NPI� is the operation that
prevents the completeness of the negative prime implicate generation�
If the choice sets are pairwise disjoint and do not share symbols with Ctx

then it is easy to see that each con�ict is encoded at most at one choice set
�thus for each con�ict� usually� at most one justi�cation� as explained before�
is created�� As the following example shows� this procedure does not derive
all the negative prime implicates of ��CS��

Example ������ Assume a choice space has the choice sets
 C� � fa�� a�g�
C� � fb�� b�g and the con�icts
 c� � fa�� a�g� c� � fa�� b�� xg� c� � fa�� b�g�
c� � fa�� b�� yg� c� � fa�� b�g	 Suppose NPI� is called on this choice space
and the set of literals Ctx � fx� y� zg	 Suppose the order in which NPI�

iterates on the symbols is
 a�� a�� b�� b�	 Initially Cfls � fc�� c�� c�� c�� c�g	 In
the �rst iteration of NPI� the con�icts involving a� are considered	 Only c�
and c� are encoded for hyperresolution at C� �c� need not be encoded since
jc� � C�j � ��	 After the �rst iteration Cfls � fc�� c�g	 Next the remaining
con�icts involving a� are considered and c� and c� are encoded at C� and
are removed from Cfls	 The rule R� at C� derives new minimal con�icts

c� � fb�� x� yg and c� � fb�g	 After the second iteration Cfls � fc�� c�g	 In
the end� the function will return the set containing only the minimal con�ict
c� � fx� yg	

The execution of the function avoids to derive some of the negative prime
implicates� in this case
 �a� � �x and �a� � �y	

Although� NPI� avoids to derive the complete set of negative prime im�
plicates of ��CS�� as the next corollary shows� NPI� guarantees the com�
pleteness of the negative prime implicate generation with respect to the Ctx
symbols� Of course� if one chooses Ctx to be a superset of the symbols
appearing in ��CS�� then NPI� generates all the negative prime implicates�

Theorem ������ Let � be a set of clauses and Ctx be a set of symbols	
Then the algorithm NPI��� Ctx� computes all the negative prime implicates
of � among the symbols of Ctx� where NPI is de�ned as follows

�	 Initialize Cls with the set of unsubsumed clauses of ��

	 Iterate on the symbols from �� for each symbol a do

�a� Perform all the binary resolutions w	r	t	 the symbol a� Add the
new unsubsumed clauses to Cls� Remove the subsumed clauses
from Cls�

���

�b� If a �	 Ctx then remove from Cls all clauses that mention a �pos�
itively or negatively�� If a 	 Ctx then remove from Cls all clauses
that mention positively a�

�	 Return Cls	

Corollary to Theorem ������� Let CS be a choice space	 The algorithm
NPI��CS�Ctx� �Figure �	��� computes all the minimal con�icts among the
symbols from Ctx entailed by the set of clauses ��CS�	

In practice there are situations where the �xed scheme of generating the
most preferred candidates is not �exible enough� In this respect� the idea
of distributing the candidate generation among several modules� with dif�
ferent generation strategies and di�erent �competing � cooperating�
social�
behaviors could represent an issue of further research� As an illustration of
a possible organization of several candidate generation modules� Appendix
B�� gives an example of a hierarchic organization�

���

��� Putting the RMS and the candidate gen�

erator together

The �vrms �as well as other rmss� was shown to check satis�ability and to
construct some models for propositional Horn theories�
The candidate generator was shown to check satis�ability and to construct

some models for non�Horn theories consisting of purely positive and purely
negative propositional clauses�
Furthermore� we show in this section that�

� if the candidate generator is constantly updating the set of con�icts
as they are found by the rms� and if the rms is constantly updating
the focus as speci�ed by the candidate generator� then the combination
of the rms and the candidate generator can be used as a satis�ability
checker and �multiple� model builder for arbitrary propositional the�
ories� thus removing the expressiveness limitations of the rms and of
the candidate generator�

When an rms consumer is �red� it may add one or several propositional
clauses to the existing propositional theory encoded in the rms and the
candidate generator� A Horn clause is added as a justi�cation to the rms�
A non�Horn� purely positive clause� is added as a choice set to the candidate
generator �eventually with control information regarding the preference and
priority�� A mixed clause� i�e� non�Horn and not purely positive� is
split�
into two clauses� a Horn clause and a purely positive one� that refer to a new
additional literal� A mixed clause�

p� � p� � � � � � pn � q� � q� � � � � qm �n � ��m � ��

can be encoded as�

p� � p� � � � � � pn � �new ��
�new � q� � q� � � � � qm

This encoding preserves the satis�ability property of the original theory�
It is not necessary to communicate all of the positive clauses to the can�

didate generator� The positive clauses that already evaluate to true� because
one of their literals is implied by some selections in other disjunctions and
the Horn theory� need not be encoded in the candidate generator� Since the

��	

candidate generator can deal with the incremental addition of the positive
clauses� an additional module of the reasoning architecture can select which
positive disjunction to communicate next� A sensible strategy can select in�
crementally at each step one unsolved positive clause having the smallest
entropy among the possible alternatives� thus trying to perform at each time
the inferences that are most certain� This strategy selects �rst the choice
sets where strong preferences are known �for instance� the mode of behav�
ior is almost always ok�� or where only a few possible ways of solving the
disjunction exist���

The rest of this section proves the correctness of the encoding and inves�
tigates more precisely the services that the rms and the candidate generator
together provide to the problem�solver from a logical point of view�

Candidate generator � RMS� a heuristically�guided satis
ability
checker for propositional theories

Both the candidate generator and the �vrms operate at the propositional
level� First we restate what kind of services each of the modules supports
alone�
If one neglects the consumer activation� the �vrms provides the following

services to its users�

� consistency check for propositional Horn theories A�J � where A rep�
resents a focusing environment�� and J is the set of justi�cations�

� entailment check� i�e� given a certain node n one can �nd out if A�J j�
n��	 The boolean assignment v�n� � true� �A � J j� n� provides a
model for A � J in case of consistency�

� minimal supporting set generation� this service is provided by comput�
ing the labels in the detailed view of the �vrms� an operation similar
to the label computation in a focusing atms�

The candidate generator operates on propositional theories � consisting
of purely positive and purely negative clauses� i�e� � � �p � �n� Let us

��This corresponds to variable orderings in constraint satisfaction problems�
��In order to simplify the things� we considered only one environment in the rms focus�
��The consistency and the entailment checks are supported by the �cheap� focus view

of the �vrms� The labeling in the focus view of the �vrms is logically equivalent with
unit resolution� an inference procedure that provides a sound and complete answer to the
satis�ability and the entailment checks in Horn theories�

���

note the set of propositions that a candidate A � f�ai� Ci� j Ci 	 Choicesg
selects� with A�A� � fai j �ai� Ci� 	 Ag� The candidate generator provides
the following services�

� consistency check for propositional theories � � �p � �n� When no
consistent candidate can be built by the candidate generator the theory
is not satis�able� otherwise it is� This provides a sound and complete
check� as we proved in 	���	�

� when � is consistent� each focus candidate A is such that�

 A�A� j� C� for all C 	 �p� and

 A�A� � �p � �n is consistent�

The candidates are generated incrementally� according to extra�logical con�
trol strategies expressed using the preference and the priority relations�
Consider the function SAT from Figure 	���� As one can note� the di�

agnostic engine from Figure 	�� performs during candidate elaboration a su�
perset of the operations performed by SAT � namely� here we dispensed with
the consumer activation� In order to simplify the analysis SAT works with
only one candidate in the focus and we ignored the control issues regarding
the preference and the priority� The following is then true �the proofs are
given in Appendix C��

Lemma ����� Let �H be a �nite set of Horn clauses� �p be a �nite set of
positive clauses� and � � �H � �p	 Then

� SAT ��� returns failure if and only if � is not satis�able�

� if � is satis�able� then SAT returns a set of propositions A such that
A � � is consistent and A j� C� for all C 	 �p	

From each set of propositions A returned by SAT one can easily construct
a model� i�e� an assignment of boolean values to the symbols of �H ��p such
that all of the clauses evaluate to true� It is easy to see that the following
assignment has this property�

v�n� � true� �A � �H j� n��

The question whether A��H j� n is answered simply by inspecting the focus
label of the �vrms node n�

���

Function SAT ���
� is a set of propositional clauses� It is assumed that � contains only Horn clauses
and positive clauses� The function returns failure if � is not satis�able� or a set
of positive literals A otherwise� cg is a candidate generator� rms is a �vrms�

��� for each positive clause C of � do�

��� associate assumptions in the rms to the propositions from C�

�	� add a choice set for C to the cg�

endfor

��� for each Horn clause of � do�

�
� add a corresponding justi�cation to the rms�

endfor

��� repeat

��� call the candidate generator cg to generate one candidate A� if one
consistent candidate exists�

��� if the focus of cg is empty then return failure�

��� focus the rms on the environment de�ned by A�A��

���� if any contradiction node holds in the focus of the rms then

���� query the label of the contradictory nodes�
���� add the new con�icts to cg�

until the focus of cg is not empty

��	� return A�A� �

Figure 	���� An rms�based propositional reasoner�

���

SAT directly works on sets which contain Horn and positive clauses� i�e�
it does not work on mixed clauses as de�ned above� However� for each clause
set containing mixed clauses one can associate a set containing only Horn
and positive clauses such as to preserve the satis�ability property�

Lemma ����� Let C � ��p� ��p� � � � ���pn � q� � � � �� qm�� n � �� m � �
be a mixed clause� and � be a clause set	 Then

� � fCg is satis�able if and only if � � fC�� C�g is satis�able�

where
 C� � ��p� � � � � � �pn � �$�� C� � �$ � q� � � � � � qm�� and $ is a
new symbol not appearing in � or in C	

Corollary � to Lemma ����� Let �� C�C�� C� and $ be as in Lemma �	�	
	
Let F be an arbitrary propositional formula not involving $	 Then

� � fCg j� F if and only if � � fC�� C�g j� F�

Based on the above result� one can now transform any �nite clause set
into another �nite one that preserves the satis�ability property �and the
entailment property� and such that it contains only positive and Horn clauses�
Then SAT can give a sound and complete answer to the satis�ability question
of arbitrary clause sets�

Corollary � to Lemma ����� Let � be a �nite clause set� and �p � �H

be the transformation of � where each mixed clause is replaced as in Lemma
�	�	
	 Then

�	 � is satis�able if and only if �p � �H is satis�able�

	 � j� F if and only if �p � �H j� F � where F is a propositional
formula not involving any of the new literals introduced in �p � �H	

However� in case of consistency� SAT computes more than just a boolean
value� namely it returns a
consistent candidate�� We have clari�ed previ�
ously the logical properties of the consistent candidates returned by SAT
with respect to the encoded set of clauses �p ��H � What are the properties
of the sets of symbols returned by SAT with respect to the original clause
set �� is the question that we try to clarify in the following�

���

Lemma ����� Let � be a �nite and satis�able set of clauses and �p � �H

its encoding� where each mixed clause is replaced as in Lemma �	�	
	 Let A
be a set of symbols returned by SAT when called on �p � �H 	 Then

�	 � � A is satis�able	 The assignment v�n� � true� �A � �H j� n� is
a model of ��

	 if � j� n then A � �H j� n� for any propositional formula n�

�	 if A � �H j� n� then A � � j� n� for any positive literal n	

��� Related work and discussion

This chapter addressed problems related to basic reasoning tasks� Their
relevance exceeds the domain of diagnosis� Connections can be drawn with
work done in theorem proving� rms�based problem solving� default reasoning�
constraint satisfaction and� of course� diagnosis�
In our architecture� the role of the candidate generator can be also seen as

intelligently� decomposing a propositional theory into several simpler cases�
in the spirit of �Cha���� Namely� the theory is decomposed into several sub�
theories which are all Horn and can be e�ciently checked for satis�ability�
Of course� not all of the positive clauses need to be communicated to

the candidate generator� The positive clauses that already evaluate to true�
because one of their literals is implied by some selections in other disjunc�
tions and the Horn theory� need not be encoded in the candidate generator�
Since the candidate generator can deal with the incremental addition of the
positive clauses� an additional module of the reasoning architecture can se�
lect which positive disjunction to communicate next� A sensible strategy
can select incrementally at each step one unsolved positive clause having the
smallest entropy among the possible alternatives� thus trying to perform at
each time the inferences that are most certain� This strategy selects �rst the
choice sets where strong preferences are known �for instance� the mode of
behavior is almost always ok�� or where only a few possible ways of solving
the disjunction exist�
The most important motivation behind the design of the �vrms and of the

candidate generator was not to solve general satis�ability problems� There
are many algorithms that address this problem� all of them being exponential
since the problem is NP�complete� More important are the extra�logical
features that guide the search for a solution� namely the preference and

��

priority concepts� These concepts can be used to encode problem�speci�c
control information� For instance� in diagnosis� the probability distributions
of the behavioral modes are used to guide the search for a diagnosis� Another
important feature of the rms and the candidate generator is the incremental
way in which they operate� they reuse as much as possible the old results
when new clauses are added to the theory�
What is the additional power that the rms consumer architecture brings�

The consumer activation mechanism makes possible to go beyond the ex�
pressiveness limitations of the propositional logic� or of the �nite�domain
constraint satisfaction� It makes possible to solve problems expressed in� for
instance� �rst�order predicate logic �FOPL�� How this is done is not described
exactly in this thesis��
 However� even for problems that have a �nite en�
coding in propositional logic the consumer mechanism can prove extremely
useful� it can be used as an additional control mechanism when the size of
the complete propositional theory is too big� For instance� in diagnosis� the
constraints associated to the faulty modes are not added to the theory as long
as no focus candidate mentions them� Additional control strategies� except
the one based on the preference and priority� can be encoded in the consumer
architecture " which has the role to
unfold� the set of propositional clauses
when necessary �see also �dK��c���

����� Controlling the ATMS

The �vrms is able to provide all the services that the rmss from the atms
family can provide� i�e� consistency checking� entailment checking and min�
imal support set generation� but controls the operations in a more e�cient
way�

In �dK
�b� it was also noted that even the focusing atms performs fre�
quently unnecessary labeling work for diagnostic tasks� The htms �Hybrid
tms� used in �dK
�b� and �dK
��� was reported to combine some features
of the focusing atms� with those of a jtms� but� to the knowledge of the
author� there is no publication that gives more details about the design of
the htms so far� The htms was reported to �nd only one nogood for an
inconsistent focusing context� but we do not have the information required
for a more thorough comparison�
In �dK
�b�� the htms was used in conjunction with an ltms� Based on the

�	This is no wonder� since satis�ability in FOPL is not decidable�

���

observation that in practice in diagnosis most of the candidates are consistent�
�dK
�b� used by default the cheaper ltms to validate a candidate� i�e� used
the ltms for the consistency check� and switched to the htms in order to
�nd �minimal� con�icts only when the candidate was found inconsistent�
Signi�cant reductions of the time and memory spent for solving diagnostic
problems were reported in this way� compared with the previously htms

based implementation�

We believe that the �vrms can be seen as an improvement over the ar�
chitecture described in �dK
�b�� In �dK
�b� the ltms and the htms were
loosely coupled� not integrated� In our architecture� the jtmsset view is used
to further control the environment propagation in the �focusing and lazy�
atms view� Also� since the jtmsset is a multiple�context tms� as opposed
to the ltms and htms combination� the context switching within the focus
worlds comes at no cost in the �vrms�

Of course� in the worst case the �vrmsmay perform as bad as the focusing
atms��� which� in the worst case is as bad as the basic atms� However� in
the problems we met this never happened� The �vrms constantly performed
signi�cantly better than the focusing atms� which in turn performed much
better than the basic atms� Without giving up the requirement to compute
minimal environments� the worst case behavior cannot be improved� It is not
evident� however� how useful will prove the relaxation of the minimality in
an overall reasoning architecture� i�e� including the ps� when other reasoning
tasks performed by the ps depend critically on �nding the minimal supports�

As a limitation of the �vrms we can note that� if the number of con�
texts that have to be simultaneously considered in the focus is very big� thus
the size of the fLabels gets signi�cantly large� the management of the focus
view can become harder than the management of the labels of a focusing
atms� Also� the speci�cation of the focus in the �vrms is less �exible than
in the focusing atms� a focusing atms can work with an intensional fo�
cus speci�cation �e�g�
all the single�faults��� while the �vrms requires� like
the single�context rmss� an extensional speci�cation of the focusing environ�
ments� However� by setting a few control parameters in the �vrms� it is
easy to con�gure it such as to behave like a basic� lazy� focusing atms� as a
jtmsset� and of course as the �vrms� We think that this is a useful feature
in order to customize the rms for di�erent application domains�

��This is not true if we give up the requirement to compute minimal environments for
the dLabels� a variant that can be easily realized using the control techniques from ������

���

����� CSP techniques and candidate generation

There is a close analogy between our problem�solving architecture and the
��nite�domain� Constraint Satisfaction Problems �CSP� �cf� �Kum�� see also
�dK�
� �� A �nite�domain CSP is de�ned by�

� a �nite set of variables each having a �nite domain of possible values
associated� and

� a �nite set of constraints that limit the allowed assignments of values
to some subsets of variables�

A solution to a CSP is a complete assignment of values to the variables that
does not violate any of the constraints� Usually in CSP one is interested in
only one arbitrary
consistent� assignment�
To see the analogy with our candidate generation problem one can asso�

ciate to each variable and variable domain a choice set� and to each constraint
from a CSP the prohibited sets of assignments as �minimal� con�icts� Note
that our problem is usually more general than CSP in several ways�

� most important is the requirement of our candidate generation that the
consistent candidates proposed cannot be arbitrary� i�e� a certain form
of plausibility � optimality expressed by the preference and priority has
to be ensured�

� another requirement coming from diagnosis is to construct several solu�
tions� when several plausible ones exist� since this underlies the further
process of investigation� namely the test�pattern� measurement and re�
pair proposal���

Most of the CSP algorithms select incrementally growing sets of variables
for which attempt to build a partial solution� After selecting a new variable
and a certain value assignment forward checking techniques test �in varying
degrees� the consistency of the new partial solution� In case of inconsistency
a varying e�ort is spent to identify the cause of the failure� and di�erent
algorithms perform a �more or less dependency directed� form of backtracking
�see for instance the backjumping and dynamic backtracking techniques� cf�
�Gin
���� Most of the CSP algorithms avoid to store and use the complete

��There are also other minor di�erences � e�g� the elements of our choice sets need not
be exclusive �i�e� pairwise inconsistent�� and our choice sets need not be disjoint� like it is
usually the case in CSP�

���

set of con�icts found during the search� and compared with our problem
solving architecture� may perform unnecessary search e�ort at the trade of
consuming less memory�
We mentioned previously that it makes sense to interleave the selection of

the next disjunction � choice set to solve in the candidate generator with the
�partial� candidate testing in the rms� The heuristic that chooses the next
disjunction to consider can take advantage of variable ordering strategies
developed in CSP� The preference order among the elements of a choice
set is analogous to a �xed value ordering in CSP� Focusing the rms on a
partial candidate �solution� and checking consistency corresponds to forward
checking in CSP�
It seems that the CSP community has addressed more the trade�o� be�

tween the memory consumed and the amount of backtracking performed
during the search for a solution� Because in the �vrms there is a �ner con�
trol on the amount of labels and nogoods computed this trade�o� seems to
have now better chances to be addressed� as a possible future work� In an
extreme case� when the �vrms is con�gured to work like a jtmsset� there is
no need to store any nogood in the rms� We mentioned in 	���� that due to
the ordered way of investigating the candidate space� the candidate generator
can dispense during the search with many of the con�icts that become non�
relevant� Di�erent problem�solvers� and variants of
candidate generators�
might choose to cache di�erent amounts of con�icts�
When a certain degree of optimality has to be ensured� most of the CSP

algorithms employ a
branch�and�bound� strategy� i�e� they �a� �nd a �rst
�arbitrary� solution� �b� assert that the next solution has to have a better
optimality measure� �c� continue the search further� This approach tends to
be very sensible on the existence of good variable ordering strategies that
select
more important � critical� variables �rst� In diagnosis� the modes of
behavior of the components are such
more important� variables� However�
there are usually very many such variables �for each component one�� all
of them having approximately the same
importance�� In such a case it is
likely that the
branch�and�bound� search strategy will perform worst than
our search strategy because we build
optimal� solutions from the beginning�
It is reasonable to believe that the CSP algorithms spend less e�ort to �nd
the �rst �not necessarily optimal� solution� since when inconsistencies are
found usually only one way of solving the inconsistency is considered� We
spend more e�ort because we keep in our lower bounds all possible alterna�
tives of dealing with the con�ict� However� the CSP algorithms must spend

���

afterwards a considerable e�ort to �nd one �several� optimal solution�s�� i�e�
after they �nd a �rst solution� In our setting when we �nd a consistent
solution we are guaranteed that it is
optimal��
Nevertheless� we could further improve our algorithms if we observe that

not all of the choice�sets a�ect in an equal measure the optimality of the
solution� Except the modes of behavior� where we usually have strong pref�
erences� there may exist other choice sets �disjunctions� in the formulation
of the problem� where we have no preference among the elements� In such a
case� any solution with respect to these
secondary� choice sets might be as
good as any other� We can then split our choice sets into two partitions�

� the primary choice sets� whose semantic is as before� and

� the secondary choice sets�

In a �rst step some preferred primary choice assignments could be generated
using the techniques described in this chapter� For each primary choice as�
signment that comes into the focus an attempt to extend it consistently with
a secondary choice assignment should be made� This can be done� as it is
usually done in CSP� without considering simultaneously all of the possible
ways of resolving the con�icts� If a primary choice assignment cannot be con�
sistently extended with any secondary choice assignment this is an indicator
that a con�ict within the primary choice assignment exists� Hyperresolution
rules� used in a similar way as described in 	���	� are su�cient for deriving
the �minimal� con�icts among the primary choice assignments� Appendix
B�� describes an algorithm that searches one consistent extension of a set of
symbols with an assignment for the secondary choice sets�
The introduction of the secondary choice assignments reduces the size

of the lower bounds and can positively a�ect the e�ciency of the candidate
generation�

����� Increasing the completeness of the ATMS

Our rms�candidate�generator architecture may be seen also as a way of in�
creasing the completeness of the atms �cf� �dK��b� dK��� dK
�a� Dre���
FdK
���� We begin by clarifying the terminology�

� If a certain algorithm is able to detect always the unsatis�ability of any
logical theory from a certain class� we say that it is refutation complete
for that class� If the algorithm signals unsatis�ability only when the

��	

theory is logically unsatis�able� then we say it is refutation sound� For
instance� the jtms� ltms� atms� are refutation sound and complete for
Horn theories�

� If a certain algorithm is able to detect always when a formula is entailed
by a logical theory� we call it formula complete� The soundness is
de�ned as above� The formula completeness and soundness can be
relaxed to refer only to certain classes of formulae� for instance we
talk about literal completeness when the above property holds for any
literal�

� In an atms�like rms� one can also talk about the label completeness�
soundness� minimality� and consistency �see ����	�� This can be de�ned
with respect to a larger class of logical theories� not only to the Horn
ones� Note that� these properties can be regarded as instances of the
formula completeness �see also the discussion from ��	��

Among the di�erent
completeness� properties the most important one
is the refutation completeness �and soundness�� The other degrees of
com�
pleteness� should be treated with great care since they can involve prohibitive
amounts of work� Clearly� none of the techniques discussed here ever at�
tempted to achieve formula completeness in general�
Neither the jtms� jtmsset� ltms� nor the �basic � focusing � lazy� atms�

achieve any of the above forms of completeness in general� They all achieve
the refutation completeness and the positive literal completeness for Horn
theories� The atms family achieves formula completeness for certain classes
of prime implicates in Horn theories�
As noted in �dK
�a� �the subject is revisited in �FdK
���� there are two

extreme techniques for coping with the incompleteness� One is based on
performing search� by introducing� testing and retracting assumptions� The
other one is based on pre�compiling the set of prime implicates of a theory�
The second approach� followed in �dK
�a�� is based on the observation that
if a set of propositional formulae is converted to their prime implicates� then
boolean constraint propagation �bcp�� the inference procedure underlying the
ltms� is a complete and e�cient inference procedure� More precisely� one
reaches the refutation completeness� the literal completeness and� of course�
the prime implicate completeness� Unfortunately� the number of prime impli�
cates of a formula is often exponential in the size of the formula� Therefore�
unless the formula is small� this technique is impractical� Of course� the
partial pre�compilation and the search can be combined� In �dK
�a� it was

���

suggested to use the locality of knowledge in particular problem domains in
order to guide how many� and which logical formulae to convert to their set
of prime implicates� As noted in �dK
�a�� the search cannot� or should not�
be totally eliminated in practice �similar arguments were also stated in the
CSP context� as noted in �dK�
� and �Mac�����
The rest of the techniques aiming to increase the logical completeness of

the rmss� e�g� �dK��b� dK��� Dre���� as well as our algorithms for candidate
generation� can be regarded as search�based approaches�
In �dK��b� a series of techniques that increase the logical completeness of

the atms were introduced� They are based� as in our case� on the extension
of the atms with disjunctions over assumptions �called chooses�� The ex�
tended atms from �dK��b� achieved� except the refutation completeness� the
node label completeness and consistency with respect to the whole proposi�
tional theory� i�e� including the justi�cations and the chooses� In our case
we avoided to ensure by default even the �detailed� label completeness and
consistency with respect to the Horn theory represented by the justi�cations
in the �vrms� The additional degree of completeness and consistency comes
at a signi�cant additional cost� by integrating several hyperresolution rules
on top of the basic atms�
In �dK��� the atms was extended with negations of assumptions� Very

similar to this extension is also the one from �Dre���� where out�assumptions
were introduced� Based on the negated assumptions� any propositional clause
can be encoded� The extensions achieve the refutation completeness and the
label consistency with respect to arbitrary propositional theories� but forgo
the label completeness� Both extensions embed a nogood inference rule� sim�
ilar to the rms implementation of the hyperresolution rule R� from 	���	�
Although the label completeness was not achieved� a relaxed but still inter�
esting form of label completeness was ensured by the extended atmss from
�dK��� Dre���� namely� the label completeness with respect to the interpre�
tation environments�

Interpretation construction

The techniques of �dK��b� dK��� Dre��� were designed for the basic atms�
The basic atms works in all possible consistent contexts in parallel� The max�
imal consistent environments are called interpretations �cf� �dK��b��� Most
of the problem�solvers based on the basic atms constructed as solutions the
set of interpretations� Algorithms that construct the whole set of interpre�

���

tations can be found in �dK��b� and in �FdK
�� pp� 	���	�
� A simple �but
not very e�cient� scheme for constructing the interpretations can be based
on the atms label propagation� where for each disjunction �choice set� a
new
disjunction� node justi�ed by each member of the choice set is created�
and additionally a
goal� node justi�ed by the conjunct of the
disjunction�
nodes is created��� The label of the
goal� node contains the minimal sets
of consistent assumptions that solve all of the positive disjunctions� These
environments can then be extended in all possible ways with assumptions
until the border with inconsistent environments in the environment lattice
is reached� There is a certain correspondence between the interpretations�
more precisely� between the environments from the label of the
goal� node�
and our consistent candidates� both must solve �imply� all of the positive
clauses �chooses� or choice sets�� The di�erence between them is that� while
the environments from the label of
goal� are minimal support clauses of the
conjunct of positive disjunctions� our consistent candidates are just support
clauses of the conjunct of disjunctions� but not necessarily minimal���

As argued in �dK���� the extended atms from �dK���� and thus also the
one from �Dre���� achieve the label completeness with respect to the inter�
pretation environments� i�e� every interpretation I in which a node n holds
is a superset of some environment from n�s label� Although our consistent
candidates are not interpretations� the �detailed� label completeness in the
�vrms % candidate generator architecture holds with respect to the con�
sistent candidates too� This service is ensured at request� i�e� only after
focusing the �vrms on the candidate and after querying the detailed label�
However� the �vrms does not need to query the detailed label to decide that
the node holds given a consistent candidate� this information is provided�
once focusing on that candidate� by the focus labels�

The interpretation construction in the atms was one of the most ex�
pensive services because it attempted to build all such maximal consistent
environments� As opposed to it� our candidate generator� attempts to con�
struct incrementally only a few candidates that satisfy the preference and
the priority requirements�

��One can see the relationship with the construction of the minimal extension bases

in the nmatms �cf� 	Dre���� see also Appendix A�
�� where the disjunctions solved are
p � pout� and the �goal� node is noted ��

��A su�cient condition for reaching the above minimality is when the choice sets are
disjoint and there are no implied assumptions�

���

����� Candidate generation in model�based diagnosis

While there are several papers that discuss focusing the atms and the con�
straint �value propagation �cf� �dK
�� dK
�b� DF
�� FdK��� Gol
�� Ham
�a���
only a few discuss candidate generation in more detail�

Reiter �cf� �Rei���� introduced the HS�tree for the computation of the
diagnostic candidates� The HS�tree algorithm� improved later in �GSW�
��
computes the whole set of minimal diagnoses� de Kleer and Williams used
in gde �cf� �dKW���� an algorithm that computed only a subset of the
minimal diagnoses� namely some of the most probable ones� Mozetic �cf�
�Moz
��� even gave a polynomial algorithm for the computation of an arbi�
trary minimal diagnosis � however� we think there is no practical relevance
for computing just an arbitrary minimal diagnosis� Mozetic�s algorithm could
return a multiple�fault diagnosis even when single�fault diagnoses exist�

The concept of minimal diagnosis is only appropriate when one does not
use knowledge about the fault modes �cf� �SD�
��� Heuristic information
about the frequent failures is usually used by human diagnosticians� and
is essential for focusing on the most plausible diagnoses and for achieving
e�ciency in the process of investigation �i�e� observation � probing� and test�
pattern proposal�� The increase of expressiveness due to the consideration of
several behavioral modes also leads to more dramatic complexity increases of
the diagnostic tasks� In this context� as noted in �dKW�
� dK
��� focusing on
a small number of plausible candidates became a key feature of the diagnostic
engines�

Sherlock �cf� �dKW�
� dK
��� focused on a small number of the most
probable candidates �the
leading diagnoses��� There are� however� to the
knowledge of the author� no published details about the algorithms for can�
didate generation used by Sherlock� It uses probably an algorithm that
constructs in a best��rst manner some interpretations in an atms� Our fo�
cusing strategy is to focus on the preferred diagnoses having the highest
priority� The priority can be speci�ed using the probability of the mode as�
signments� as we have done in practice �see some earlier reports of our work
in �TI
	a� TI
	b��� In this case the proposed candidates are some most prob�
able candidates chosen from the preferred ones� a concept very close to the
one of the leading diagnoses� However� the most probable diagnoses do not
coincide with the most probable preferred diagnoses in general� The reason
is that some of the �rst k most probable diagnoses may not be preferred�

The closest relationship with our work has the work of Dressler and

���

Struss described in �DS
�� DS
	�� Their initial approach �cf� �DS
���� which
proposed to compute all the preferred diagnoses� was recently improved in
�DS
	�� where they also focus on a subset of the preferred diagnoses as we
do� Dressler and Struss use default logic to characterize the preferred diag�
noses and the nmatms �cf� �Dre��� Dre
��� to compute them� A choice set
C � fa�� a�� � � � � ang� a� �C a� �C � � � �C an� is expressed in their formalism
by the set of normal defaults�

� a��a�� �a� � a��a�� � � � �a� � �a� � � � � � �an�� � an�an�

The process of constructing the preferred diagnoses in the nmatms uses
an algorithm similar to the ones used for interpretation construction� but the
maximal sets of consistent assumptions are generated in an incremental way�
A similar pruning as that achieved by us �see Lemma 	����	� and Lemma
	������� is also achieved in the implementation based on the nmatms� The
label of a special nmatms node �noted &� is used to generate the candidate
diagnoses and plays a similar role as our lower bounds� In the nmatms�
the justi�cations installed as a consequence of the nogood inference rule and
the label propagation play a similar role as the insertion of the immediate
successors with respect to a con�ict in our algorithm�
Di�ering from our lower bounds� which may contain inconsistent candi�

dates if those candidates do not have a high enough priority� all the envi�
ronments from the label of & must be consistent with respect to the set of
nogoods stored in the nmatms�
The main advantage of not implementing the candidate generator within

the �nm�atms is in our opinion the increased �exibility in tuning the control
strategy and in using more speci�c data representations �see 	���� and 	���	��
For instance�

� we are not forced to impose the consistency of the whole lower bound�
not even with respect to the nogoods already found in the rms�

� the con�icts encoding the exclusive choice sets are implicitly dealt with�

� when testing the consistency we can dispense with considering the
whole set of con�icts� and use in the candidate generator only the still
relevant con�icts for the lower bound instead�

� the application of hyperresolution rules that increase the formula com�
pleteness of the rms�candidate generator architecture may be con�
trolled in a tighter way�

��

� the representation of the candidates can store only the
exception�
choice sets�

� other special�purpose representations are conceivable� for instance� in�
stead of representing extensionally the set of direct successors with
respect to a con�ict� an intensional representation that stores only the
parent and the con�ict could be used in order to further increase the
e�ciency�

The extension with secondary choice sets from 	���� brings more control
over the number of successors considered when a focusing candidate is found
inconsistent� This strategy can be implemented in the nmatms�based archi�
tecture of Dressler and Struss� by controlling the order and time of insertion
of the justi�cations that are a consequence of the nogood inference rule� The
e�ect of using a candidate generator with secondary choice sets� would cor�
respond to an application of the nogood inference rule that creates only one
justi�cation for the nogoods that contain secondary assumptions�

���

Chapter �

Model�Based Diagnosis with

Dependent Defects

��� Introduction

The application of the current model�based diagnostic techniques in prac�
tice continues to face several di�culties� Among them� the assumptions that
the faults are independent and that diagnosis and repair can be regarded as
orthogonal tasks� does not seem to be reasonable� Although the current ap�
proaches are able to diagnose multiple faults� they fail to provide satisfactory
solutions when there are cascading defects� For several reasons� the diagnos�
tic session may provide as the most probable�preferred�minimal diagnosis
one that includes only a subset of the actually broken components�� In such
a case� the repair phase following diagnosis will be incomplete� The worst

�Among the reasons for such an outcome� one can note that�

� there is no guarantee that all the relevant symptoms have been observed� Some
relevant symptoms may not even be exhibited in the current situation� Observing
them would require the change of the test pattern�

� multiple faults are considered less plausible than single faults � the generation of
supersets of a diagnosis explaining the current observations is explicitly avoided by
approaches based on the notion of minimal
preferred diagnoses�

� some cascading defects can mask the cause� e�g� the failure fA � fB caused by fA�
can have exactly the same observable e�ects as the failure fB � in such a case� the
only way of discriminating between them requires the replacement of the component
B� thus the interleaving of the diagnosis and the repair tasks�

���

is that� if the repair fails to eliminate the cause of the failure� the existing
undetected defects will cause the already repaired components to break again
�and again�� Simply restarting the diagnosis as an independent task would
probably end with the same unsatisfactory answer as before�
The scenario in which one �nds a broken component and replaces it�

but after a short time one discovers the same component broken again� is
relatively common� and more di�cult to diagnose�

Casual relations among failures are less frequent in the domain of digital
circuits� but they �ood the domain of analog circuits� The most common
example is that of a fuse� whose correct behavior is exactly to break when
there is an overcurrent� probably caused by a failure elsewhere in an electrical
circuit�� In fact� there is a large range of components which break when
exposed to certain abnormal conditions� e�g� bulbs� semiconductor junctions�
insulators� resistors� capacitors� and many others�

=
E B R1

GND
R2

K

1

2
3

Figure ���� A simple electrical circuit with cascading defects

Example ����� Consider the toy electrical circuit from Figure �	�� contain�
ing a power�supply E� a bulb B� resistors R�� R� and the switch K	 Assume
that
 �i� a normal bulb breaks if exposed to an overcurrent as the one caused
by shorted�Ri�� �ii� we observe broken�B� in the situation K � �	 Without
modeling the causal relations a�ecting the change of the bulb�s modes� the di�
agnostic engine cannot infer that in the situation K � � the fault shorted�R��
forces a normal bulb to break	 There is only one minimal�preferred diagno�
sis computed without this knowledge
 fbroken�B�g� while the �non�minimal
� non�preferred� diagnosis fbroken�B�� shorted�R��g would be assigned a
wrong plausibility measure	 Suppose we replace the bulb� but the above symp�
toms reappear	 What information can one extract from that�

�The purpose of this behavior is to protect other more expensive parts of a circuit�

���

Simply allowing the faults to be intermittent and performing temporal
diagnosis is not enough� we are less interested in �nding out that at the time
point � the bulb was correct and at the time point � it is broken " we are
more interested in the explanation of why the bulb changed its mode� did it
actually behave intermittently� or was the mode�change a predictable event
in the given situation�
In this chapter we present an approach in which the causes of the mode

transitions can be modeled� Apart from a representation formalism that
allows to capture the causality of the mode changes� we are interested in
avoiding the introduction of unnecessary increases in complexity� the com�
plexity of diagnosis should depend on the complexity of the problem at hand
and not on the representation� as far as possible� That means that� there
shouldn�t be an increase of complexity just due to the use of the extended
framework if the problem at hand does not require the newly added features�
i�e� if there is no caused defect possible �modeled��
In the proposed approach each component is modeled as a �tiny� �nite�

state machine� The modes of behavior are regarded as states� This enables
to model �at least partially� the causality that drives the mode changes� One
can now easily integrate repair actions into the component models� More�
over� it is possible to continue a diagnostic session even after performing
some repair actions� without making the implicit assumption that the newly
repaired�replaced components are and will be correct forever� The represen�
tation can also be used to model dynamic components with memory� though
the di�culties of diagnosing dynamic systems are well known and challenging
�cf� �HD�	� Ham
�b� DJD�
����
The problem of �nding the diagnoses is closer to the problem of state

identi�cation in an automaton� namely� we map diagnosis to the problem of
transition path identi�cation� Our approach o�ers an attractive degree of
prediction reusability if implemented on top of an rms� namely it achieves
prediction reusability across contexts � like any rms�based problem solver �
and also across time� It also allows the reuse of the mechanisms for candi�
date generation based on minimal con�icts discussed earlier in this thesis�
without introducing unnecessary complexity in the cases when the system
under diagnosis behaves statically�
We build the framework in a gradual way�

� The deterministic �nite state machine framework �Section ���� assumes
that all the state transitions that occur during diagnosis can be deter�

���

ministically predicted� and that one has exact temporal information
about the observations and the durations of the mode transitions�

� The pseudo�static framework �Section ��	� removes the assumption
about the availability of exact temporal information about the obser�
vations� an assumption that is hard to keep in applications concerning
the electrical domain� The pseudo�static framework introduces as well
some new presuppositions in order to deal with the underconstrained
nature of the new problem� Namely� it is assumed that the system al�
ways reaches a steady state in a �nite number of mode transitions after
each input change� It is also assumed that this steady state is reached
very quickly� i�e� before another input change occurs�

� Section ��� discusses the possibility of reasoning
backwards� from cer�
tain states to possible situations that might have caused that state�

��� Repair and testing during diagnosis

As stated in the introduction� in the case of cascading defects the need to
interleave diagnosis and repair is higher� Observing the system symptoms
after a repair action is a valuable information source and it should not be
neglected� Since the approach that we are going to describe in this chapter
can capture the causality of the mode changes� it is very easy to model
repair actions� some �special� input changes cause some mode transitions
from defect modes to correct modes� The cost of changing such controllable
inputs could re�ect the cost of the repair�
The cases when faulty behavior persists even after performing the repair

actions� should shift the focus of the diagnostic engine to other unconsidered
alternatives� like� for instance� the existence of some cascading defects�

��	

��� The Finite State Machine Framework

����� Basic presuppositions

We make the following assumptions about the system under diagnosis�

�� The modeling assumption
 Each component is modeled as a determin�
istic �nite�state machine� i�e� given the state and the input assignment
for the current time point� the values of the outputs at the current
time point� and the next state can be deterministically predicted� The
behavioral mode is regarded as a state variable�

�� The closed world assumption
 The only state transitions that are al�
lowed to occur during diagnosis are the ones that can be predicted
based on the behavioral descriptions and the knowledge of the inputs
of the system�

�� The synchronous composition assumption
 If several state variables
could change their value at the time point t� it is assumed that all of
them occur simultaneously�

The modeling assumption restricts the attention to the deterministic aspects
of behavior of each component� If one ignores the causality of the mode
changes it is relatively reasonable to assume that each component has a de�
terministic model� However� one cannot claim in general that it is feasible to
capture all the causes that drive the mode changes� In practice� the causality
of the mode changes can be at most partially described� We require that the
models capture the deterministic �and frequent� causes of the mode changes�
like the repair actions and the operation beyond the admissible operating
regions� Of course� there are mode changes that are not captured by the
models �for instance aging�� but the closed world assumption� a relaxed ver�
sion of the non�intermittence of modes assumption �cf� �RdKS
���� restricts
them to occur only before the start of the diagnostic session� Unexplainable
mode changes can represent primary causes of other cascading failures� The
unexplainable primary causes are not supposed to occur during diagnosis�
however� the defects caused by the primary ones and by the inputs applied
can� of course� occur during the diagnostic session�

The synchronous composition assumption ensures that the composed be�
havior of the components is deterministic� given that the individual behavior
of the components is deterministic�

���

����� Basic concepts

The de�nition of the system under diagnosis makes the one from Chapter
� �cf� De�nition ������ more particular� assuming that the components are
�nite state machines� It is assumed that the description of the behavior
of a component can be done using constraints � equations � logical state�
ments among a set of variables characterizing the component� Among these
variables� apart from the usual inputs and outputs� there are two speci�ed
subsets with a special semantics� a subset of variables� StateV arsCi

� is used
to denote the current state of the component Ci� while the variables from
NextStateV arsCi

are used to predict the next state of the component� Be�
tween the variables from StateV arsCi

and the ones from NextStateV arsCi

there is a one�to�one correspondence that is given in the system description�

De
nition ����� �System� A system is a tuple

Sys � �SD�Comps�CompV ars� SysInputs��where

� SD describes the structure of the system and the components� behavior
� it is a set of �rst�order sentences�

� Comps is the set of components� i	e	 a set of constants�

� CompV ars associates with each component Ci
 the set of state vari�
ables StateV arsCi

� the set of variables used to predict the next state
NextStateV arsCi

� other variables relevant for the component OV arsCi
�

and a function FCi
� NextStateV arsCi

� StateV arsCi
providing a

one�to�one association between the next�state and the state variables

CompV ars �

f�Ci� StateV arsCi
� NextStateV arsCi

� OV arsCi
�FCi

� j Ci 	 Compsg�

� StateV arsCi
� NextStateV arsCi

� OV arsCi
� and SysInputs are disjoint

sets of variables	

As can be seen� SD embeds no concept of time� The behavioral descrip�
tion is temporally generic� it describes the relation among the inputs� other
variables� states and the next state for a generic time point�

Example ����� Consider the description of a fuse F using two modes of
behavior
 correct � ok and broken � bk	 Suppose that the fuse breaks when

���

the current exceeds a certain limit IB	 In addition to the usual variables
holding the current and the voltage at the fuse�s terminals the description
uses one state variable �s�� respectively one next�state variable �snext� for the
mode of behavior of F 	 The behavior description could look like

s � ok
 �ileft � iright � uleft � uright� � �jileftj � IB
 snext � bk�
� �jileftj � IB
 snext � ok��

s � bk
 ileft � iright � � � snext � bk�

If one wants to model the action of repairing a fuse� one possibility is to add
another input to the model of a fuse� say rep� whose value being true controls
the transition from the broken mode to the correct mode

s � bk
 �ileft � iright � �� � �rep
 snext � ok� � ��rep
 snext � bk��

We use the following additional notations�

� The global state of the system is given by the vector of component state
assignments� We note with StateV ars� NextStateV ars the union of
the sets StateV arsCi

� respectively�NextStateV arsCi
�

� The global association between the system�s state� respectively� next
state variables is noted with� F � NextStateV ars� StateV ars�

F�s�� �

�	

	�
� � �
FCi
�s��� if s� 	 NextStateV arsCi

�
� � �

� A state assignment is a set d � f��si � vj��g where si 	 StateV ars�
Analogously� input assignments are de�ned� A complete state �input�
assignment assigns exactly one value to each variable from StateV ars
�SysInputs�� We use lowercase letters to denote partial state�input
assignments and uppercase letters to denote complete assignments�

� An input�observation sequence is a sequence� ��i�� o��� � � � � �ik� ok���
where ij are input assignments and oj are sets of �rst order sentences�

What can one do with such descriptions� Assume an rms�based predic�
tion engine in which the constraints of SD are represented and the input
assignments and the state assignments are rms assumptions� The following
questions can be answered�

�As usual� we sometimes note the sequences by enumerating their elements� i�e�
�e�� e�� � � � � en�� or using the dot notation� i�e� �e���e�� � � � � en��� We note the empty se�
quence with ��

���

input
variables

state
variables

next-state
variables

other
variables

i1

ik

.

.

.

i2

s1
s2

.

.

.

s1next
s2next

.

.

.

.
.

.
.
.

. .

.

.

.

...

T1 T2 T3 ...
i1

obs1

s1

i2
obs2

i3
obs3

. .
.... .
.

.

.
. .
.... .
.

.

.
. .
.... .
.

.

.

Figure ���� Prediction across several time points�

� the consistency check
 are an input assignment I� a state assignment
D and some observations o consistent with SD� i�e� is I �D � o � SD
consistent�

� the entailment check
 given an input assignment I and a state assign�
ment D� what other variable assignments are entailed� In particular�
what assignments to the next�state variables are predicted�

� the minimal�support�set computation
 given a certain variable assign�
ment �in particular a next state assignment�� under which minimal
conditions � in terms of inputs and state assignments assumed � is the
variable assignment predicted�

The rms network
spreads the activation� from the currently enabled state
and input assumptions to the rest of nodes� The next state can be retrieved
by querying the next�state nodes
active� in the current time point context�
The sequence of time points is not explicitly represented in the rms net�
work� To make predictions across several time points the diagnostic engine
has to
simulate� the automaton by executing the cycle of focus changes cor�
responding to the sequence of inputs and states �see Figure ����� Prediction

���

reusability across time is achieved the same way as prediction reusability
across contexts in an rms�

De
nition ����� �Next System State� Let Sys be a system and A be a
set of �rst order sentences� such that
 SD�A is consistent	 The next system
state for �Sys�A� is a state assignment
 �si � vj� 	 NextState�Sys�A��

SD � A j� �s�i � vj�� s�i 	 NextStateV ars and si � F�s
�
i��

As de�ned above� the sets NextState�Sys�A� contain those assignments
to state variables that are deterministically predicted for the next time point
under some conditions �assumptions� A� The assumption that a system is a
deterministic �nite state machine can be expressed formally�

De
nition ����� �FiniteState Machine� A system Sys is a determinis�
tic �nite state machine �FSM� if and only if

�	 each state variable takes values from a �nite domain� and

	 for any complete state assignment D and for any complete input as�
signment I the next system state NextState�Sys� I �D� is a complete
state assignment if SD �D � I is consistent	

De
nition ����� �Path Description� Transition Path� Let Sys be a ��
nite state machine	 A sequence ��d�� i�� o��� �d�� i�� o��� � � � � �dk� ik� ok��� where
dj are state assignments� ij are input assignments� and oj are sets of �rst
order sentences is a path description for Sys if and only if

�j� � � j � k� SD � ij � oj � dj is consistent� and
�j� � � j � k� dj�� � NextState�Sys� ij � oj � dj��

A transition path is a path description in which all the state and the input
assignments are complete	

A path description characterizes several transition paths that extend the state
and the input �partial� assignments to
consistent� complete assignments�
The observations oj that are part of the descriptions constrain the set of
transition paths characterized by a path description� It can be seen that�
due to the deterministic framework� for any state assignment d and for any
input�observation sequence ioseq there exists at most one path description
that has the initial state assignment d and takes the inputs and observations
from ioseq�

��

De
nition ����� �consistency � con�icts� A state assignment d� is con�
sistent with an input�observation sequence ��i�� o��� � � � � �ik� ok�� if and only
if there exists a path description having the form ��d�� i�� o��� � � � � �dk� ik� ok��	
d� is consistent with the empty sequence if and only if SD � d� is consistent	

A state assignment is a con�ict for an input�observation sequence if and
only if it is not consistent with that input�observation sequence	 A con�ict c
is minimal if and only if no proper subset of c is a con�ict	

Property ����� Let Sys be a system� d be a state assignment and ios be an
input�observation sequence for Sys	 Then

d is consistent with ios i� d includes no minimal con�ict for ios	

De
nition ����� Let seq � �e�� � � � � ek�� seq� � �e��� � � � � e
�
k�� be two se�

quences of length k	 We note

seq � seq� i� ej � e�j for all j� � � j � k�

If the elements ej� e�j are pairs� i	e	 ej � �ij� oj�� e�j � �i
�
j� o

�
j�� then we note

�ij� oj� � �i�j� o
�
j� i� ij � i�j and oj � o�j 	 If the elements of the sequences are

triples� we note �dj� ij� oj� � �d�j � i
�
j� o

�
j� i� dj � d�j� ij � i�j and oj � o�j 	

Property �����

�	 Any superset of a con�ict for an input�observation sequence is a con�ict
for that input�observation sequence	

	 If c is a con�ict for ios� then c is a con�ict for any input�observation se�
quence ios� �tail� where ios � ios�� tail is an arbitrary input�observation
sequence� and ��� denotes the concatenation of two sequences	

The proofs are given in Appendix D� We reformulate the diagnostic problem
as follows�

De
nition �����	 �the FSM Diagnostic Problem� Given an input�
observation sequence Ioseq � ��I�� o��� � � � � �Ik� ok��� where Ij are complete
input assignments� �nd all �or some �preferred�� transition paths consistent
with Ioseq� i	e	 having the form ��D�� I�� o��� � � � � �Dk� Ik� ok��	

As a strategy for �nding the consistent transition paths we suggest here
to search for the acceptable initial state assignments of the transition paths�
For each candidate initial state assignment D� we try to construct a transi�
tion path consistent with the input�observation sequence in an incremental

�	�

manner� i�e� �rst taking into account only the �rst input�observation pair�
then only the �rst two� and so on� Whenever a transition path cannot be
consistently extended with the next input�observation pair a minimal con�
�ict among the last state assignments is found� This minimal con�ict is then
mapped back to a minimal con�ict among the initial state assignments�
In order to characterize how to map back the con�icts we need a function

that has the
inverse� role of NextState� Namely� we want to �nd out under
which minimal conditions� in terms of states� inputs and observations� a
certain target state can be reached in one transition�

De
nition ������ ��backward� transition set� Let Sys be a system and
d� be a state assignment for Sys	 De�ne the function
 BackTranz�Sys� d�� ��

f�d� i� o� j �d��� i��� o�� �d � d�� � i�� � i � o�� � o�
�SD � d�� � i�� � o�� is consistent ��
 d� � NextState�Sys� d��� i�� � o���g�

In order to compute the function BackTranz we compute some minimal
support clauses for conjunctions of literals �see De�nition ����� from Section
������� In �RdK��� the sets MinSupp�M��� were characterized in terms of
the prime implicates of �� butM was supposed to be a clause �i�e� a disjunc�
tion of literals�� In our setting we are interested in M being a conjunction of
literals� As the next theorem shows� the minimal support clauses of a con�
junct can be determined using the minimal support of a literal with respect
to a slightly modi�ed ��

Theorem ������ Let � be a set of clauses and M be a conjunction of liter�
als	 Let � be a new positive literal not appearing in � or in M 	Then

MinSupp�M��� �MinSupp���� � fM
 �g�� f��g

The results of �RdK��� can then be reused in our setting� We can now
compute BackTranz�Sys� d�� based on computing some minimal support
clauses for the conjunct of next�state literals corresponding to the target
state assignment d��

Theorem ������ Let Sys be a system and d� d� be state assignments� i be
an input assignment for Sys� and o be a set of �rst�order sentences	 Then

�d� i� o� 	 BackTranz�Sys� d��
�

NegCl�d � i � o� 	MinSupp�Conj�F���d���� SD��

�	�

where
 NegCl�fl�� l�� � � �g� � ��l� � �l� � � � ���
Conj�fl�� l�� � � �g� � �l� � l� � � � ���
F���f��si � vj��g� � f��F���si� � vj��g � f��s�i � vj��g	

We can now characterize� in a recursive manner� the con�icts for input�
observation sequences�

Theorem ������ �con�ict mapping� Let Sys be a system� ioseq be an
input�observation sequence for Sys and �i� o� be an input�observation pair
for Sys	 Let c be a state assignment for Sys	 Then

c is a con�ict for the sequence ��i� o��ioseq� �

either

�	 SD � i � o � c is not satis�able� or

	 there exists c�� a minimal con�ict for ioseq� and i� � i� o� � o� c� � c�
such that �c�� i�� o�� 	 BackTranz�Sys� c����

Corollary to Theorem ������ Let Sys be a system� ioseq be an input�
observation sequence for Sys and �i� o� be an input�observation pair for Sys	
Let c be a state assignment for Sys	 Then

c is a minimal con�ict for the sequence ��i� o��ioseq� �

c is a minimal set such that either

�	 SD � i � o � c is not satis�able� or

	 there exists c� a minimal con�ict for ioseq� and i� � i� o� � o such that
�c� i�� o�� 	 BackTranz�Sys� c���

The characterization of the con�icts in terms of minimal support clauses
is particularly interesting because as Reiter and de Kleer showed in �RdK���
this is what the atms systems are computing �see Section ������� For in�
stance� in order to compute the function BackTranz�Sys� d� with an atms�
if the state� input and observation assignments are represented as assump�
tions� one simply has to� �i� �nd the assignment to the next state variables
corresponding to d� i�e� F���d�� �ii� build a temporary node � �as in Theo�
rem ������� and justify it with the conjunct of the F���d� nodes� �iii� retrieve
the label of ��

�	�

Since we can now compute con�icts for input�observation sequences� we
can also generate consistent initial state assignments for the input�observation
sequences� The generation of the consistent initial state assignments using
the minimal con�icts can be done using the mechanisms described in the
previous chapter �i�e� using preferences and priorities��
The next function tests a candidate initial state assignment against an

input�observation sequence and returns either the associated path descrip�
tion� or a set of con�icts among the candidate�s state assignments�

Function TestFSMCand �Sys� d� ioseq �
Sys is a FSM� d is a candidate initial state assignment�
ioseq � ��i�� o��� � � � � �ik� ok�� is an input�observation sequence�
Returns� a pair �bool� obj�� where obj is either�

�i� a path description ��d� i�� o��� � � � � �dk� ik� ok�� � if bool is True�
�ii� a set of con�icts included in d � if bool is False�

��� Initialize TP with the empty sequence � �

��� for j � � to k do�

�	� if SD � ij � oj � d is inconsistent then

��� return MapFSMConflicts�Sys� d� ij� oj � TP ��

�
� append ��d� ij� oj�� to TP � d �� NextState�Sys� ij � oj � d��

endfor

��� return �True� TP ��

Function MapFSMCon�icts �Sys� dcfl� icfl� ocfl� TP �
Sys is a FSM� TP is a path description �transition path��
dcfl� icfl� ocfl are state� input and observation assignments that should extend TP �
but which are inconsistent with SD� Returns� a pair �False� CflSet�� where
CflSet is a set of minimal con�icts included in the initial state assignment of
TP �

��� let CflSet be the set of minimal con�icts for ��icfl� ocfl�� included in dcfl�

��� while TP is not the empty sequence do�

�	� remove �d� i� o�� the last element from the sequence TP �

��� MapBack �� fc � d j ��i� � i� o� � o� c� � CflSet� �
�c� i�� o�� � BackTranz�Sys� c��g�

�
� let CflSet be the set of minimal elements w�r�t� set inclusion of
MapBack �

endwhile

��� return �False� CflSet��

�	�

��� The Pseudo Static Framework

����� Basic presuppositions

The FSM framework assumes that the input for a diagnostic problem is an
input�observation sequence ��i�� o��� � � � � �ik� ok��� This is a strong assump�
tions for many application problems since it assumes precise temporal infor�
mation about the observations and about the duration of the state transi�
tions�

In electrical circuits the changes due to the cascading defects are usually
very fast� They also occur asynchronously� Moreover� there is an order of
magnitude di�erence between the time granularity at which the user per�
forms �measurement � test � repair� actions and the granularity at which
the internal state changes occur� The pseudo static framework builds on the
FSM framework by adding more presuppositions about the system under
diagnosis in order to address the uncertainty of the temporal information
about the observations�

	� The pseudo�static assumption
 The system can be modeled as a �nite
state machine such that� under any initial setting of inputs and states
the system will go through a �nite sequence of state transitions until
it will �nally reach a steady state� in which it would remain for ever�
provided that no input changes its value�

�� The time granularity assumption
 The granularity at which input
changes and user actions occur is order of magnitude higher than the
granularity � at which state transitions occur � �� ���

The above assumptions are made in order to ensure that the user actions and
the observations are performed only in the steady states� This assumption
seems to hold in electrical domains� where the changes due to cascaded defects
are very fast� but it may not be natural for other domains�� Since the mode
changes occur asynchronously and are extremely fast in electrical circuits
one cannot hope to have timing information about the occurrence of these
events� In order to deal with this timing problem we made the restriction
that the observations refer to the equilibrium states only�

�In some cases when the time granularity assumption is not natural� it could be enforced
arti�cially by postponing the user actions until the system reaches the equilibrium�

�		

����� Basic concepts

The application of the results developed within the FSM framework to the
diagnosis of systems that obey the pseudo�static and the time granularity
assumptions� leads to some subtle di�culties� These are mainly due to the
uncertainty about the exact time�span of the observations� The time when
an observation is valid is constrained by the requirement that the system
�nds itself into a steady state� But� since the initial state of the system is
not known� one cannot surely state how many state transitions have occurred
between the initial state and the equilibrium state� We will come back at
this discussion later�
The pseudo�static assumption can be expressed formally�

De
nition ����� �Pseudo�Static System� Let Sys be a FSM	 Sys is a
pseudo�static system �PSS� if and only if there exists an integer T such that
�

for any transition path having the form

��D�� I� fg�� �D�� I� fg�� � � � � �DT � I� fg�� �DT��� I� fg���

we have DT � DT��	 The smallest integer T having the above property is
called the transition order of the system	

The time granularity assumption is re�ected in the reformulation of the
diagnostic problem�

De
nition ����� �the PSS Diagnostic Problem� Given an
input�observation sequence Ioseq � ��I�� o��� � � � � �Ik� ok��� where Ij are com�
plete input assignments� �nd all �or some �preferred�� transition paths having
the form

��D��� I�� fg�� �D��� I�� fg�� � � � � �D��n����� I�� fg�� �D�n� � I�� o���
�D��� I�� fg�� �D��� I�� fg�� � � � � �D��n����� I�� fg�� �D�n� � I�� o���

� � �
�Dk�� Ik� fg�� �Dk�� Ik� fg�� � � � � �Dk�nk���� Ik� fg�� �Dknk � Ik� ok��

such that

�i� � � i � k Dini � NextState�Sys�Dini � Ii�� and
�i� � � i � k Dini � D�i�����

�For any pseudo�static system Sys� T � N �Sys�� where N �Sys� denotes the total
number of states of the system � that is �upper bounded by� the product of the number
of states of system�s components�

�	�

As can be seen� the observations and the input changes are asserted only
in the equilibrium states of the PSS� Since we assumed that there is an
order of magnitude di�erence between the time granularity with which intern
state changes occur and the time granularity with which observations and
input changes occur� one can repeat for an arbitrary number of times the
equilibrium states in a legal transition path and still obtain a legal transition
path� However� we build only the shortest transition paths obeying the above
constraints� The changes required by the function TestFSMCand presented
in ����� are straightforward��

Function TestPSSCand �Sys�D� ��I�� o��� � � � � �Ik� ok���
Return a transition path or a set of con�icts included in D

��� Initialize TP with the empty sequence ��

��� for j � � to k do�

�	� repeat

��� if SD � Ij �D is inconsistent then
�
� return MapPSSConflicts�Sys�D� Ij� fg� TP ��

��� Dold �� D�D �� NextState�Sys� Ij �D��
��� if D �� Dold then append ��Dold� Ij� fg�� to TP �

until D � Dold�

��� if SD � Ij � oj �D is inconsistent then

��� return MapPSSConflicts�Sys�D� Ij� oj � TP ��

���� append ��D� Ij� oj�� to TP � D �� NextState�Sys� Ij � oj �D��

endfor

���� return �True� TP ��

It is less obvious� however� that also the function that maps the con�icts
has to be changed� The requirement that the system reaches an equilibrium
state does not guarantee that the dependencies on the initial state also reach
the equilibrium� The minimal con�icts among the initial state assignments
of D� can depend on the length of the transition paths� e�g� one can �nd dif�
ferent con�icts among the assignments of D� when considering the transition

�In this version of the function the candidate state assignment �D� and the input
assignments �Ij� from the input�observation sequence must be complete� otherwise it is
more problematic to ensure that the observations are asserted in the steady states of the
PSS�

�	�

paths�

��D�� I� fg�� �D�� I� fg�� � � � �Dn� I� o���
��D�� I� fg�� �D�� I� fg�� � � � �Dn� I� fg�� �Dn� I� o���
��D�� I� fg�� �D�� I� fg�� � � � �Dn� I� fg�� �Dn� I� fg�� �Dn� I� o���

where Dn is the equilibrium state under the input I� The di�erence arises
from the fact that each transition path states not only the �nal state� but also
the exact number of state transitions that occurred� We cannot say exactly
after how many state transitions the observations started to be valid since
we do not know the initial state and we assumed that we do not have exact
timing information about the observations� However� there is an upper bound
of the number of transitions after which the observations are valid irrespective
of the initial state� namely after at most T transitions �cf� de�nition ��	���
counted from the last input change� The function MapPSSConflicts takes
this observation into consideration� at each point the function ExtendPath
checks if the current state �D� is an equilibrium state in the transition path�
if so it acts
as if� more elements having the form �D� I� fg� were present in
the transition path� up to a maximum of T points having the same input�

Function MapPSSCon�icts �Sys�Dcfl� Icfl� ocfl� TP �
�Dcfl� Icfl� ocfl� should extend TP � but are inconsistent with SD� Returns a set
of minimal con�icts included in the initial state of TP �

��� let CflSet be the set of minimal con�icts for ��Icfl� ocfl�� included in Dcfl�

��� CflSet �� ExtendPath�Sys�Dcfl� Icfl� TP� CflSet��

�	� while TP is not the empty sequence do�

��� remove �D� I� o�� the last element from TP �

�
� MapBack �� fc � D j ��i� � I� o� � o� c� � CflSet� �
�c� i�� o�� � BackTranz�Sys� c��g�

��� let CflSet be the set of minimal elements w�r�t� set inclusion of
MapBack�

��� CflSet �� ExtendPath�Sys�D� I� TP� CflSet��

endwhile

��� return �False� CflSet��

�	�

Function ExtendPath �Sys�D� I� TP� CflSet�
Sys is a PSS of transition order T � CflSet is a set of con�icts included in D�
Extends if necessary TP with more triples �D� I� fg� if D is a steady state under
the input I and maps the con�icts back�

��� if SD � I �D is consistent and D � NextState�Sys� I �D� then

�� extend transition path

��� let l be the length of the �nal subsequence of TP having the input I�

�	� repeat

��� MapBack �� fc � D j ��i� � I� c� � CflSet� �
�c� i�� fg� � BackTranz�Sys� c��g�

�
� remove from MapBack the elements that are not minimal w�r�t�
set inclusion �

��� OldSet �� CflSet�CflSet �� MapBack� l �� l � ��

until l� � 	 T or CflSet � OldSet �

��� return CflSet�

It seems� however� that in most of the cases �if not always� one need not
consider transition paths having T transitions under each input in order to
compute the correct minimal con�icts� It is easy to prove that when mapping
back a con�ict on transition paths having the form ��D� I� fg�� � � � � �D� I� fg��
and having an increasingly greater length� the sets computed either oscillate
in a cycle� or they converge to an
equilibrium� value after a �nite number
of steps�

Property ����� Let Sys be a PSS	 Let I be an input assignment� D be a
steady state under the input I and o be a set of �rst order sentences such
that SD � I � D � o is inconsistent	 Let TPj be the family of transition
paths
 TPj � ��D� I� fg�� � � � � �D� I� fg�� �D� I� o��� where TPj has the length
j � �	 Let CflSetj be the set of minimal con�icts for the initial state of
TPj	 Then
 there exist two �nite integers L � �� P � � such that �j� j � L �
CflSet�j�P � � CflSetj	

All the real examples that we considered so far have the
convergence�
property� i�e� the minimal
period� P from Property ��	�� is �� It is� how�
ever� still a topic of research to de�ne formally under which conditions the
convergence is guaranteed� The termination criterion using the convergence
�see the termination condition of the repeat�until statement of ExtendPath�
is more convenient than the one using the system�s transition order� since the
last one seems hard to compute automatically �if possible at all cf� De�nition
��	����

�	�

��� Searching for the primary causes

This section attempts to explore
what happened before the diagnosis started��
Being limited to the time period of the diagnostic session� the transition paths
constructed within the FSM � PSS frameworks can explain only the faults
that were forced to occur during the diagnostic session� However� these tran�
sition paths cannot explain why the components that were already defect
at the beginning of the diagnosis broke� neither can they indicate what the
primary� cause of failure was�

De
nition ����� �possible explanation� A path description

exp � ��d�� i�� o��� � � � � �dk� ik� ok��

is a possible explanation for a state assignment m� i	e	 exp 	 Expl�Sys�m�
i� m � NextState�Sys� ik � ok � dk�	 A state assignment is a cause for m
i� it is the initial state assignment of an explanation of m	

If we search for the explanations of the defects present at the beginning of
the diagnostic session� it is reasonable to assume that we are not interested
in the explanations that require non�empty observation sets �we allowed non�
empty observation sets in the above de�nition from reasons of generality��
Moreover� we are interested only in those explanations that are consistent
with the observations made during the diagnosis�

De
nition ����� �consistent explanations� Let Sys be a FSM� ioseq be
an input�observation sequence� and m be a state assignment	 De�ne the set
of explanations of m consistent with ioseq

Expl�Sys�m� ioseq� �� f��d�� i�� o��� � � � � �dk� ik� ok�� 	 Expl�Sys�m� j
NextState�Sys� ik � ok � dk� is consistent with ioseqg�

Of course� if m is not consistent with ioseq� there can be no explanation
for m consistent with ioseq� Also� it is easy to see that Expl�Sys�m� 	� �
Expl�Sys�m�� We partition the explanations according to their length�

Explk�Sys�m� io� �� fe 	 Expl�Sys�m� io� j length�e� � kg�

Next we characterize the consistent explanations in terms of minimal expla�
nations�

�By primary cause we understand here a cause that cannot be further explained within
the given model of the world�

�	

De
nition ����� �minimal explanations� Let Sys be a FSM� and m be
a state assignment	 The length�k minimal explanations of m are a subset of
the length�k consistent explanations of m
 MinExplk�Sys�m� io� ��

fe 	 Explk�Sys�m� io� j �e
� 	 Explk�Sys�m� io� � e

� � e
 e� � eg�

The following is an immediate consequence of the de�nitions�

Property ����� MinExpl��Sys�m� io� � f��d� i� o�� j

�d� i� o� 	 BackTranz�Sys�m�� and d is consistent with ��i� o��io�g�

As can be seen� the computation of MinExpl� can again be based on the
computation of minimal support clauses� a task that an atms can solve�
The next theorem provides the foundation for an algorithm that computes
the length�k minimal explanations�

Theorem ����� �k � ��MinExplk���Sys�m� io� is the set of the minimal
elements of the set
 f��d�o� io� oo�� �d

�
�� i�� o��� � � � � �d

�
k� ik� ok�� j

���d�� i�� o��� � � � � �dk� ik� ok�� 	MinExplk�Sys�m�
s	t	 ��d�o� io� oo�� 	MinExpl��Sys� d�� ��i�� o��� � � � � �ik� ok�� � io�� and

�j� � � j � k � d�j�� � NextState�Sys� ij � oj � d�j�g�

where ��� denotes the concatenation of two sequences	

The sets of �minimal� explanations and causes are too large to be com�
puted completely� at least in an on�line manner� One could rank them ac�
cording to a plausibility measure in order to get a means to select a subset
of interest� The development of reasonable control strategies for the con�
struction of explanations and causes is� however� still a subject of further
research�
There are classes of systems for which the construction of the set of causes

that are complete state assignments is conceivable� In this respect it is suf�
�cient to construct the minimal explanations having the length less than L�
where L is the length of the longest cycle�free path through the system state
space�� In the worst case L equals N �Sys�� where N �Sys� is the total num�
ber of states in the system� i�e� L can grow exponentially in the number of
components of the system� But� for some classes of systems L grows� in the
worst case� only linearly in the number of components� For instance assume
that�

�For a PSS we have L � T � where T is the transition order of the PSS �cf� de�nition
������� T assumes a constant input� while L does not�

���

� No self repair components exist �i�e� all the transitions from defect
states to correct states� if any� are controlled by inputs modeling the
user�s repair actions��

� All the explanations that assume repair�replacement actions �prior to
the diagnostic session� are not interesting�

� After removing all transitions from defect states to correct states� each
component state transition graph is free of cycles� excepting the length�
one cycles � i�e� having the form si � si�

Under the above assumptions� if one ignores the
repair transitions�� the
global system state transition graph is free of cycles� excepting the length�
one cycles� Also� the length of the longest cycle�free path through the system
state space �L� is upper bounded by N � l� where N represents the total
number of components in the system and l represents the length of the longest
cycle�free path through any of the components� state space� For this class
of systems the length of the explanations required to characterize the set
of all complete causes grows� in the worst case� linearly in the number of
components� In this case� and if the space of interesting input assignments
is relatively small� the construction of the complete set of explanations for a
certain combination of defects could be conceivable� Many systems that are
normally static �i�e� the dynamic aspect is introduced only by the change
of the behavioral modes�� fall into this category� Electrical systems� like the
ones used in the previous examples� containing bulbs� fuses� wires� switches�
etc�� are instances of this class�
Of course� the set of causes for speci�ed sets of defects �e�g� for all the

single faults� can be computed o��line� Such information can be used by
some heuristics to augment the candidate generator� but the elaboration of
such heuristics is an issue of future research�

��
 Diagnosis with an RMS�based engine

The assignments to state variables� to input variables and the observations
are represented as assumptions in the rms� The rest of the predictions are
represented as derived rms nodes� Each time point is represented by a com�
plete input and state assignment� A partial input and state assignment
represents a description of a set of time points� Retrieving the values of the
system parameters that hold at a certain time point means to retrieve the

���

nodes that hold in the context de�ned by the input and state assignment for
that time point� Changing the time point corresponds to a context change
�e�g� in a focusing atms or in the �vrms this accounts to a focus change��
The rms network
spreads the activation� from the currently enabled state
and input assumptions to the rest of nodes� The next state can be retrieved
by querying the next�state nodes
active� in the current time point context�
The sequence of time points is not explicitly represented in the rms net�
work� To make predictions across several time points the diagnostic engine
has to
simulate� the automaton by executing the cycle of focus changes
corresponding to the sequence of inputs and states� The atms labels corre�
spond to some minimal support clauses �cf� �RdK����� Some of these labels
are used in order to identify the minimal con�icts� to map the con�icts on
the initial candidate and to search for the primary causes�

The characterization of the minimal con�icts and of the minimal expla�
nations in a recursive
backward� manner suits the lazy label evaluation in
the �vrms�

��� Related work

Qualitative reasoning

Much work in qualitative reasoning addressed the modeling for monitoring
or diagnosis of �continuous� dynamic systems �cf� �DK
�c� Ng
�� OFK
��
Pan�	��� Among these works� Pan �cf� �Pan�	�� addressed speci�cally sys�
tems with dependent failures� The system description used similar knowledge
as input� state�transition graphs for the components �together with the as�
sociated behavior� and knowledge about the system structure� He uses a
QSIM�based qualitative simulation �cf� �Kui���� to build an envisionment of
the evolution of the system after a certain stimulus� However� the paper ad�
dresses diagnosis only marginally� the proposed system can be used to refute
some diagnostic candidates generated by some heuristic rules� but the topic
is not elaborated� No attempt to identify con�icts was made in the work�
thus no dependency�directed backtracking during the search for diagnoses
can be imagined�

���

Mode�transition graphs in temporal diagnosis

In �CPDT
�� FL
�� NG
	� several extensions to model�based temporal di�
agnosis using mode�transition graphs for the individual components are de�
scribed� The mode�transition graphs constrain the non�deterministic mode
changes that are allowed during diagnosis� The framework of �FL
�� was
proposed to address the problem of intermittent defects� The mode transi�
tions have absolute probabilities associated� A temporal diagnosis in �FL
��
associates to each failure the set of all time intervals when it is consistent to
assume that failure �but no attractive mechanism for the computation of the
temporal diagnoses is proposed there��

The framework of �CPDT
�� is� in fact� very similar to that of �FL
��� but
the authors are concerned more to propose an e�cient way of computing the
temporal diagnoses� In this respect they separate the time dependent and the
time independent aspects of behavior� A temporal diagnosis is decomposed
into a set of atemporal diagnostic problems �one for each time point� whose
solutions are then
composed� using the mode transition graphs�

The idea of decomposing a temporal diagnostic problem into several time
independent problems is also present in our framework since the system de�
scription does not embed any logical model of time " SD is thus static� In
our approach the mode transition graph is de�ned implicitly by the behavior
descriptions� We couple the state assignments of the distinct problems using
the next�state predictions�

In �NG
	� a temporally abstract de�nition of diagnosis is presented� The
authors use qualitative temporal relations �i�e� a subset of Allen�s interval
algebra " cf� �All���� for� behavioral mode description� for observations� time
span and for describing the possible component mode transitions� The diag�
noses are sets of time intervals connected by qualitative temporal relations
associated to the behavior modes of the components� The mode transition
graphs used are similar to those of �CPDT
��� but the relations between
states are qualitative temporal relations�

In all these approaches �i�e� �CPDT
�� FL
�� NG
	�� the transitions
between the modes do not depend on any context�dependent information
and thus remain purely non�deterministic� For instance� it is possible to say
that a normal bulb will remain correct or will break� but not to say that this
is a�ected by� for instance� the power dissipated by the bulb� This limits
the expressiveness of the frameworks and makes them inappropriate for the
diagnosis of dynamic devices with memory �e�g� sequential circuits� and � or

���

with dependent failures�
However� �CPDT
�� FL
�� NG
	� model non�deterministic state evo�

lutions� while we are unable to do this� An extension that would asso�
ciate context�dependent probabilities to the transition graphs would probably
bring our approach and those of �CPDT
�� FL
�� closer together�

Other work on temporal diagnosis

Many of the initial works on model�based diagnosis ignored the temporal as�
pects� A �rst step towards the consideration of time in dynamic systems was
the introduction of time in static systems in �RdKS
��� In fact� in �RdKS
���
observations made at several time points are used in order to �lter out the
diagnoses that assume intermittent behavior� The representation of time was
based on introducing a set of special assumptions� namely temporal assump�
tions having the form t � T � The observations made at the time point T
were then justi�ed in the underlying atms with the corresponding tempo�
ral assumption� This representation o�ers the advantage that at the level
of the inference engine it achieves prediction reusability among time points�
However� the representation has strong limitations because it does not allow
reasoning across several time points� thus it can only be applied to the mod�
eling of static devices� Moreover� the prediction reusability was achieved only
at a super�cial level� namely at the level of the propagator �i�e� consumer
activation mechanism�� in the underlying atms the environments from the
labels are duplicated for each time point " thus the labeling e�ort is not
reused across time�
Systems like the ones described in �GSR
�� Ham
�b� Iwa
	� Wil��� em�

bed time in the predicates describing a domain� for instance P �x� � t� where
P �x� stands for a property of the world� and t is a time token� i�e� interval
or point� The expressiveness of the representation is high� allowing the rep�
resentation of static as well as dynamic behavior� but it leads unfortunately
to high computational costs� A new time point is represented as a new set of
grounded instances of the predicates� As argued also in �Dre
	� and �TL
��
such systems cannot achieve prediction sharing over time and require consid�
erable amounts of space� The problem becomes really critical when temporal
reasoning is coupled with assumption maintenance� In this case not only the
predicates representing properties of the world are duplicated at di�erent
time points� but also signi�cant parts of the justi�cation network and of the
labels in the atms�

��	

Embedding temporal reasoning into the atms

Although not addressing diagnosis directly� comparisons can be made with
the systems that attempted to integrate temporal reasoning with assumption
maintenance� like in �JR
��� �TL
��� and �Dre
	�� A major di�culty with
these systems seems to be the control of reasoning�

heart �cf� �JR
��� was a system that integrated the reasoning tasks
performed by the tcp �cf� �Wil���� with those of the basic atms� heart�
like tcp� used an interval�based representation of time� The datum of each
node was an episode� a pair �dat� Int�� where Int represents an interval of
time where the datum dat holds� The environments were regarded as con�
junctions of episodes that had to be conjointly assumed� heart aimed
to achieve minimal representations of the dynamic world by combining the
minimal representations of the environments of an atms� with the maximal
representation of the episodes of tcp� The tasks performed by heart are�
however� very complex due to this integration� and there was no empirical
evaluation of the behavior of the system on realistic applications reported�
It is very likely that the system would spend most of the resources on merg�
ing and splitting episodes� the relevance of all these operations for higher�
level reasoning modules being questionable� Controlling the reasoning inside
heart� as well as on top of it� was not addressed in any way in �JR
���
Moreover� being based on the basic atms� we think the work from �JR
�� is
more relevant from a conceptual point of view than from a practical one�

Some of our early work �cf� �TL
��� also attempted to embed temporal
reasoning into the atms� We extended the representation based on temporal
assumptions used in �RdKS
��� in order to make reasoning across time pos�
sible� In order to optimize some reasoning tasks the environments from the
node labels were indexed after the temporal assumptions� which were treated
in a special way �i�e� they were implicitly known to be mutually inconsistent�
and were not part of the con�icts discovered�� Although� like in �RdKS
���
the reasoning at the level of the problem�solver achieved prediction reusabil�
ity� this was not achieved at the deep level of labels in the atms� even with
no change in the world� the set of environments is duplicated for each new
time point� Thus� even if value propagation need not be redone at the top
level� the environment propagation has to be redone for each time point�

There are similarities between an atms�based FSM implementation and
the work of Dressler described in �Dre
	�� The goal of �Dre
	� was to achieve
prediction sharing across time the same way prediction sharing across con�

���

texts is achieved in an atms�
Basically� �Dre
	� suggests that a theory should be described in a temporal

generic manner using formulae like� p��t������pn�t�� q� �t��� where �t� is
a delay function� The time is not supposed to be part of the predicates� rather
it is an extra�logical means for indexing� For each proposition that has an
extensional temporal extent de�ned� in �Dre
	� a special assumption denoting
�symbolically� that temporal extent is created� These temporal assumptions
are propagated in the usual way in the atms labels� thus providing generic
formulae about the temporal extent of dependent propositions�
Our system description is also temporally generic " i�e� the models de�

scribe only a current time point and the next state being given the input and
state assignment� The propositions for which a temporal extent is provided
are in our case the state and input assignments and the observations� We
represent these propositions as assumptions in the rms� thus we came to
the same encoding as that of �Dre
	�� Partial state and input assignments
provide descriptions for sets of time points� in the same generic way as the
temporal labels of �Dre
	��

Event�based diagnosis�

Approaches like those of �CT
	� SSL�
	� represent the system as a transition
graph between states�
As in our approach� in �SSL�
	� each component is described as a �nite

state machine and the system is another FSM that aggregates the compo�
nents� The aggregation is based on the shared events of the component FSMs
and on a synchronous composition law� The synchronous composition law
corresponds to our synchronous composition assumption from the section
������ Based on the system FSM and a global sensor map �giving associa�
tions between global system states and observable events� a
diagnoser� is
built in �SSL�
	�� The diagnoser is another �nite state machine whose states
model the states of the diagnostic process� e�g� the current set of hypotheses
given the past observable events�
Relative to our component descriptions� the component FSMs of �SSL�
	�

represent
compiled� descriptions� The event sets must be de�ned extension�
ally� while we associate �rst order predicates or constraints for the conditions
that control the transitions� Thus� we can theoretically work with in�nite
sets of events while this is not the case in �SSL�
	�� Also� the construction
of the sensor map requires knowledge acquisition in �SSL�
	� " while we do

���

not need the sensor map because we derive implicitly the relation between
the failures and their observable e�ects�

In �CT
	� diagnosis is de�ned as the identi�cation of some
preferred�
sequences of events that are consistent with a sequence of observations� This
de�nition of diagnosis has similarities with our de�nition� The formalism of
�CT
	� also allows to integrate repair actions� dependent failures and allows
diagnoses to account also for unknown input sequences applied to the sys�
tems� The events in �CT
	� can have nondeterministic e�ects� Di�ering from
�CT
	�� in our formalism we distinguish between inputs� state variables and
other variables� while these are all mixed in the vector of state variables in
�CT
	�� While �CT
	� does not advocate a certain representation �intensional
or extensional� for the state space and for the event relations� it also does
not provide attractive means for the computation of the preferred diagnoses�
nor does it describe how the system knowledge can be automatically gener�
ated starting from knowledge about the components and about the system�s
structure�

��� Discussion and future work

Approaches to model�based diagnosis that make the presupposition that the
faults are independent� do not satisfactorily handle the cases when there are
causal relations among the faults� We argued that in order to deal with
caused defects one has to model� at least partially� the causes of the mode
transitions�

Among the main features of the proposed approach we can mention that�
�a� it is a specialization of the gde�like approaches working with several
behavioral modes �cf� �dKW�
� SD�
��� �b� it requires the partition of the
parameters characterizing the system into inputs� state variables and other
parameters� and assumes that the system can be modeled as a �nite state
machine� �c� the mode of behavior is regarded as a distinct state variable of
each component� �d� it maps diagnosis to the problem of transition path iden�
ti�cation in an automaton� �e� it allows the reuse of the candidate generation
techniques based on minimal con�icts� �f� it allows rms�based implementa�
tions to achieve attractive degrees of prediction reusability� across contexts
and time�

The applicability of the proposed solution is limited by the assumptions
made� The time granularity assumption seems to hold in electrical systems�

���

but is not a general property� This assumption� together with the pseudo�
static assumption were introduced in order to constrain the situations in
which the observations and the user actions should be asserted� since we do
not have in general exact timing information about the mode changes� If
this information were readily available one could in principle give up these
assumptions and use the FSM framework instead of the PSS�
Of course� the diagnosis of dynamic systems remains a challenging issue�

The �nite�state machine framework cannot avoid the fact that when reason�
ing across several time points the con�icts tend to be very large and thus� not
very informative� For some classes of systems� and under additional assump�
tions about the availability of measurements� diagnosis can be done without
using the dynamic constraints at all� as discussed in �Dre
��� In our terms�
this would mean that the relationship between the state and the next�state
variables can be omitted� It is interesting to note that the rms dependency
networks of the �nite�state machine and of the techniques from �Dre
�� are
very similar� for instance similar temporally generic nogoods would be found
by both representations� It would be just a di�erent interpretation of these
nogoods and a di�erent candidate generator required to switch between the
�nite�state machine framework and the framework from �Dre
���
There are many interesting directions in which the research presented

here could be continued� The requirement that the system behaves deter�
ministically is too strong in many cases� There are several aspects of non�
determinism which must be dealt with� �i� the non�deterministic behavior of
the individual components at the limits of the admissible operating condi�
tions� �ii� the non�determinism due to the inaccuracies of the measurements
and of the allowed tolerances for the components� parameters� and �iii� the
non�determinism of the composed behavior when more than one state vari�
able can change its value at the next time point�
The �rst two aspects of non�determinism could be modeled relatively easy

using an rms�based engine like the one described in the previous chapter�
The individual components� instead of predicting deterministically an assign�
ment to their next�state variables� should be able to predict disjunctions over
several possible assignments� eventually also with associated probabilities or
preferences� Such implied disjunctions could be handled by the candidate
generator� as we have shown in 	�	� Associating these implied choices with
primary vs� secondary choice sets �cf� 	������ could control the degree of
parallelism in exploring the non�deterministic branches� Another way of rep�
resenting the same aspects of non�determinism is to allow the assignments

���

to state � next�state variables to represent sets� with the semantic that the
actual value assigned is one of the members of the set� like in a hidden
Markov chain �cf� �RJ����� Compared with the previous representation�
where the branches are explored individually� the set�based representation
is less expressive� because the possible branches would be merged together
in an indistinguishable way� but has computational advantages because it
avoids more the combinatorial explosion� It would be interesting to allow to
use both representations to express the non�determinism� and to elaborate
opportunistic strategies for selecting from case to case between them�

=
E

GND

RK B1 B2

Figure ����

The third aspect of non�determinism� however� cannot be handled with
the set�based� or with the implied choice mechanisms� and should be dealt
with in a di�erent way� This form of non�determinism� prevented in our
frameworks by the synchronous composition assumption� appears frequently
in practice when modeling asynchronous processes�

Example ����� Figure �	� shows a simple electrical circuit that can exhibit
this form of non�determinism	 Assume that all the components are correct�
except the resistor R� which is shorted to the ground	 In this situation we
close the switch K	 Since the bulbs are of the same type� their models� and
our engine would predict that they will break simultaneously	 However� in
practice� there always exist small di�erences between the components of the
same type	 It could happen that one of the bulbs breaks earlier and prevents
the other one to break	 The lack of information forces us to regard the be�
havior of the system as non�deterministic in such a situation	

Another direction of future work aims to associate durations to the state
transitions� Currently this is possible to express in an inconvenient and
limited way� namely by state replication� However� one should note that
making predictions that
jump� over several time points� i�e� predict some

��

manifestations in the world after a certain delay� should be treated with great
care� they contain hidden assumptions about the events happening in the
world between the current time and the time when the prediction is made�
Working with hidden assumptions is relatively dangerous� particularly in
diagnosis� We saw in the pseudo�static framework� that even when the world
appears to be static� the minimal dependencies on some aspects from the
past might not be in a steady state�
Yet another open question refers to the way in which temporal abstraction

�cf� �Ham
�b� NG
	�� could be conveniently dealt with in our approach� The
pseudo�static framework� uses a very simple form of temporal abstraction�
namely the one which condenses an in�nity of time points with no change in
the world to a single one� Another interesting idea could be to decompose the
complex temporal behavior into several less complex interacting behaviors�
using the fact that the global system space is indexed after the individual
state variables� Abstract descriptions of behavior can be obtained by iden�
tifying static � cyclic behaviors in di�erent state sub�spaces� for instance�
a combination of two clocks� instead of being seen as a global mechanism
performing a cycle in the global state space represented by the cross prod�
uct of the individual state spaces� could simply be regarded as two smaller
concurrent processes� synchronized in some way�

���

Chapter �

Conclusion

In this thesis we have investigated two questions�

� How to improve the e�ciency of reasoning in rms�based diagnostic
engines� We considered here two main aspects� namely the e�ciency
of the underlying rms� and the e�ciency of candidate generation�

� How to extend model�based diagnosis in order to represent and reason
about dependent defects� Although important in practice� the prob�
lem of depending defects was not addressed until now in model�based
diagnosis�

�� Contributions of this thesis

In this thesis we made the following contributions to the �eld of model�based
diagnosis�

With respect to improving the e�ciency of rms�based diagnosis we have�

� introduced a new type of rms �the �vrms� that supports more elabo�
rate control strategies� and thus more e�cient reasoning� The �vrms
supports a large spectrum of services relevant for diagnosis in a more
e�cient way that the current atms�like rmss � it separates the services
than can be supported in polynomial time� like satis�ability checking
in propositional Horn theories� from the services that require to solve
NP�hard problems� like the generation of minimal supporting environ�
ments� The �vrms integrates features present at the focusing atms�

���

and at the lazy atms� with those of the jtms� and was successfully
tested in several realistic diagnostic problems�

� we have introduced an algorithm for computing in an incremental way
some most plausible candidates� The plausibility is de�ned using qual�
itative preferences among the modes of each component� and an addi�
tional priority relation among combinations of mode assignments� The
preference order structures the candidate space in a very convenient
way� We have shown how to take advantage on this structure in order
to optimize the search�

� we have investigated the formal properties of the reasoning architecture
that combines the proposed algorithms for reason maintenance and can�
didate generation� We have shown that the integrated architecture is
able to support services such as� for instance� the satis�ability check
for arbitrary propositional clause sets� Since such a service� which is
fundamental in most of the reasoning tasks in AI� is known to be NP�
complete� it is hard to discuss the e�ciency of such algorithms in gen�
eral " they are all exponential in the worst case� However� important for
the proposed architecture is the fact that based on the preference and
priority concepts� on the rms�consumer activation� and on the other
control parameters� domain and problem�dependent control strategies
can be implemented in order to reduce the complexity of reasoning for
the average cases� In diagnosis� in particular� the consideration of the
information about the plausibility of the modes of behavior proved to
be an essential key in successfully diagnosing complex devices�

With respect to the problem of dependent defects we have introduced
an approach in which it is possible to model the causes of the mode � state
changes in a device� We regard each component and the whole system as
discrete event systems� Dependent defects� dynamic devices with memory�
as well as repair and replacement actions can be represented in the proposed
framework� We have characterized how forward� as well as backward rea�
soning across time can be performed� From a technical point of view� two
signi�cant features of this approach are that�

� it allows the reuse of the same rms�based architectures for diagnosis
as the ones discussed in the �rst part of this thesis�

� rms�based implementations of the diagnostic engine achieve attractive

���

degrees of prediction reusability� across contexts �i�e� diagnostic can�
didates�� and across time�

�� Sugestions for further research

E�ciency of diagnosis and modeling aspects

Diagnosis is a hard task� E�ciency will continue to represent a topic of
interest in model�based diagnosis�

Current rms systems usually cache each and every inference made by
the problem�solver and never
forget� it� This can save time because the
problem�solver never has to make the same inference twice� It also makes
the rms a signi�cant memory consumer� In the end also the time consumed
can increase too much because bookkeeping for large amounts of data takes
more time � consider� for instance� the time required when memory pages
have to be swapped� This might happen due to the attempt not to forget
anything� not even data that is clearly outdated� A pragmatic approach
should allow also a controlled way to
forget� data and dependencies in the
rms and a systematic model of interaction between the problem�solver and
the rms for this case�

Even with respect to the problem of e�cient and �exible candidate gen�
eration there is still room for improvement� The idea of distributing the can�
didate generation among several agents� possibly including a human� could
prove appropriate for increasing the �exibility of the investigation process�
Strategies for candidate generation that take into account pre�compiled pos�
sible causes of �cascading� defects are still an open research problem� as well
as the elaboration of acceptable strategies for searching for the most plausible
explanations and primary causes in the FSM framework�

A signi�cant impact on the e�ciency of diagnosis is expected from in�
corporating knowledge about� and strategies that take advantage of� model
descriptions at di�erent levels of detail� using abstractions� simpli�cations�
functional and structural hierarchies� Although some work in this direction
has been done �cf� �Cla
�� Ham
�b� Moz
�� OR
�� Out
�� Str
�b��� the
elaboration of strategies that take advantage on this richer knowledge is still
open� The problem is complicated because� in general� the test�pattern and
the observation proposal need to use di�erent abstraction levels than strictly
an optimal candidate elaboration would use�

���

From the modeling point of view� working with several model views brings
into discussion the availability of the richer knowledge� can the elaboration
of appropriate abstract and simpli�ed models be automated� or how can the
knowledge acquisition at best be dealt with�

Extensions of the FSM framework

The FSM framework has a series of interesting features which we think are
worth to investigate and to generalize further�

� From a practical point of view� an extension allowing operation with
quantitative � qualitative durations of the transitions would make mod�
eling easier� and the overall reasoning more e�cient�

� The problem of e�cient temporal reasoning is often brought into dis�
cussion in conjunction with the ability of performing abstract temporal
reasoning� The way temporal abstraction can be conveniently per�
formed within our approach represents another very interesting prob�
lem for future research�

� An extension that allows us to deal with non�deterministic behavior
would enlarge the class of problems that can be addressed� Associating
context dependent probabilities � plausibility measures to the possible
branches would close the gap existing between formalisms that allow
to model dynamic components with state and formalisms that allow
purely non�deterministic mode�changes�

� Within a non�deterministic and probabilistic framework� the integra�
tion of models for the wearing of the components is conceivable� The
framework would be then not only suitable to diagnose cascading faults�
but also to predict and to estimate the moments when failures are likely
to occur� i�e� before they really occur� The need for such predictive
mechanisms is very high in practice� not�only in safety�critical domains�
but� as well� in other domains� because in many cases a single defect
may have extremely expensive consequences during the operation of a
device or process�

Integration of diagnosis� testing and repair

The integration of diagnosis� testing and repair is another
hot� topic of re�
search �cf� �Str
	� SW
�� McI
	b� McI
	a� FGN
�� FN
���� The design of

��	

plans for experiments that have the goal to discriminate or con�rm hypothe�
ses� or to bring the system into a safe state� are research issues that received
little attention from the model�based diagnostic community until now� The
support o�ered by the diagnostic systems to the technicians should also con�
sider the costs of the proposed diagnostic actions �e�g� measurements� state�
changing actions and repair actions�� A nice feature of our approach is that
it allows to easily integrate world�changing actions into the component or
system models�
The need to combine monitoring with on�line diagnosis and with on�line

recon�guration is� in many cases� another requirement of safety�critical sys�
tems� The delivery of integrated monitoring and on�line diagnostic facilities
together with the complex technical systems is a current trend in many man�
ufacturing domains�

Integration with the design and the safety analysis tasks

While diagnosis� and the elaboration of testing plans are hard problems in
general �i�e� undecidable� or NP�complete at best�� especially for dynamic
devices� another starting point for the research would be from the design
tasks� namely� How should a device � process be designed such as to make
its diagnosis and testing easy� The algorithms developed for model�based di�
agnosis and qualitative reasoning� as they are now� can be useful to automate
the failure mode and e�ects analysis �FMEA� �cf� �JHL
���� The reverse is
also true� namely� the output of the FMEA can be an important knowledge
source for modeling for diagnosis �see also �PWT
�� SMS
���� Also other
questions relevant for safety analysis� like �nding the minimal conditions
under which some undesired events happen� could be addressed using the
computational machinery developed for diagnosis� Other useful information
that the model�based diagnostic algorithms could provide for the designers
can be
a measure� of the average cost of diagnosing a device �given some
prior fault likelihoods� controllability and observability information�� Further
support would be needed to suggest design reformulations that would make
an artifact easier to diagnose� In particular� a �rst step� should address the
questions� what design features make the testing and the diagnosis harder
� easier in an artifact� What design reformulations achieve a reasonable
balance between the cost� reliability and diagnosability of an artifact�

���

Appendix A

RMS Internal Operation

A�� RMS�based problem�solving

In this paragraph we describe a generic architecture of the ps� The architec�
ture is based on the concept of consumer described in more detail in �dK��c��
When used properly� the consumer architecture guarantees that no inference
is performed twice when switching between contexts and that no inference
in which the problem�solver expresses interest is left out�

We view here problem�solving as search in the space of possible inferences�
We do not assume a particular knowledge representation and reasoning for�
malism� rather we assume that the problem�solver has a set of inference
rules� We also assume that there is a method to determine if a certain
proposition can be used by a certain inference rule to produce new data �e�g�
pattern�matching or uni�cation�� If the ps has a certain context in focus
then inferences in that context should be performed as long as the goal is
not reached and the context is not discovered inconsistent��

It depends on the problem�solver�s strategy and on the rms whether the
search is performed in several contexts in parallel or in only one context at
a time� A module of the architecture which we call CandidateGenerator is
responsible to maintain and to communicate to the rms and the focusing
environments� When a focusing context is discovered inconsistent the Can�
didateGenerator is called to recompute the focus� It is the responsibility
of this module to guarantee the completeness of the search in the possible
worlds �see Section 	����

�In general there is not much point in exploring inconsistent contexts� but it is possible�

���

Algorithm ps ��
Opened and Closed are global variables holding lists of rms nodes�
Agenda is a global variable holding the ordered list of active consumers�

��� Create the rms� initialize data structures� create the initial assumptions and
premises and attach the AllConseq consumer to the created nodes� put all
created nodes in Opened� etc��

��� while not GoalAchieved�� do�

�	� call CandidateGenerator�� to update the focus environments�

��� if the focus is empty then return Failure �

�
� while not GoalAchived�� and Agenda is not empty and no contra�
diction in the current focus was signaled do�

��� Pick a consumer P and its associated node n from Agenda �
��� if n holds in focus then

��� �re P�n� �
else

��� Reattach the consumer P to the node n�

endwhile

endwhile

Figure A��� ps description�

Our example de�nes only one type of consumer that is activated when
a node holds in the current focus � procedure AllConseq �Figure A���� At
execution AllConseq takes the associated node and possibly other inferred
nodes and applies all the inference rules in order to produce the immediate
consequences of that node� The inferred nodes are maintained in two lists�
the Opened list contains the nodes whose consequences have not yet been
explored� and the Closed list contains the nodes whose consequences have
already been explored�� During the execution of a consumer the node can
only be combined with other nodes from Closed in order to match and �re
the inference rules�
Figure A�� and A�� depict how the interaction ps � rms basically looks

like� In line � of ps it was necessary to test if n holds in focus because
between the time when the rms activates a consumer and the time when the
ps decides to pick it form the agenda� the focus could have changed�

�These lists are similar to the lists maintained by the basic AI search algorithms �e�g�
breadth��rst� depth��rst� A�� etc�� �cf� 	Nil�����

���

Procedure AllConseq �n�
n is an rms node�
this procedure computes all the immediate consequences of n�

��� Move n from Opened to Closed �

��� for each inference rule ri do�

�	� for each combination of nodes on which ri could �re and such that n
is part of the combination and the other nodes belong to Closed do�

��� Fire ri on the current combination� let o be the data produced�
�
� if no rms node having the datum o already exists then

��� Create an rms node oNode for the datum o �
��� Add oNode to Opened� attach AllConseq to oNode �
else

��� Let oNode be the existing node having the datum o �
��� Add the belief constraint involving the current combination of

nodes and oNode to the rms �

endfor

endfor

Figure A��� The consumer procedure for the algorithm ps�

���

The interaction can be re�ned to gain more e�ciency by interleaving
the �ring of each inference rule with the consistency check� In this respect
one could associate a new type of consumer to each inference rule� The
consumer de�ned here should then� instead of directly �ring the rules� attach
the consumers that implement each inference rule�� This can prevent to
unnecessarily apply all the inference rules if after applying only some of them
the focus changes �e�g� due to an inconsistency�� Other re�nements of the
above description could� for instance� structure the lists Opened and Closed
according to some indexing mechanisms in order to gain more e�ciency�
For instance� in case the propositions refer to values assigned to variables�
a natural and more e�cient way of structuring the node lists would be to
distribute the lists to the variables� i�e� such that each variable has its own
Opened and Closed lists of assignments�

�There are two variants to realize this�

�� A consumer is attached to a combination of nodes that matches an inference rule�
Look at 	dK
�c� conjunctive consumer to see how this can be implemented�

�� A consumer is attached to the same node� but the consumer must �nd all the
matching combinations and �re the rule� In this case the consumer must have means
to �recall� the contents of Closed at the time when the consumer was created�

��

A�� The JTMS

We describe the operations performed when��

� adding justi�cations�

� enabling assumptions�

� disabling assumptions�

All these operations are performed incrementally� i�e� it is assumed that
before the operation the labels were correct� and the label update inspects
as few nodes as necessary�

jtms data structures

jtms instance � the data structure associated to a jtms instance could
include� the set of nodes� the set of contradiction nodes� assumptions and
justi�cations added to a jtms� It should also provide the hooks for the ps
contradiction handling and consumer activation mechanisms� The speci�
�cation of the operations performed in the jtms that follows this section
uses a slot called checkForSupportStack to temporarily store some nodes
during the label update�

jtms node �

datum the ps proposition associated to this node�

label records the current belief in this node� IN indicates the belief� OUT
indicates the lack of belief�

justi�cations references to the jtms justi�cation data structures in which
this node appears as consequent�

consequences references to the jtms justi�cation data structures in which
this node appears as an antecedent�

contradiction boolean� If true indicates that this is a contradiction node�

assumption boolean� If true indicates that this is an assumption node�

consumers contains the attached consumers that should be activated when
the node is believed�

wfSupport if the node is labeled IN then this �eld refers to the justi�cation
currently providing a well�founded support� If the node is an enabled
assumption this �eld contains the symbol Assumed�

�For a more detailed description� including a Lisp code implementation� see 	FdK�����

���

jtms justi
cation �

antecedents the list of antecedent nodes of this justi�cation�

consequent the consequent node�

Basic operations

Figure A�� depicts the operations performed when enabling assumptions and
when new justi�cations are added�
When a contradictory node is labeled IN the procedure SignalContradic�

tion is called� This procedure should mark the current context as inconsis�
tent� should identify the set of enabled assumptions that support the con�
tradiction� and should communicate them to the contradiction handler� In
order to detect the enabled assumptions that support the contradiction one
could� for instance� trace back the well�founded support of the contradictory
node and collect all the enabled assumptions encountered��

Figure A�	 depicts the operations performed when assumptions are dis�
abled� In order to correctly update the labels after a previously enabled
assumption is disabled� one has to proceed in two steps�

�� Label OUT all the nodes whose well�founded support depends on the
retracted assumption�

�� Inspect all the nodes labeled OUT in step � to check if some of them
cannot be labeled IN�

�This simple mechanism� however� is not enough to guarantee the minimality of the
nogoods� In order to guarantee the minimality all the existing well�founded supports must
be investigated�

���

Procedure AddJusti�cation �J� tms�
J is a jtms justi�cation� tms is a jtms instance�

��� add J to the slot consequences of each node from J�antecedents and to the
slot justifications of the node J�consequent �

��� call V erifyJust�J� tms��

Procedure VerifyJust �J� tms�
Checks the constraints among the labels of the nodes connected by J � Eventually
initiates the label update�

��� if all the nodes from J�antecedents are IN and J�consequent is not then

��� call SetBelief�J�consequent� J� tms� �

Procedure SetBelief �n� reason� tms�
n is a jtms node� reason is either a justi�cation or the symbol fAssumedg�
Sets the label to IN� and the well�founded support to reason�
Checks for contradictions and eventually propagates the belief further�

��� set n�label �� IN � set n�wfSupport �� reason �

��� if n�contradiction is true then

�	� call SignalContradiction�n� tms� � return �

��� call V erifyJust�J� tms� for each J � n�consequences�

�
� if the current context is consistent then

��� activate all consumers from n�consumers �

��� empty the list n�consumers �

Procedure EnableAssumption �n� tms�
n is a jtms assumption that must be enabled in the jtms instance tms�

��� if n�label � IN then return �

��� call SetBelief�n� Assumed� tms��

Figure A��� Adding justi�cations and enabling assumptions in the jtms

���

Procedure RetractAssumption �n� tms�
n is an enabled assumption that will be retracted in tms�
tms�checkForSupportStack is used during the retraction operation�

��� call RemoveBelief�n� tms� �

��� call CheckAdditionalSupport�tms� �

Procedure RemoveBelief �n� tms�
n a jtms node� Removes the support and the belief in n and the followers whose
well�founded support depends on n�

��� set n�label �� OUT � set n�wfSupport �� nil �

��� push n to tms�checkForSupportStack �

�	� for each J � n�consequences s�t� J � J�consequent�wfSupport do�

��� call RemoveBelief�J�consequent� tms� �

endfor

Procedure CheckAdditionalSupport �tms�
Checks the support of the nodes from tms�checkForSupportStack�

��� while tms�checkForSupportStack is not empty do�

��� pop n from tms�checkForSupportStack�

�	� if n�label � OUT then

��� call V erifyJust�J� tms�
for each J � n�justifications as long as n�label � OUT�

endwhile

Figure A�	� Retracting an assumption in the jtms

���

A�� The LTMS

Again we present only the most important aspects� For more details see
�McA��� FdK
���

ltms data structures

ltms instance � Like the jtms instance� In addition it includes the check�
Stack and the violatedStack slots required by bcp� checkForSupportStack
temporarily contains a stack of nodes and is used for the same purpose as
in the jtms�

ltms node �

datum the ps proposition associated to this node�

label records the current belief� It is one of true� false or unknown�

posClauses the clauses in which the proposition appears positive�

negClauses the clauses in which the proposition appears negated�

assumption boolean� If true indicates that the current labeling should be
treated as assumption �an assumption can be positive or negative��

tConsumers the consumers activated when the node is true�

fConsumers the consumers activated when the node is false�

wfExpl if the assumption slot is true then this �eld contains the symbol
Assumed� Otherwise� if the node is not unknown� then this �eld refers to
the clause currently providing a well�founded explanation�

ltms clause �

posLiterals the nodes occurring positive in this clause�

negLiterals the nodes occurring negative in this clause�

conseq the node for whom this clause provides the well�founded explana�
tion �if any��

sats� unkns for e�ciency reasons these two slots cache the number of lit�
erals that are true� respectively unknown in the clause� A clause with
sats � � is satis�ed� A clause with sats � � � unkns � � is unit�open�
while one with sats � � � unkns � � is violated�

��	

Procedure AddClause �C� tms�
C is an ltms clause� no proposition appears two times in C�

��� Add C to the slot posClauses of each node from C�posLiterals� and to the
slot negClauses of each node from C�negLiterals�

��� initialize C�sats respectively C�unkns�

�	� push C on tms�checkStack� call V erifyConstraints�tms��

��� if tms�violatedStack is not empty then call SignalContradiction�tms��

Procedure VerifyConstraints �tms�
checks the clauses from tms�checkStack and sets belief if possible�

��� while tms�checkStack is not empty do�

��� pop C from tms�checkStack�

�	� if C�sats � � � C�unkns � � then

��� let p be the unknown node of C� set C�conseq �� p�
�
� if p � C�posLiterals then

��� call SetBelief�p� true� C� tms��
else

��� call SetBelief�p� false� C� tms��

endwhile

Figure A��� Adding a clause in the ltms�

ltms basic operations

We again present in more detail� ��� the addition of a new clause �Figure A����
��� the enabling of an assumption �Figure A���� and ��� the retraction of an
assumption �Figure A���� The main work of bcp is done by the SetBelief
�Figure A����
The incremental label update after an assumption is disabled follows the

same strategy as in the jtms�

���

Procedure EnableAssumption �n� bool� tms�
n is an ltms assumption� bool is one of true� false�

��� if n�label �� unknown then signal error and return�

��� call SetBelief�n� bool� Assumed� tms�� call V erifyConstraints�tms��

�	� if tms�violatedStack is not empty then call SignalContradiction�tms��

Procedure SetBelief �p� val� reason� tms�
p is a node� val is one of true� false � reason is a clause or the symbol Assumed�
chkSats and chkUV are local variables containing lists of clauses� Sets the belief
and the well�founded explanation� checks if the belief should be further propagated�
activates consumers�

��� set p�label �� val� p�wfExpl �� reason�

��� if val � true then

�	� activate consumers from p�tConsumers and clear the list�

��� �chkSats� chkUV � �� �p�posClauses� p�negClauses��

else

�
� activate consumers from p�fConsumers and clear the list�

��� �chkSats� chkUV � �� �p�negClauses� p�posClauses��

��� increment C�sats and decrement C�unkns for each clause C � chkSats�

��� for each clause C � chkUV do�

��� decrement C�unkns�

���� if C�sats � � then

���� if C�unkns � � then push C on tms�checkStack �
���� if C�unkns � � then push C on tms�violatedStack �

endfor

Figure A��� Enabling an assumption in the ltms�

���

Procedure RetractAssumption �n� tms�
n is an assumption that must be retracted� Uses tms�checkForSupportStack�

��� if n�label � unknown then return �

��� call RemoveBelief�n� tms�� call CheckAdditionalSupport�tms��

�	� if tms�violatedStack is not empty then call SignalContradiction�tms��

Procedure RemoveBelief �n� tms�
labels all nodes whose well�founded explanation depends on n to unknown�
conseqCls� anteCls are local variables containing lists of clauses�

��� if n�label � true then

��� �conseqCls� anteCls� �� �n�negClauses� n�posClauses��

else

�	� �conseqCls� anteCls� �� �n�posClauses� n�negClauses��

��� set n�label �� unknown� n�wfExpl �� nil�

�
� push n to tms�checkForSupportStack�

��� decrement C�sats� increment C�unkns for each C � anteCls�

��� for each C � conseqCls do�

��� increment C�unkns�

��� if C�conseq �� nil then

���� set C�conseq �� nil � call RemoveBelief�C�conseq� tms��

endfor

Procedure CheckAdditionalSupport � tms �
checks the nodes from tms�checkForSupportStack�

��� while tms�checkForSupportStack is not empty do�

��� pop n from tms�checkForSupportStack

�	� if n�label � unknown then

��� push all clauses from n�posClauses � n�negClauses to
tms�checkStack�

�
� call V erifyConstraints�tms��

endwhile

Figure A��� Retracting an assumption in the ltms�

���

A�� The JTMSset

JTMSset data structures

JTMSset instance � like the jtms instance� In addition it includes the
slots�

focusEnvironments � an ordered collection of environments de�ning the
current focus� The index of a focus environment in this ordered collection
is used as the identi�er for that focus context�

obsoleteFocus � the �bit� set with the identi�ers of the focus environments
from focusEnvironments that the ps removed from the focus�

actualFocus � the �bit� set with the focusing environments that are neither
obsolete� nor inconsistent�

checkForSupportStack � like in the jtms�

sleepingConsumers � this is a collection of associations �i� n� where i is the
identi�er of an inactive focusing environment �i�e� obsolete or inconsis�
tent� and n is a node that holds in the focusing context i and has attached
consumers� For reasons of e�ciency this data structure should be indexed
after i �e�g� an array of node�lists��

JTMSset node � like the jtms node� The wfSupport �eld is missing be�
cause it is more conveniently to store it in the justi�cations� The label
contains the �bit� set of focusing contexts in which the node is derivable�
The consumers of a node n will be activated whenever�
tms�activeFocus� n�label �� fg�

JTMSset justi
cation � as in the jtms� In addition to the antecedents
and consequent slots the jtmsset justi�cation contains a slot called wf�
Support containing the �bit� set of focusing contexts in which the current
justi�cation provides the well�founded support for the consequent node� For
some operations it is also useful to cache the set of focusing contexts prop�
agated by a justi�cation �i�e� the intersection of the antecedents� labels� �
this slot we call fLabel�

Basic operations

We present the operations performed when adding justi�cations and when
changing the focus� The addition of a justi�cation is very simple �Figure A��
and A�
��

���

Procedure AddJusti�cation �J� tms�
J is a jtmsset justi�cation�

��� Add J to the slots consequences of each node from J�antecedents and to
the slot justifications of the node J�consequent�

��� initialize J�wfSupport to the empty set�

�	� call V erifyJust�J� tms��

Procedure VerifyJust �J� tms�
checks if the constraint between J �s antecedents and the consequent�s labels is
satis�ed� If not� initiates the label update�

��� set J�fLabel to the set intersection of the nodes labels from J�antecedents�

��� let newFLabel �� J�fLabel � J�consequent�label �

�	� if newFLabel �� fg then

��� set J�wfSupport �� J�wfSupport � newFLabel �

�
� call SetBelief�J�consequent� newFLabel� tms��

Figure A��� Adding a justi�cation in the jtmsset

The addition of a focusing environment is more complicated� When there
exists an obsolete focus environment the new focusing environment will re�
place it� The assumptions from the old obsolete focusing environment that
do not appear in the new focusing environment must be retracted� Since it is
probable that several assumptions have to be retracted at such an operation
the usual check for alternative well�founded support is delayed until all the
retractions are done� See Figure A����

��

Procedure SetBelief �n� newFLabel� tms�
newFLabel is a set of new focus environments that have to be added to n�s label�
activates consumers and propagates the update further if necessary�

��� set n�label �� n�label � newFLabel �

��� if n�contradiction is true then

�	� if newFLabel � tms�activeFocus �� fg then

��� call SignalContradiction�n�
tms�activeFocus � newFLabel� tms��

�
� tms�activeFocus �� tms�activeFocus� newFLabel�

��� return �

��� call V erifyJust�J� tms� for each justi�cation J � n�consequences�

��� if newFLabel � tms�activeFocus �� fg then

��� activate all consumers from n�consumers� empty n�consumers�

else

���� if n�consumers is not empty then

���� add �i� n� to tms�sleepingConsumers for each i � newFLabel�

Figure A�
� Incremental label propagation in the jtmsset

���

Procedure RemoveFromFocus �fEnv� tms�
fEnv is an old focusing environment of tms�

��� let i be the index of fEnv in tms�focusEnvironments�

��� remove i from tms�activeFocus� add i to tms�obsoleteFocus�

Procedure AddToFocus �fEnv� tms�
fEnv is a set of assumptions de�ning a new focusing environment for tms�

��� if tms�obsoleteFocus � fg then

��� let i be the index of the next free entry in tms�focusEnvironments�

�	� initialize oldFEnv with the empty set�

else

��� let oldFEnv be an arbitrary element of tms�focusEnvironments

whose index is in tms�obsoleteFocus� let i be the index of oldFEnv in
tms�focusEnvironments �

�
� let assToRetract �� oldFEnvnfEnv� assToEnable �� fEnvnoldFEnv �

��� store fEnv in tms�focusEnvironments at the index i�

��� remove i from tms�obsoleteFocus� add i to tms�activeFocus�

��� call RemoveBelief�n� i� tms� for each assumption n � assToRetract�

��� call SetBelief�n� fig� tms� for each assumption n � assToEnable�

���� call CheckAdditionalSupport�i� tms��

���� if i � tms�activeFocus then call WakeUpConsumers�i� tms��

Procedure WakeUpConsumers �i� tms�
i is the index of a valid focusing environment� checks the nodes from
tms�sleepingConsumers and activates consumers if necessary�

��� let chkNodes be the collection of nodes from tms�sleepingConsumers as�
sociated with the context i�

��� for each n � chkNodes do�

�	� remove �i� n� from tms�sleepingConsumers�

��� if i � n�label and n�consumers is not empty then

�
� activate n�s consumers� empty n�consumers�

endfor

Figure A���� Changing the focus in the jtmsset�

���

Procedure RemoveBelief �n� i� tms�
n is an node that must be retracted in the context i�

��� remove i from n�label� push n on tms�checkForSupportStack�

��� for J � n�consequences do�

�	� remove i from J�fLabel�

��� if i � J�wfSupport then

�
� remove i from J�wfSupport�
��� call RemoveBelief�J�consequent� i� tms��

endfor

Procedure CheckAdditionalSupport �i� tms�
looks for support in context i�

��� while tms�checkForSupportStack is not empty do�

��� pop node n from tms�checkForSupportStack�

�	� if i �� n�label then

��� for J � n�justifications do�

�
� if i � J�fLabel then call V erifyJust�J� tms��
endfor

endwhile

Figure A���� Removing and checking for support in the jtmsset�

���

A�� The basic ATMS

Basic data structures

atms instance � except the usual information �e�g� see the jtms instance�
the atms instance stores�

nogoodDB � the collection with the minimal nogoods discovered so far�
E�cient representations of this structure are discussed in �dK��a� and
are� for instance� a collection of environments indexed by the size of the
environments� or discrimination trees� The nogoods of size one and two
are usually handled more e�cient �cf� �dK��a���

envDB � for e�ciency reasons the environments appearing in the node
labels are stored in this database� This ensures that each distinct envi�
ronment has a unique data structure� The entries in the envDB hold back
pointers to the nodes in whose labels the associated environment appears
�see below envDB�Elm�� Also� due to e�ciency reasons� this database
should be indexed after the size of the environments �e�g� an array or
hash�table of collections�� These features makes the maintenance of the
consistency more e�cient � the supersets of a nogood are checked in the
envDB� and not at every node�

checkStack � auxiliary data structure�� During the label update this stack
contains the tuples �J� n� newEnvs� specifying the justi�cations where
an antecedent node n received in its label the set of new environments
newEnvs� but the constraints of J were not yet checked� At the begin�
ning and end of each ps � atms transaction this stack is empty� i�e� the
dependency network is in a consistent state�

atms node � datum� justi�cations� consequences� assumption� contradic�
tion� consumers have the same meaning as in the jtms� The label holds
the complete� minimal and consistent set of environments that entail the
node given the justi�cation structure� The well�founded support is not
recorded�

atms justi
cation � has antecedents and consequent as in the jtms�

envdb�elm � entry in the environment database�

env � the data structure representing the environment�

�It plays the same role as the ltms checkStack that held unprocessed constraints�

���

inLabels � references to the nodes whose labels contain the associated en�
vironment�

Basic operations

In the atms there is no correspondence to assumption enabling and assump�
tion retraction� When an assumption is created its label is immediately
propagated to the followers �i�e� they are from the start enabled�� and when
an inconsistent environment is detected� the supersets of the nogood are re�
moved� thus restoring the consistency� We present in the following the opera�
tions performed when a justi�cation is added �Figure A����� The algorithms
are the same but more detailed than the ones published in �dK����
The labels are updated in an incremental way� When a set of new environ�

ments newEnvs is added to the label of a node n� the triple �J� n� newEnvs�
is added to the checkStack� The function VerifyConstraints �similar to the
one of the ltms� processes the entries from the checkStack� For each entry
it veri�es if the constraints among the labels of the nodes connected by the
justi�cation J are satis�ed and� if not� computes the new environments that
must be added to the consequent of J � this is computed by the function
NewEnvsForConseq� In this procedure n is assumed to be an antecedent
node of J or the symbol nil� The latter case appears only when a new
justi�cation is added�
The pending updates are processed in a depth��rst manner since check�

Stack is a stack� By making it a queue one can process them in a breadth��rst
manner� It is easy �and more e�cient� to keep this collection ordered ac�
cording to some criteria� i�e� to perform the label propagation in a best��rst
manner� e�g� the propagations that involve smaller environments should be
processed before the ones involving bigger ones� the justi�cations of contra�
dictions should be processed before the others� etc� This would help �nding
the minimal nogoods as soon as possible� thus stopping the work in incon�
sistent contexts earlier�

��	

Procedure AddJusti�cation �J � tms�
J is an atms justi�cation�

��� Add J to the �eld consequences of each node from J�antecedents and to
the �eld justifications of the node J�consequent �

��� call NewConstraint�J� nil� ffgg� tms� �

�	� call V erifyConstraints�tms��

Procedure NewConstraint �J� node� envSet� tms�
envSet was added to node�label where node � J�antecedents if node �� nil� or
J is a newly added justi�cation if node � nil� in the basic atms this procedure
simply pushes the update on tms�checkStack�

��� push the triple �J� node� envSet� to tms�checkStack�

Procedure VerifyConstraints � tms�
Checks the entries of the checkStack which contain unprocessed label updates�

��� while tms�checkStack is not empty do�

��� pop �J� n� upd� from tms�checkStack�

�	� updConseq �� NewEnvsForConseq�J� n� upd��

��� if updConseq is not empty then

�
� call SetBelief�J�conseq� updConseq� tms��

endwhile

Procedure SetBelief �n� newEnvs� tms�
adds newEnvs to n�s label� checks consistency� creates more triples
�J� n� newEnvs� for the incremental label update and activates consumers�

��� if n�contradiction is true then

��� call Nogood�e� tms� for each e � newEnvs� return �

�	� remove from n�label the supersets of any member of newEnvs�

��� install newEnvs in tms�envDB and add newEnvs to n�label�

�
� activate the consumers of n and empty the list of attached consumers�

��� call NewConstraint�J� n� newEnvs� tms� for each J � n�consequences�

Figure A���� Adding a new justi�cation in the atms�

���

Function NewEnvsForConseq �J� n� upd�
�
 returns the set of new environments that must be added to J�consequent�label�
if n �� nil then n � J�antecedents and upd is the set of new environments that have
been added to n�label without being propagated to J�consequent� This function
takes the union of every combination of environments from J �s antecedents� If
n �� nil than the set upd is used instead n�label�

��� initialize newUpd �� upd �

��� for each antecedent node a � J�antecedents do�

�	� if a �� n then

��� let tmp be the collection of environments resulting by union�
ing each environment from newUpd with each environment from
a�label�

�
� remove from tmp each environment that is inconsistent� equal� or
superset of another environment from tmp� newUpd �� tmp�

endfor

��� remove from newUpd the supersets of any element of J�consequent�label�

��� return newUpd�

Procedure Nogood �e� tms�
e is a new minimal nogood� Notify the ps� remove supersets from the environment
database� from the node labels and from the nogood database� The pending label
updates from checkStack must also be checked for consistency�

��� inform the ps� call NoticeNogood�e� tms��

��� remove any superset from tms�nogoodDB� store e in tms�nogoodDB�

�	� remove any superset of e from the sets newEnvs of the triples
�J� n� newEnvs� from tms�checkStack �

��� for any envEntry � tms�envDB that stores a superset of e do�

�
� remove envEntry�env from the label of each node
n � envEntry�inLabels�

��� remove the entry envEntry from tms�envDB�

endfor

Figure A���� Computing incremental label updates and processing nogoods�

���

A�
 The lazy ATMS

The Lazy ATMS data structures

Lazyatms instance � like the atms instance� Additionally we use�

reqJusts � during query answering this stack contains the justi�cations
that are required in order to compute the label of the queried node�

Lazyatms node � like the atms node� In addition it contains the slot�

mark � If true signals that the label of the node might not be updated�

Lazyatms justi
cation � except the usual antecedents and consequent it
contains�

delayedConstraints � This collection stores unprocessed incremental label
updates �J� n� newEnvs� for this justi�cation �like the tms�checkStack�
but which are not in e�ect due to the lazy label evaluation� The lazy label
evaluation is implemented thus as a lazy justi�cation�constraint evalua�
tion� When a node is queried some delayed unprocessed constraints are
moved from some justi�cations� delayedConstraints to the tms checkStack
where they are processed�

req � boolean� If true� the justi�cation is required for the current query�

envdb�entry � like in the atms� Additionally it could include references
to those justi�cations whose slot delayedConstraints mentions this envi�
ronment� This entry is optional� If present it makes the removal of the
supersets of a nogood from the pending label updates more e�cient� Al�
ternatively� this operation can be also postponed until the delayed updates
are restarted� In the following we take the last alternative�

Basic operations

The addition of a justi�cation raises no di�culty �Figure A��	�� It just
propagates the mark to the followers of the consequent as long as the mark
is not already set� It also installs delayed label propagation constraints� The
procedure AddJustification avoids to set the marks if the addition of the
justi�cation would not produce any change in the label of the consequent�
The procedure that queries a node label �Figure A���� �rst determines

the set of justi�cations whose constraints must be fully satis�ed �they are
called required justi�cations�� For each required justi�cation the label update

���

Procedure AddJusti�cation �J� tms�
triggers only the mark update� The incremental label update for the consequent
is computed� but instead of processing it it is placed on J�delayedConstraints�

��� Add J to the slots consequences of each node from J�antecedents and to
the slot justifications of the node J�consequent�

��� if NewEnvsForConseq�J� nil� ffgg� is not empty then

�	� call SetMark�J�consequent��

��� call NewConstraint�J� nil� ffgg� tms��

Procedure SetMark �n�
n is marked as having an
unupdated� label�

��� if n�mark � true � n is premise then return �

��� set n�mark �� true�

�	� call SetMark�J�consequent� for each J � n�consequences�

Procedure NewConstraint �J� n� envs� tms�
unless J�req is set to true stores the unprocessed label update under
J�delayedConstraints� Only during query processing some justi�cations are
marked required and some delayed constraints are moved to the tms�checkStack�

��� if J�req is true then

��� push �J� n� envs� to tms�checkStack�

else

�	� push �J� n� envs� to J�delayedConstraints�

Figure A��	� Adding a justi�cation in the Lazyatms�

���

constraints that were delayed in J�delayedConstraints are moved to the tms
checkStack where they will be processed by V erifyConstraints� The func�
tions VerifyConstraints� NewEnvsForConseq� SetBelief and Nogood have the
same description as the ones of the basic atms# Since SetBelief uses New�
Constraint to signal the updates that it performs and NewConstraint delays
only the propagations of the non�requested justi�cations the completeness of
the queried node label is ensured�
It is easy to see that this implementation of the Lazyatms di�ers from the

one of the basic atms just in the order and moment when the label updates
are performed�
In �KvdG
�� the computation of the labels of a cycle of justi�cations was

performed in a special� optimized way�� In principle� the function VerifyCon�
straints can do more work than simply sequentially processing the entries of
checkStack � as we have already mentionedwhen we discussed the basic atms�
So this procedure could �and should� analyze and reorganize the update tasks
in order to gain more e�ciency� For instance� several update tasks having
the form �J� n� updi� could be combined in one �J� n�

S
i updi��

�However� in order to correctly process a query one does not need to update the labels
of a whole cycle� To see why this is true� recall that each environment in a node label is
based on a well�founded support� and that each well�founded support is acyclic� Thus� also
the procedures shown above mark more justi�cations as required than strictly necessary�
See also 	Tat����

��

Function QuerryLabel �n� tms�
computes and returns the complete� sound and minimal label for n �not necessarily
consistent� unless the contradictory nodes are also queried � see the text��

��� call FindReqNet�n� tms��

��� call WakeUpReqConstraints�tms�� call V erifyConstraints�tms��

�	� J�req �� false for each J � tms�reqJusts� empty tms�reqJusts�

��� return n�label�

Procedure FindReqNet �n� tms�
steps back in the justi�cation network and determines the justi�cations that
are required to compute the label of n� These justi�cations are stored in the
tms�reqJusts for later processing and their �eld req is set true�

��� if n�mark � false then return �

�� change node mark to indicate that �after processing� the label is updated

��� set n�mark �� false�

�	� for each J � n�justifications do�

��� push J to tms�reqJusts� set J�req �� true�

�
� call FindReqNet�n�� tms� for n� � J�antecedents�

endfor

Procedure WakeUpReqConstraints �tms�
For each required justi�cation J the collection of unprocessed label updates
J�delayedConstraints is moved to the tms�checkStack where they will be pro�
cessed by V erifyConstraints� At this time� the consistency of the environments
that are restarted must be checked�

��� for each J � tms�reqJusts do�

��� remove any superset of a nogood from envs�
where �J� n�� envs� � J�delayedConstraints�

�	� move all entries from J�delayedConstraints to tms�checkStack�

endfor

Figure A���� Querying a node label in the Lazyatms�

�
�

A�� The focusing ATMS

fATMS data structures

fatms instance � like the atms instance� Additionally it must include a
slot that speci�es the current focus� This can be either an extensionally
de�ned set of focusing environments �like it was in the jtmsset� or a ps
provided predicate that decides if an arbitrary environment is in the current
focus� We take here the second alternative since it is more general�

fatms node � like the one of the basic atms� Additionally it has�

blockedLabel � holds the environments whose propagation is delayed be�
cause they do not hold in the current focus��

fatms justi
cation � like the one of the basic atms�

envdb�Elm � like the one of the basic atms� but including the slot in�
BlockedLabels � stores the references to those nodes where this environment
appears in the blockedLabel� This helps to perform the focus change more
e�ciently�

Basic operations

We describe the addition of a justi�cation and the focus change� The addition
of a justi�cation is very similar to the ones of the basic and the lazy atms�
The functions AddJusti�cation� VerifyConstraints� NewConstraint� NewEn�
vsForConseq are identical with the ones of the basic atms �see Figure A���
and A����� The procedure SetBelief is di�erent in that it must decide which
label updates to store in the node labels and which in the blocked labels�
The procedure NewConstraint need not test if the environments of its argu�
ment hold in focus or not because it is only called with sets of environments
that hold in focus �SetBelief ensures this�� The Nogood function also has
a minor change because it must remove the inconsistent environments from

�This �eld has a similar role as the slot delayedConstraints of a Lazyatms justi�ca�
tion� However� while in the Lazyatms it is more natural to store the delayed updates
at justi�cations� since the justi�cations �decide� if they are relevant� in the fatms it is
more natural� and more e�cient� to store the delayed updates at nodes� since a delayed
environment is delayed for all consequent justi�cations and is even not added to the node
label�

�
�

the blocked labels too�	

When the focus changes the previously delayed updates that enter the
focus must be restarted� This is done by sweeping the environment table�
detecting the environments that are in the new focus but appear in blocked
node labels� and by moving them to the node labels and propagating them
further �Figure A�����

�This is not really necessary� If the function that decides what holds in focus never
answers true to an inconsistent environment then the inconsistent elements of the blocked
labels remain for ever pending there� Removing them can save some space�

�
�

Procedure SetBelief �n� newEnvs� tms�
adds the elements of newEnvs to n�s label or blocked label� checks consistency�
creates more triples �J� n� newEnvs� for the incremental label update�

��� remove from n�label� n�blockedLabel the supersets of any member of
newEnvs�

��� remove from newEnvs the supersets of any member of n�blockedLabel�

�	� let benvs �� fe � newEnvs j e is not in the tms�s focusg�

��� add benvs to n�blockedLabel� newEnvs �� newEnvs� benvs�

�
� if newEnvs is empty then return �

��� if n�contradiction is true then

��� call Nogood�e� tms� for each e � newEnvs� return �

��� add the elements of newEnvs to n�label�

��� activate the consumers of n and empty the list of attached consumers�

���� call NewConstraint�J� n� newEnvs� tms� for each J � n�consequences�

Procedure ChangeFocus �newFocus� tms�
restarts the propagation of the environments from the node blocked labels

��� update tms� focus slot with newFocus�

��� for each contradiction node n � tms�contradictionNodes do�

�	� newNgs �� fe � n�blockedLabel j e is in tms� focus g �

��� call Nogood�e� tms� for each e � newNgs�

endfor

�
� for envEntry � tms�envDB s�t� envEntry�inBlockedLabels is not empty
and envEntry�env holds in focus do�

��� for n � envEntry�inBlockedLabels do�

��� remove envEntry�env from n�blockedLabel�
��� call SetBelief�n� fenvEntry�envg� tms��

endfor

��� set envEntry�inBlockedLabels to the empty list�

endfor

�� one could optimize the tms�checkStack before the next call

���� call V erifyConstraints�tms��

Figure A���� The incremental changes of the fatms relative to the atms�

�
�

A�� Non�Monotonic RMSs

Although the reasoning performed within the monotonic rmss is monotonic�
once one adds the contradiction handler to the architecture� the reasoning
becomes non�monotonic� The contradiction handler decides what is
best�
to believe next and could base its decision on a variety of reasons� It adds and
retracts assumptions� and thus� the reasoning it performs is non�monotonic�
In fact� one could implement a non monotonic rms just by embedding a
�systematic� contradiction handler into a monotonic rms and� eventually�
extending the interface �

The distinguishing feature of a non�monotonic rms is that it allows to ex�
press the dependence of the belief in a node also on the lack of belief in other
nodes� Non�monotonic and default reasoning underlies common sense rea�
soning� design� decision making� and many other tasks ��Doy�
� gives several
arguments for the signi�cance and usefulness of a non�monotonic reasoner��
Both Doyle�s nmjtms and Dressler�s nmatms have common features which
we present in the following�

The belief constraints are non�monotonic justi�cations� p� � � � � � pk �
out�q�� � � � � � out�ql� � r� where pi� qi� r are propositional symbols� The
interpretation of the nm�justi�cation is� Whenever we believe p� � ��� � pk
and we have no reason to believe any of q� � � � ql it is justi�ed to believe r� We
note with ma�J� �i�e� the monotonic antecedents of J� the set of antecedents
that must be IN� and with nma�J� the set of antecedents that must be OUT
such that J constraints the belief of the consequent� A justi�cation with an
empty set of antecedents forces the unconditioned belief in the consequent�
thus making the consequent a premise�

Let a dependency network be D � �N �A�J �� where N is the set of
nodes� A is the set of assumptions� and J is the set of nm�justi�cations�
Given a set S � N of nodes it is said that J is valid in S if and only if
ma�J� � S � nma�J� � S � &�

The well�founded support of a certain node n with respect to a set S is
providing a non�cyclic and non�redundant proof for n and plays an important
role in de�ning the properties of the nmrmss� A well�founded support for n
w�r�t� a set of nodes S is a sequence of justi�cations J�� � � � � Jk such that�

�� each Ji is valid in S�

�� Jk justi�es n or n is an enabled assumption�

�
	

�� all the monotonic antecedents of Ji are either enabled assumptions or
are justi�ed earlier in the sequence�

	� no node has more than one justi�cation in the sequence� an enabled
assumption has no justi�cation in the sequence�

A set S � N is called closed if and only if any consequent of a valid
justi�cation in S is also in S �i�e� J is valid in S
 J�consequent 	 S��
A set S � N is called grounded if and only if any node of S has a well�

founded support in S�
A set S � N is an extension of D if and only if S is both grounded and

closed�
We can now formally characterize what the nmjtms and the nmatms

compute��

� Given D � �N �A�J � the nmjtms interpretsA to be the set of enabled
assumptions� The nmjtms computes one extension of D and labels
with IN the nodes from the extension and with OUT the rest of the
nodes�

� Given D � �N �A�J � the nmatms interprets each element of A to
be either an enabled assumption or a derived node� The nmatms
computes for each consistent set E 	 �A of enabled assumptions all
the possible extensions�

In �RDB�
� it has been shown that there is a strong relationship between the
extensions computed by the nmjtms and nmatms and the ones computed
in autoepistemic and default logic�
At this point we make some remarks about the relationship between the

monotonic and non�monotonic rmss that also clari�es some confusing termi�
nology that exists in the literature� First we should note that the assumption
set A from the above de�nition of a dependency network is not really needed
in a nmrms� There are implicit assumptions inside a nmrms also when
A � &� These assumptions are implicitly added by basing the belief on the
assumption that some nodes have no derivation� Any belief that is based on
OUT nodes could be regarded as an assumption� The nmrmss labeling algo�
rithms automatically handle the
enabling and retraction� of these implicit
assumptions� The ps handles the assumptions A� if any� In several papers

�	This characterization does not cover the con�ict resolution in the nmjtms or nmatms
as we shall see�

�
�

the above set A is� a bit misleading� called the set of premises� Towards
the ps this set plays the same role as the set of assumptions in a monotonic
rms� However� relative to the implicit assumptions of a nmrms they are
like premises since it is considered preferable to revise the labels before the
assumptions A�
Since the nmrmss can be seen as manipulating the implicit assumptions

about outness they also must o�er means to detect and recover from inconsis�
tencies� Inconsistency is simply detected when a contradiction node becomes
believed� In such a case the nmrmss chooses to retract the �implicit� as�
sumption that one of the out�labeled nodes is in fact out� Thus� one of the
out nodes underlying the contradiction is picked and is justi�ed with the
situation that produced the contradiction� The nmjtms conducts a search
until one such node is found and then it justi�es it� while in the nmatms all
the ways of solving the contradiction are considered�
This way of solving the inconsistencies introduces more justi�cations in

the dependency net� The nmjtms and the nmatms continue to �nd the
extensions with respect to the total set of justi�cations� but not with respect
to the original justi�cations that the ps supplied� This makes the relationship
between nmrmss and default logic less clear� The new justi�cations are a
source of ungroundness with respect to the original set of justi�cations�

The nmATMS

The nmatms �cf� �Dre��� Dre
��� is relatively simple in comparison to the
nmjtms� It is in fact a basic atms which makes explicit the assumptions
about the out�nodes that appear in some justi�cation �thus it makes explicit
the assumptions that were implicit in the nmjtms� and is extended with
two supplementary inference rules and with a mechanism to construct the
extensions�
Let D � �N �A�J � be a non�monotonic dependency network� Besides

the ps assumptions A the nmatms uses another set of assumptions A� � the
out�assumptions� For each node p that is mentioned in the non�monotonic
antecedents of some justi�cation the nmatms automatically creates an out �
assumption pout 	 A�� The label of pout represents the situations where there
is no justi�ed belief in p� p and pout are constrained not to believed in the
same context� The� so�called� consistent�belief rule makes inconsistent the
contexts where both p and pout are believed� For each pair of nodes p� pout
this rule introduces the justi�cation p � pout ��� The context de�ned by a

�
�

set of assumptions E is noted cxt�E��
Each environment of ps assumptions E 	 �A can have an extension� In

the terminology of the nmatms� S � N is an extension of an environment
E if and only if there exists an environment of out�assumptions B � A� such
that� S � cxt�E�B����pout 	 A� � pout 	 B � ��p 	 S��� The environment
E � B de�ning an extension is called an extension�base� An extension S is
inconsistent if � 	 S�
The nmatms has a mechanism to construct the consistent extension�

bases� The extensions are easy to retrieve as the contexts of the extension�
bases� The extension�bases are constructed as follows�

�� For each pair of nodes p� pout a new node �p is created and is justi�ed
with two justi�cations� p� �p� pout � �p�

�� An additional node � is created and it is justi�ed with the conjunct of
the ��nodes� �� � � � � � �k � ��

In �Dre
�� it is proven that the consistent extension�bases are exactly
the elements of the label of � and the consistent supersets of these environ�
ments���

A problem�solver based on the nmatms would only be interested in the
environments that have a consistent extension� These environments are called
coherent� As noted in �Dre��� Dre
�� the coherence is non�monotonic with
respect to the addition of assumptions and justi�cations� e�g� an incoherent
environment could have a coherent superset� This makes the test for coher�
ence more di�cult than the one for consistency� In �Dre
�� it is shown how
one could test in the nmatms if a environment is coherent or if it can have
coherent supersets using the environments from ��s label�
When an inconsistency is detected �an environment is propagated to the

label of a contradiction node� a minimal nogood is recorded as in the atms
and the supersets of the nogood are removed from the node labels� The
mechanism of contradiction handling of the nmatms makes use of one more
inference rule� the nogood inference rule� In fact� the nmatms also embeds
the semantic of negated nodes� The encoded relations among the nodes�
negated nodes and out�nodes are� p � �p � �� p � pout � �� �p � pout�
From any nogood involving out�assumptions a new negative clause is built by

��It can be seen that the nmatms maps the odd loops to inconsistencies while for the
even loops it constructs several extension bases� The simplest example of an odd loop is
pout � p� The simplest even loop is pout � q� qout� p�

�
�

replacing the out�assumptions from the nogood with the negative nodes� e�g�
from the nogood fpout� qoutg the negative clause �p � �q is inferred� These
negative clauses together with the implicit knowledge that p � �p are used
to install a series of justi�cations�

�A� � � � ��Ak � �p� p � �p

A� � � � � �Ak � p
�A���

As noted at the beginning of this section these additional justi�cations
introduce a source of ungroundness with respect to the justi�cations provided
by the ps� Thus� some of the extension�bases computed after the usage of the
nogood inference rule are not necessarily grounded from ps�s perspective���

In the nmatms this aspect is stressed because incoherence is mapped to
inconsistency� This is obvious in the case of an odd�loop� pout � p will lead
to the discovery of the nogood fpoutg due to the consistent belief rule� which
triggers the addition of the justi�cation �� p� that makes p a premise due
to the nogood inference rule�

��A check for groundness is described in 	Dre

� but it does not look computationally
attractive�

�
�

Appendix B

Algorithms for Candidate

Generation

B�� A basic candidate generator

A candidate generator must have means to explicitly or implicitly store and
access the elements of its choice space� i�e� the choice sets� the con�icts and
the priority order� The problem solver must have means to create and destroy
candidate generators� to add new con�icts and choice sets and to communi�
cate and change the heuristic that controls the number of focus candidates
that a candidate generator should compute� A candidate generator must
communicate to the problem solver the current focus candidates�

In this respect� a candidate generator maintains at each moment a lower
bound� The lower bound is split into two sets�

� Focus contains the preferred and consistent candidates �with the high�
est priority� that should be in the focus of the problem solver�

� Candidates contains the rest of the candidates that together with
Focus de�ne a lower bound for the consistent candidates of the choice
space administrated by the candidate generator� The elements from
Candidates need not be consistent�

Both Focus and Candidates can be stored as lists of candidates ordered by
priority�

�

Basic data structures

candidate generator instance �

Choices a collection of choice sets �see below��

Con�s stores� explicitly or implicitly� the set of �minimal� con�icts among
the assumptions of the choice space� In an atms based problem solver
this slot can �but need not necessarily� refer to the atms since the atms
maintains the con�icts�

Priority stores a function that takes two candidates and returns true if the
�rst one has a higher priority than the second one� and false otherwise�

FocusController speci�es a certain heuristic that controls how many of the
preferred candidates should enter the focus �in �dK
�� such a heuristic
was proposed in a probabilistic framework��

Focus stores the current focus candidates� i�e� a list of candidates ordered
according to the Priority �see below the structure of a candidate�� The
focus candidates should not include any con�ict from Confls�

Candidates stores a collection of candidates ordered by Priority that to�
gether with the Focus de�nes a lower bound for the consistent candidates
of the choice space administrated by this candidate generator�

choice set contains an ordered collection �e�g� a list or an array� of sym�
bols�� The order in a choice set is according to the preference order of that
choice set� A choice set must be able to answer which is the next element
after a certain member� if one exists�

candidate instance A candidate should specify for each choice set a se�
lected element� If the preference order in each choice set re�ects some form
of plausibility then it should be the case that� on the average� most of the
consistent candidates select few elements that are not the most preferred
in each choice set� In such a case it makes sense to store in �the internal
format of� a candidate only the pairs �C� a� where the element a 	 C is not
the most preferred in C� as we will do in the following�

Figures B��� B��� B�� and B�	 describe the operations performed when a
new candidate generator is created�

�A �symbol� is in general just some data structure� and may have� in fact� a richer
semantics in the problem solver� but the candidate generator treats these data as propo�
sitional�

���

Function MakeCandGen �Choices� Confls� Priority� FocusController�
creates and returns a data structure associated to the new candidate generator�

��� let cg be a new instance of a candidate generator data structure� initialize
the �elds of cg with the parameters of the function accordingly�

��� let bottomCandidate �� fg�

�� this selects implicitly for each choice the most preferred element�

�	� initialize cg�Focus �� fg� cg�Candidates �� fbottomCandidateg�

��� call ComputeFocus�cg�� return cg�

Function ComputeFocus �cg�
cg is a candidate generator instance� computes a number of consistent preferred
candidates with the highest priority according to the heuristic cg�FocusController�
Returns the collection of focus candidates�

��� while cg�FocusController returns false and cg�Candidates �� fg do�

��� remove bestCand� the �rst element from cg�Candidates�

�	� let c �� ChkConsistency�bestCand� cg��

��� if c � nil then

�� bestCand is consistent
�
� insert bestCand into cg�Focus according to the order cg�Priority�

else

�� c is a con�ict included in bestCand

��� call InsertSuccessors�bestCand� c� cg��

endwhile

��� return GetFocus�cg��

Figure B��� Initializing the candidate generation and computing the focus

���

Procedure InsertSuccessors �cand� c� cg�
cand is a candidate of cg that includes c� The elements from the set
DirSucc�cand� c� that are not successors of some candidate from cg�Candidates�
cg�Focus are inserted into cg�Candidates�

��� for each a � c do�

��� let A be a new copy of cand�

�	� while A �� nil and �Ci � cg�Choices s�t� either �Ci� a� � A� or
a is the �rst element of Ci and ���a

� � Ci s�t� �Ci� a
�� � A� do�

��� if a is the last element in the ordered collection Ci then

�
� A �� nil�
else

��� remove the pair �Ci� a�� if one exists� from A�
��� add �Ci� Next�a� Ci�� to A�

endwhile

��� if A �� nil and CheckIfSubsumed�A� cg� � false then

��� insert A in cg�Candidates according to the order cg�Priority�

endfor

Figure B��� Computing direct successors

Function CheckIfSubsumed �cand� cg�
returns true if cand is a successor of some element of cg�Focus or cg�Candidates�

��� for each candidate A � cg�Focus � cg�Candidates do�

��� let isSuccessor �� true�

�	� for each pair �Ci� ai� � A as long as isSuccessor is true do�

��� if exists a pair for Ci� i�e� �Ci� a
�
i� � cand then

�
� if a�i precedes ai in Ci then isSuccessor �� false�
else

��� isSuccessor �� false�

endfor

��� if isSuccessor � true then return true�

endfor

��� return false�

Figure B��� Preference checking

���

Function GetFocus �cg�
This is the function that the problem solver uses in order to access the focus
of a candidate generator cg� Returns the current focus of cg� The candidates
are communicated in the external format� i�e� the
missing� pairs �C� a�� where
C � cg�Choices and a � C is the most preferred element of C� which are not
stored in the internal representation of a candidate� are added�

��� let result �� fg�

��� for each candidate A � cg�Focus do�

�	� let A� be a copy of A�

��� add the pair �Ci� ai� to A
� for each Ci � cg�Choices that is not men�

tioned in A� where ai is the �rst �most preferred� element of Ci�

�
� add A� to result according to cg�Priority�

endfor

��� return result�

Figure B�	� Accessing the external representation of the focus

Function AddNewCon�ict �cfl� cg�
adds a new con�ict to the candidate generator cg� recomputes and returns the new
focus�

��� add cfl to cg�Confls�

��� for each A � cg�Focus such that A includes cfl do�

�	� remove A from cg�Focus�

��� call InsertSuccessors�A� cfl� cg��

endfor

�
� return ComputeFocus�cg��

Function AddNewChoice �C� cg�
adds a new non�empty choice set� Recomputes and returns the new focus�

��� add C to cg�Choices�

�� now each element of the lower bound implicitly selects the best element of
C�

��� move the elements from cg�Focus to cg�Candidates�

�	� return ComputeFocus�cg��

Figure B��� Adding new con�icts and choice sets

���

Function ChangePriority �Priority�cg�
Priority de�nes a new priority order for cg�

��� cg�Priority �� Priority�

��� move all elements of cg�Focus to cg�Candidates� reorder cg�Candidates ac�
cording to cg�Priority�

�	� return ComputeFocus�cg��

Function ChangeFocusController �FocusController� cg�
resets the heuristic controlling the size of the focus�

��� cg�FocusController �� FocusController�

��� move all elements from cg�Focus to cg�Candidates according to the priority�

�	� return ComputeFocus�cg��

Figure B��� Changing the control strategy

Figure B�� depicts the incremental processing of new con�icts and of new
choice sets� Figure B�� depicts the operations performed when the priority
or the focus controller are dynamically changed�

B�� A hierarchic organization of several can�

didate generator modules

As an illustration of a possible organization of several candidate generation
modules� we sketch here a hierarchic organization� By
hierarchic organiza�
tion� we mean here that the global set of choice sets Choices is partitioned
among several sets Choices �

Sn
i
� Choicesi� and Choicesi �Choicesj � fg�

for all i �� j� Moreover� there is a strict priority across the partitions� say�
Choices� � Choices� � � � � � Choicesn� Each set Choicesj is administrated
by a candidate generator module cgj � It is expected that each module cgj�� is
activated after the preceding modules in the sequence already de�ned a con�
sistent assignment for the choice sets Choicesj� �

Sj
i
�Choicesi� The module

cgj�� should �nd a preferred and consistent �sub�candidate that consistently
extends the assignment to the choice sets Choicesj�� If this is possible than
the next following module �cgj��� is activated� otherwise� the previous mod�
ule �cgj��� is supplied with additional con�icts and is expected to attempt

��	

11-1-1

11-2-2

11-2-1

11-1-2

21-1-1

21-2-2

21-2-1

21-1-2

12-1-1

12-2-2

12-2-1

12-1-2

22-1-1

22-2-2

22-2-1

22-1-2

12-11

11-11

11-22

21-11

11-21 11-12

21-22

21-21 21-12

12-22

12-21 12-12

22-11

22-22

22-21 22-12

(b) (c)

1211

1111

12222221 2212 2122

2211 2121 2112 1221 1212 1122

2111 1121 1112

2222

(a)

Figure B��� Preference lattice in a choice space with four choice sets� each
with two elements� The candidates are depicted using the same conventions
as in Figure 	���� The lattice �a� corresponds to a centralized choice ad�
ministrator� The �gures �b� and �c� show the order induced by distributing
the choice sets among several modules organized hierarchically� Figure �b�
has the organization� fC�� C�g � fC�� C�g� Figure �c� has the organization
fC�� C�g � fC�g � fC�g�

���

to revise the proposed �sub�candidate�
Such a scheme a�ects the order in which the candidates are investigated�

Figure B�� �a� shows the preference order among the choice assignments of
a choice space with four choice sets C�� C�� C�� C� when the choice space is
administrated by a single global module� Figure B�� �b� shows the order
among the choice assignments when the choice space is partitioned in two
sub�spaces� each having two choice sets� namely fC�� C�g � fC�� C�g�
An extreme case of the hierarchic organization is obtained when each

module is given a single choice set to administrate� In such a case� there will
be no branching in the preference order� i�e� the induced order will be total�
As can be seen� the hierarchic organization reduces the
width� of the

lattice and increases the depth of it� i�e�
induces� additional orderings
among the candidates that were not comparable in the preference lattice of
the global candidate generator� The induced order can be used to
compile�
more of the priority orderings into the induced preference in some cases� In
e�ect� the size of the lower bounds is going to be smaller� This can positively
a�ect the e�ciency of the candidate generation in some situations�

B�� Searching in secondary choice spaces

Figure B�� depicts an algorithm that searches one consistent extension of a set
of symbols with an assignment for the secondary choice sets� The algorithm
iterates on the secondary choice sets and attempts to assign a symbol for
each choice set in turn� The order in which the choice sets are chosen is a
place for heuristics� as well as the order in which the elements of each choice
set are tried� As soon as a set of symbols cannot be further consistently
extended� new con�icts are derived by hyperresolution �see also 	���	��
One can see the relationship with the way the search order was changed

by the introduction of the
hierarchically organized candidate generators� in
Appendix B��� Figure B�� �c� shows also the search order in a choice space
where C�� C� are primary choice sets� while C� and C� are secondary choice
sets� Of course� not all of the points of the candidate space are inspected� The
search takes advantage of the �induced� preference order and on the minimal
con�icts in order to prune some sub�spaces of inconsistent candidates� For
instance� if in the candidate space of Figure B�� �c� the con�ict ������ is added
�noted using the conventions from the example 	������� the lower bound f���
���g is going to be replaced with f������g� If further� the con�ict ������ is

���

discovered� the lower bound is going to be replaced directly with f������g�
thus pruning the whole sub�space assigning ���x�x�
While reducing the size of the lower bounds can positively a�ect the ef�

�ciency� also the reduction of the potential parallelism may be a desirable
feature in diagnosis in some situations� For instance� one might not be inter�
ested to discriminate between the diagnoses that assign di�erent fault modes
to the same components�

Example B���� Assume each component Ci has the modes of behavior oki�
f i�� � � � � f

i
ni� where f

i
j are fault modes	 Associating to each component a pri�

mary choice set foki� f i�� � � � � f inig makes possible to select simultaneously in
the focus candidates containing mode assignments like
 f���Ci� f

i
��� �Cj� f

j
� �� ��g

and f���Ci� f
i
��� �Cj� f

j
� ���g	 This enables the candidate discrimination to pro�

pose tests that distinguish between the above candidates	
If� however� in a certain application� only the set of faulty components has

to be identi�ed� irrespective of the speci�c fault modes assumed� the following
representation can ensure it

For each component Ci another generic fault mode is created� say abi� and
a primary choice set foki� abig is created	 In addition� the relations abi

�f i� � � � �� f ini� can be represented into the rms and the candidate generator
as in Lemma �	�	
� i	e	 using an �implied choice set� Cab

i � f$i� f
i
�� � � � f

i
nig	

Representing the implied choice sets Cab
i as secondary choice sets in the can�

didate generator� guarantees that the focus always contains candidates that
accuse distinct sets of faulty components	

���

Function SExtension �ctx� SecChoices� CS�
ctx is a set of symbols� possibly chosen by a primary choice assignment� SecChoices
is the set of choice sets for which an assignment consistent with ctx should be
found� if possible� CS is a choice space and is used here just as a repository of the
con�icts�
Returns� a pair �success� retV �� where� success is a boolean value� if success
is true than retV represents a consistent extension for ctx with assignments for
SecChoices� If success is false� then no consistent extension of ctx exists� and
retV represents a set of con�icts that are included in ctx�

��� if ctx is inconsistent then return �false� fc � CS�Confls j c � ctxg��

��� if SecChoices is empty then return �true� fg��

�	� choose a choice set C � SecChoices� choose an order among the elements of
C� let it be a�� a�� � � � � akC �

��� for i �� � to kC do�

�
� if ctx � faig is inconsistent then

��� consider the con�icts fc � CS�Confls j �c � ctx�faig�� �c�C �
faig�g for hyperresolution at the choice set C�

else

��� �success� retV � ��
SExtension�ctx � faig� SecChoices� fCg� CS��

��� if success then

��� return �true� retV � f�C� ai�g��
else

���� if ctx contains any con�ict from retV then

���� return �false� fc � retV j c � ctxg��
else

���� consider the con�icts fc � retV j c � C � faigg for
hyperresolution at the choice set C�

endfor

�� no assignment for C can consistently extend ctx�

��	� activate hyperresolution at the choice set C� let newCfls be the set of new
minimal con�icts derived� add newCfls to CS�Confls�

���� let retV �� fc � newCfls j c � ctxg�

�� we know that retV cannot be empty

��
� return �false� retV ��

Figure B��� Searching for a consistent secondary choice assignment�

���

Appendix C

Proofs of Chapter �

C�� Lemma ������

Let A be a candidate of �L�Choices� Confls��pri� and c 	 Confls be a
con�ict included in A	 If
S is a successor of A �A � S� that does not include c� then

S is a successor of a direct successor of A with respect to c� i	e

�D 	 DirSucc�A� c�� s	t	 D � S�

Proof� Let A � f�C�� a��� � � � � �CN � aN�g� c 	 Confls� c � A�
i�e� �a 	 c���Ci� ai� 	 A s�t� a � ai� S � f�C�� s��� � � � � �CN � sN �g
is a successor of A� By de�nition� for all i� ai � si � ai �Ci

si�
By hypothesis� we know that c is not included in S� i�e� �a 	 c
s�t� ����Ci� si� 	 S s�t� a � si�� But c is included in A gives�
��Cx� ax� 	 A � ax � a� Let then X � f�Cj� aj� 	 A j a � ajg�
From the above relations we know that sj �� aj for all �Cj� aj� 	
X� and further that aj �Cj

sj for all �Cj� aj� 	 X� Now we
construct one of the direct successors of A w�r�t� c�

D �� �A�X� � f�Cj� Next�aj� Cj�� j �Cj� aj� 	 Xg�

Since for all �Cj� aj� 	 X � aj �Cj
sj � and since this means also

that Next�aj� Cj� �Cj
sj � Next�aj� Cj� � sj it is easy too see

that D � S given also that �i� ai � si � ai �Ci
si� q�e�d�

��

C�� Corollary to Lemma ������

Let LB be a lower bound for the consistent candidates of a choice space	 Let
A 	 LB be an inconsistent candidate that includes a con�ict c	 Then

LB � � �LB � fAg� � fD 	 DirSucc�A� c� j ���A� 	 LB � fAg� A� � D�g

is another lower bound for the consistent candidates	

Proof� It is clear that no element from DirSucc�A� c� is pre�
ferred to any element in LB �for otherwise if �D 	 DirSucc�A� c��
A� 	 LB s�t� D � A� this� together with A � D would imply
A � A� which contradicts the de�nition of a lower bound�� The
hypothesis eliminates the elements of DirSucc�A� c� that are less
then some element of LB�fAg� We only have to prove that each
consistent candidate is successor of some element of LB��
Assume to the contrary that S is a consistent candidate such

that ���A� 	 LB� s�t� A� � S�� But we know that �A�� 	 LB s�t�
A�� � S� This means that A�� 	 �LB�LB��� which meansA�� � A�
Thus A � S� It cannot be that A � S since S is consistent and
A is not� Then A � S� Now� because c is not included in S we
are in the case of Lemma 	����	� and thus �D 	 DirSucc�A� c�
s�t� D � S� Since no element of LB� is a predecessor of S it
means that D 	 DirSucc�A� c� � LB�� But only the elements of
DirSucc�A� c� that are successors of some element of LB � fAg
are not present in LB�� Thus S � D� D 	 DirSucc�A� c� and
�A� 	 LB � fAg s�t� A� � D� But then A� � S and A� 	 LB�

which contradicts the hypothesis of the proof� q�e�d�

C�� Lemma �����

Let A be a candidate of CS � �L�Choices� Confls��pri� and c 	 Confls be
a con�ict included in A	 Let the choice sets of CS be disjoint� i	e	

�Ci� Cj 	 Choices� Ci �� Cj
 Ci � Cj � fg	 Then if
S is a successor of some D 	 DirSucc�A� c�� i	e	 D � S� then

S is a successor of A that does not include c	

���

Proof� Let D 	 DirSucc�A� c� where c is included in A� i�e� by
de�nition there exists a unique a 	 c such that�

D � �A�X� � f�Ci� Next�ai� Ci�� j �Ci� ai� 	 Xg�where

X � f�Ci� ai� 	 A j a � aig� Since the choice sets are disjoint
we conclude that X is a singleton� i�e� there exists a unique pair
�Ck� ak� 	 A s�t� a � ak� We also know that Next�ak� Ck� �� nil�
Let S � f�C�� s��� � � � � �CN � sN �g be a successor ofD� Clearly� S is
also a successor of A� We still have to prove that c is not included
in S� Assume by contrary that c is included in S� Then there
exists a choice set Cw 	 Choices such that �Cw� sw� 	 S�sw � a�
But we know that a 	 Ck� Since we assumed the choice sets to be
disjoint we conclude that Cw � Ck� Because we assumed S to be a
successor of D we have� Next�ak� Ck� �Ck

sk�Next�ak� Ck� � sk�
In either case ak �Ck

sk� But this contradicts the fact that we
assumed that a � ak � sk since the preference order �Ck

is a
strict order� q�e�d�

C�� Lemma ������

Let LB be a lower bound for the set of consistent candidates of a choice
space and assume A 	 LB is a consistent element	 Let also H�A�LB� be
the sets of elements from LB that have a strictly higher priority than A

H�A�LB� � fA� 	 LB j A �pri A

�g	 Then the following are true

�	 Let B be a consistent candidate that has a strictly higher priority that
A� i	e	 A �pri B	 Then either B 	 H�A�LB�� or B is a successor of
some element from H�A�LB��

	 Let C be a consistent candidate that is a successor of some element
from LB � H�A�LB�	 Then C cannot have a higher priority than A
has� i	e	 C �pri A	

Proof�
Part �� Assume to the contrary that A �pri B and that neither
B 	 H�A�LB�� nor isB a successor of some element ofH�A�LB��
Then B is either in� or a successor of LB � H�A�LB�� since B
is consistent �see the de�nition of a lower bound�� It cannot be

���

the case that B 	 LB �H�A�LB� since A �pri B would violate
the de�nition of H� Thus �A� 	 LB �H�A�LB� s�t� A� � B�
The de�nition of a choice set assumed that the preference and the
priority
agree�� i�e� A� � B
 B �pri A

�� Due to the de�nition
of H�A�LB� we know that A� �pri A� Due to the transitivity of
the priority order we conclude B �pri A which contradicts the
assumption that A �pri B�
Part �� We actually proved this already in the case above�
q�e�d�

C�� Lemma ������

Let CS � �L�Choices� Confls��pri� be a choice space and ��CS� its asso�
ciated set of clauses �as in De�nition �	�	
��	 Let v � L � ftrue� falseg be
an assignment of boolean values to the symbols	 Then

the formulae of ��CS� are satis�ed by the assignment v�

�A� where A is a consistent candidate of CS s	t	
fa j �Ci 	 Choices s	t	 �Ci� a� 	 Ag � fa 	 L j v�a� � trueg�

Proof�
 �
completeness���
Suppose that the boolean values assigned by v satisfy all the
formulae of ��CS�� Then the assignment satis�es all the posi�
tive clauses of ��CS�� This means that for each Ci 	 Choices�
�ai 	 Ci s�t� v�ai� � true� Let us build a candidate A �
f�Ci� ai� j Ci 	 Choices� v�ai� � trueg� We still have to prove
that A does not include any con�ict from Confls� Suppose� by
contrary� that A includes a con�ict from Confls� Then all the
symbols from the con�ict are assigned true by v� But this would
violate the negative clause of ��CS� associated with the con�ict�

� �soundness��
Suppose we have a consistent candidate A of CS� We show that
the following assignment of boolean values to the literals satis�es
each formula of ��CS��

v�a� �

�
true if ��Ci� a� 	 A�
false otherwise�

���

It is obvious that each positive clause from��CS� is satis�ed since
v assigns true to at least one literal from each choice set� Because
A is consistent in CS� i�e� no con�ict of Confls is included in A�
it turns out that each con�ict c 	 Confls must involve at least
one literal ac 	 c such that

���Ci 	 Choices s�t� �Ci� ac� 	 A�

But then in each negative clause from ��CS� there exists at least
one symbol that is assigned false by v� and so� each negative
clause from ��CS� is satis�ed as well� q�e�d�

C�
 Corollary � to Lemma ������

Let CS � �L�Choices� Confls��pri�	 The set of consistent candidates of CS
is identical with the set of consistent candidates of any choice space CS� �
�L�Choices� Confls � fic�� � � � � ickg��pri� where icj are con�icts such that
��CS� j� NegCl�icj�� where NegCl�fa�� � � � � ang� � �a� � � � � � �an	

Proof� Because they have the same set of choice sets� CS
and CS� have the same set of candidates� Because CS� has a
bigger set of con�icts than CS it is clear that the set of consistent
candidates of CS� cannot be a superset of CS� We show that
any consistent candidate of CS is also a consistent candidate of
CS�� Assume� by contrary� that there is a candidate A that is
consistent in CS� but not in CS�� This means that A contains
a con�ict ic such that ��CS� j� NegCl�ic�� Due to Lemma
	����� �the
soundness� part� we know that we can construct an
assignment of boolean values to L� v � L � ftrue� falseg such
that ��Ci� a� 	 A
 v�a� � true� and such that the clauses
of ��CS� are satis�ed� Of course then v provides a mapping
that satis�es all the formulae of ��CS� � fa j �Ci� a� 	 Ag� But
��CS� � fa j �Ci� a� 	 Ag j� NegCl�ic� and then also ��CS� �
fa j �Ci� a� 	 Ag � fNegCl�ic�g must be satis�able� and this
contradicts the fact that ic is included in A q�e�d�

���

C�� Property ������

Let C � fa�� � � � � akg be a choice set and c be a con�ict such that jc�Cj � �	
Then any new con�ict obtained by hyperresolution at C and involving c and
possibly other con�icts is a superset of an already known con�ict	

Proof� Suppose jc � Cj � �� To apply the hyperresolution
rule �see the equation 	��� one must take for each literal of C a
negative clause �ai � NCi� Since c is used at least once� there
must exist at least one index j such that NCj � c � fajg� But�
since jc � Cj � �� we know that there exists al least a di�erent
literal ak� ak �� aj such that ak 	 c � C� i�e� ak 	 NCj� But then
the resulting clause is subsumed by the clause ak � NCk� which
was an input clause in the inference� The derived con�ict is a
superset of an already known one� q�e�d�

C�� Theorem ������

Let � be a set of clauses and Ctx be a set of symbols	 Then the algorithm
NPI��� Ctx� computes all the negative prime implicates of � among the
symbols of Ctx� where NPI is de�ned as follows

�	 Initialize Cls with the set of unsubsumed clauses of ��

	 Iterate on the symbols from �� for each symbol a do

�a� Perform all the binary resolutions w	r	t	 the symbol a� Add the
new unsubsumed clauses to Cls� Remove the subsumed clauses
from Cls�

�b� If a �	 Ctx then remove all the clauses from Cls that mention a
�positively or negatively�� If a 	 Ctx then remove all the clauses
that mention positively a from Cls�

�	 Return Cls	

Proof� We use the fact that the algorithm PI generates the
complete set of prime implicates of a set of propositional clauses�
We prove that in order to generate the negative prime implicates
of � among the Ctx symbols we can dispense with some classes
of binary resolutions performed by PI� and what is left is what

��	

the NPI algorithm performs� NPI di�ers from the PI just in
the additional step ��b that removes some clauses from the clause
set� It is easy to see that no negative prime implicate among
the Ctx symbols can result from resolutions performed later and
involving these clauses�

Suppose PI chose a symbol a and performed all the binary reso�
lutions w�r�t� a� Suppose a �	 Ctx� From now on� no resolutions
w�r�t� a are performed by PI� But then� without losing the com�
pleteness of the prime implicate generation w�r�t� the Ctx sym�
bols� one can remove the !a clauses mentioning a from the clause
set� since all the resolvents generated later using a !a clause will
still contain the symbol a�

If a 	 Ctx then� once all the resolutions w�r�t� a are performed�
all the clauses containing a positively can be removed� without
losing the completeness of the negative prime implicate generation
w�r�t� the Ctx symbols� The resolvents generated later using
these clauses will involve a positively� and thus are not interesting�
q�e�d�

C�
 Corollary to Theorem ������

Let CS � �L�Choices� Confls��pri� be a choice space and Ctx � L	 Then
the algorithm NPI��CS�Ctx� �Figure �	��� computes all the minimal con�
�icts among the symbols from Ctx entailed by the set of clauses ��CS�	

Proof� Let S be the set of symbols from ��CS� and let ChSym
be the set of symbols from the choice sets of CS �i�e� the symbols
appearing in the positive clauses of ��CS��� De�ne also the set
S� �� S � �ChSym � Ctx��

The symbols from S�� if any� are only involved in negative clauses
in ��CS�� thus there are no resolutions with respect to these sym�
bols� The clauses containing symbols from S� can be removed
from ��CS� without losing the completeness of the prime impli�
cate generation w�r�t� the Ctx symbols� This justi�es step � of
NPI�� The rest of NPI� is a realization of NPI� q�e�d�

���

C��� Lemma �����

Let �H be a �nite set of Horn clauses� �p be a �nite set of positive clauses�
and � � �H ��p	 Let SAT be the algorithm depicted in Figure �	��	 Then

� SAT ��� returns failure if and only if � is not satis�able�

� if � is satis�able� then SAT returns a set of propositions A such that
A � � is consistent and A j� C� for all C 	 �p	

Proof� If �H is not satis�able then the property is trivially
true since the �vrms alone is a sound and complete satis�ability
checker� i�e� the empty environment will be discovered as nogood
and SAT will return failure� Assume in the following that �H

is consistent�

The proof proceeds as follows�

� we prove that SAT always terminates�
� we prove that each time SAT returns failure� � is incon�
sistent�

� �nally we prove that each time SAT returns a set of propo�
sitions A� � is consistent� moreover A�� is consistent� and
A implies each positive clause from ��

At each iteration i� the candidate generator is called on the set
of choice sets de�ned by �p and on a set of con�icts �ni� �ni

monotonically grows with i� i�e� during the execution of SAT
more con�icts are added to cg� but no one is removed� Thus� the
number of distinct candidates that cg could build for �p � �ni

decreases with the increase of i� Anyway� the number of distinct
candidates that cg could build at each step is lower than the
number of consistent candidates for �p� which is a �nite number�
Next we show that there cannot be two iteration steps i� j� i �
j� such that cg generates the same candidate A� Suppose� by
contrary� that such two steps and such a candidate exist� A�A�
must be inconsistent with �H for otherwise the iteration would
have ended at i� But then� there must exist at least one negative
prime implicate of �H � s�t� �H j� ng� where the set of symbols
from ng is a subset of A�A�� These negative prime implicates
will be discovered in the �vrms by querying the dLabel of the

���

contradictory nodes and they will be added to the con�icts of cg�
Thus A contains the con�ict ng� Then ng 	 �nj for all j � i�
But then cg cannot generate the candidate A at the step j� since
A is not consistent with �nj � This completes the proof that SAT
always terminates�

Suppose SAT returns failure� This can only happen because at
a certain iteration i� cg cannot �nd any consistent candidate� i�e�
because �p � �ni is inconsistent� But then also �H � �p � �ni is
inconsistent� Since all the clauses from �ni are implicates of �H �
we conclude that �H � �p must be inconsistent�

Suppose SAT returns a set of symbols A� This can only happen
if there exists an iteration i such that �p � �ni is consistent� cg
generates a candidate A such that A�A���p ��ni is consistent�
A�A� implies all clauses from �p� and A�A� � �H is consistent�
But then A�A���H��p is consistent� and so is �H ��p� q�e�d�

C��� Lemma �����

Let C � ��p� � �p� � � � � � �pn � q� � � � � � qm�� n � �� m � � be a mixed
clause� and � be a clause set	 Then

� � fCg is satis�able if and only if � � fC�� C�g is satis�able�

where
 C� � ��p� � � � � � �pn � �$�� C� � �$ � q� � � � � � qm�� and $ is a
new symbol not appearing in � or in C	

Proof�
� Suppose � � fC�� C�g is satis�able� C is an implicate of
C� and C�� Then � � fC�� C�� Cg is satis�able� Obviously then
� � fCg is satis�able�

 Suppose � � fCg is satis�able� Then there must exist an
assignment of boolean values to the symbols L of ��fCg� i�e� v �
L� ftrue� falseg� such that each clause from ��fCg evaluates
to true� Then the following must be true�

��pi 	 C� s�t� v�pi� � false� � ��qi 	 C� s�t� v�qi� � true��

���

Then either C� or C� or both evaluate to true under the assign�
ment v� If both C� and C� evaluate to true then we are done
since then all the clauses from � � fC�� C�g evaluate to true� In
case only C� evaluates to true� since v does not assign any value
to $� one can extend v by the assignment �$� true�� Under the
new assignment all the clauses from ��fC�� C�g evaluate to true�
In case only C� evaluates to true under v� then one can extend
v with the assigment �$� false�� In all cases one can build an
assignment of boolean values to the symbols such that all the
clauses from ��fC�� C�g evaluate to true� thus the set of clauses
is satis�able� q�e�d�

C��� Corollary � to Lemma �����

Let �� C�C�� C� and $ be as in Lemma �	�	
	 Let F be an arbitrary propo�
sitional formula not involving $	 Then

� � fCg j� F if and only if � � fC�� C�g j� F�

Proof� � � fCg j� F if and only if � � fCg � f�Fg is not
satis�able� Applying Lemma 	�	�� we get that ��f�Fg�fC�� C�g
is not satis�able� i�e� � � fC�� C�g j� F � q�e�d�

C��� Corollary � to Lemma �����

Let � be a �nite clause set� and �p � �H be the transformation of � where
each mixed clause is replaced as in Lemma �	�	
	 Then

�	 � is satis�able if and only if �p � �H is satis�able�

	 � j� F if and only if �p � �H j� F � where F is a propositional
formula not involving any of the new literals introduced in �p � �H	

Proof�
�� A simple induction on the number of mixed clauses from ��
�� Immediate consequence of the �rst point�
q�e�d�

���

C��� Lemma �����

Let � be a �nite and satis�able set of clauses and �p��H its encoding� where
each mixed clause is replaced as in Lemma �	�	
	 Let A be a set of symbols
returned by SAT when called on �p � �H	 Then

�	 ��A is satis�able	 Moreover� the assignment of boolean values v�a� �
true� �A��H j� a� to the symbols from � is satisfying all the clauses
from ��

	 if � j� n then A � �H j� n� for any propositional formula n�

�	 A� �H j� n does not imply that � j� n�

�	 if A � �H j� n� then A � � j� n� for any positive literal n	

Proof� Let us note with L� the set of new symbols introduced
in �p � �H due to the encoding of the mixed clauses from ��
�� We know that �cf� Lemma 	�	��� A��p ��H is consistent�
Each clause from � is either in �p � �H � or is a resolvent of two
clauses from �p��H � Then A��p��H �� is consistent� and so
is A � �� Moreover� since we know that the boolean assignment
satis�es each clause from �p��H � and since each clause from � is
an implicate of �p ��H � we conclude that the above assignment
v satis�es each clause from ��
�� Assume � j� n� Since � is consistent� clearly n cannot
involve literals from L�� As Corollary � to Lemma 	�	�� states�
then �p � �H j� n� But we know that A j� C� for all C 	 �p�
Then also A � �H j� n�
�� It is easy to give counterexamples� even when n does not
mention symbols from L�� Consider� for instance the theory � �
fa � bg� and A � fag�
	� Let n be a symbol such that A��H j� n� Taking in account
the way � was replaced with �p � �H � we conclude that �H can
be partitioned into two disjoint sets� �H � �H� � �Hn� where
�H� � �� All the clauses from �Hn are purely negative� Then�
applying the resolution� it is clear that any positive literal derived
from A��H� ��Hn is derived using only clauses from A��H�

�the purely negative clauses are not relevant for the derivation of
positive literals�� But then A � � j� n�
q�e�d�

��

Appendix D

Proofs of Chapter �

D�� Property ����

We �rst prove two additional properties�

Property D���� Let Sys be a system and A�A� be sets of �rst�order sen�
tences	 Then

A � A�
 NextState�Sys�A�� NextState�Sys�A���

Proof� Let �si � vj� 	 NextState�Sys�A�� According to
De�nition ������ it means that �s�i 	 NextStateV ars s�t� si �
F�s�i� and SD � A j� �s�i � vj�� Since A � A�� we have that
SD � A� j� �s�i � vj�� and thus �si � vj� 	 NextState�Sys�A���
q�e�d�

Property D���� Let Sys be a system� d be a state assignment and ioseq be
an input�observation sequence for Sys such that d is consistent with ioseq�
i	e	 there exists a path description pd associated with d and ioseq	 Then for
any d� � d and for any ioseq� � ioseq we have

� d� is consistent with ioseq�� i	e	 there exists a path description pd� as�
sociated with d� and ioseq��

� pd� � pd	

Proof� It is easy to prove this by induction on the length k of
the sequences�

���

If the length is zero� i�e� the sequences ioseq� ioseq�� pd� pd� are
empty� the property is trivially true since SD � d� is satis�able
if SD � d is satis�able and d� � d� If the length is �� then
ioseq � ��i� o�� and pd � ��d� i� o��� Since SD � d � i � o is
satis�able� d� � d and �i�� o�� � �i� o� we have that SD�d�� i�� o�

is satis�able� thus pd� � ��d�� i�� o��� is a path description for d�

and ioseq�� Moreover� pd� � pd�

Induction hypothesis� Assume that the property is true for all
state assignments and for all input�observation sequences of length
k� k � n� We show that the property is satis�ed for any state
assignments and input�observation sequence of length k � n� ��

Assume d
� d�
 are state assignments� d
�

 � d
� and iosn��� ios�n��

are input�observation sequences of length n� �� ios�n�� � iosn���
and d
 is consistent with iosn��� Let

iosn�� � ��io� oo�� �i�� o��� � � � �in� on���
ios�n�� � ��i

�
o� o

�
o�� �i

�
�� o

�
��� � � � �i

�
n� o

�
n���

Since d
 is consistent with iosn�� we have a path description
pdn�� � ��do� io� oo�� �d�� i�� o��� � � � �dn� in� on��� where
dj�� � NextState�Sys� dj � ij � oj� for � � j � n� Obvi�
ously� SD � d�o � i�o � o�o is consistent� Cf� Property D����� d

�
� �

NextState�Sys� d� � i�o � o�o� � d�� Then� due to the induc�
tion hypothesis there exists a length n path description pd�n �
��d��� i

�
�� o

�
��� � � � �d

�
n� i

�
n� o

�
n��� pd

�
n � pdn� where

pdn � ��d�� i�� o��� � � � �dn� in� on��� But the sequence pd�n�� �
��d�o� i

�
o� o

�
o��pd

�
n� is a transition path for d

�
o and ios

�
n��� Moreover�

pd�n�� � pdn��� q�e�d�

We can now prove Property ������

�	 Any superset of a con�ict for an input�observation sequence is a con�ict
for that input�observation sequence	

	 If c is a con�ict for ios� then c is a con�ict for any input�observation se�
quence ios� �tail� where ios � ios�� tail is an arbitrary input�observation
sequence� and ��� denotes the concatenation of two sequences	

Proof� We prove both points together� namely assuming that c
is a con�ict for ios� we prove that any superset c� of c is a con�ict
for any input�observation sequence ios� � ios� � ios�� if ios � ios��

���

Assume� by contrary� that there exist a certain superset c�� c � c�

which is consistent with some ios� � ios� � ios��� Then there exists
a path description pd� for c� and ios�� Of course� pd� can be
split into two sequences� i�e� pd� � pd� � pd��� where pd� is a path
description for ios� and c�� But then c�� ios� and c� ios are as in
Property D����� thus c is consistent with ios� which contradicts
the fact that c is a con�ict for ios� q�e�d�

D�� Theorem ������

Let � be a set of clauses and M be a conjunction of literals	
Let $ be a new positive literal not appearing in � or in M 	Then

MinSupp�M��� �MinSupp�$�� � fM
 $g�� f�$g�

Proof� We show that�

�� �S 	MinSupp�M��� �
S 	MinSupp�$�� � f�M �$g�� f�$g�

�� �S 	MinSupp�$�� � f�M �$g�� f�$g �
S 	MinSupp�M����

Proof of ��
Let S 	MinSupp�M���� This means that �cf� Def� �������

� � �S is satis�able� �D���

� j� S �M � and �D���

no proper subset of S has the �rst two properties� Because $ does
not appear in � or in M � $ cannot appear in S� for otherwise
the minimality of S would be violated� Thus� it is clear that
S �� �$� Since $ does not appear in M � it is clear that �M �$
is satis�able� Furthermore� since $ does not appear in � � �S�
from D�� we have that

� � �S � f�M �$g is satis�able� �D���

���

From D�� we get� � � f�M �$g j� S �M � and further

� � f�M �$g j� S �$ �D�	�

Thus� from D�� and D�	 we know that S is a support clause of $
w�r�t� the set of clauses � � f�M � $g� Since S �� �$ what is
left to be proved is that no proper subset of S has properties D��
and D�	� Assume� by contrary that there exists S� � S such that
�� �S� � f�M �$g is satis�able� and � � f�M �$g j� S� �$�
This means that

� � �S� is satis�able� �D���

� � f�M � $��S���$g is contradictory �D���

The last equation gives that� ��f�M��$��S�g is contradictory�
But since $ does not appear in ��M or S�� we conclude that

� � f�M��S�g is contradictory �D���

which means that � j� S��M � The last statement together with
D�� contradicts the minimality of S w�r�t� properties D�� and
D���

Proof of ��
Let S 	 MinSupp�$�� � f�M � $g� � f�$g� Cf� De�nition
������

� � �S � f�M � $g is satis�able� �D���

� � f�M �$g j� S �$� and �D�
�

no proper subset of S has the above two properties� Since �$
is a minimal support clause for $� and S is a di�erent one� we
conclude that S does not include �$� But S does not include $
as well� for otherwise� S � f$g would satisfy D�� and D�
� thus
contradicting the minimality of S� From D�� and D�
 we have�

� � �S is satis�able� and �D����

� � f�M �$��S��$g is contradictory� �D����

The last equation means that ��f�M��S��$g is contradictory�
Furthermore� since neither �� nor M � nor �S mention $ this
means that � � f�M��Sg is contradictory� which is�

� j� S �M � �D����

���

From D��� and D��� we see that S is a support clause of M
w�r�t� �� We still have to prove the minimality of S� Assume� by
contrary� that exists S� � S such that�

� � �S� is satis�able� and � j� S� �M �

Clearly� S� does not contain $ or �$� Using the same arguments
as in the �rst part of the proof we conclude that S� is a support
clause of $ w�r�t� ��f�M�$g� which contradicts the minimality
of S w�r�t� the properties D�� and D�
�

q�e�d�

D�� Theorem ������

Let Sys be a system and d� d� be state assignments� i be an input
assignment for Sys� and o be a set of �rst�order sentences	 Then

�d� i� o� 	 BackTranz�Sys� d��
�

NegCl�d � i � o� 	MinSupp�Conj�F���d���� SD��

where
 NegCl�fl�� l�� � � �g� � ��l� � �l� � � � ���
Conj�fl�� l�� � � �g� � �l� � l� � � � ���
F���f��si � vj��g� � f��F���si� � vj��g � f��s�i � vj��g	

Proof�
If we make more explicit the de�nition of BackTranz we get�
�d� i� o� 	 BackTranz�Sys� d�� i�

SD � d � i � o is satis�able� �D����

d� � NextState�Sys� d� i � o�� �D��	�

No proper subsets of d� i� o have properties D���� D��	� �D����

If we make more explicit the de�nition of MinSupp we get�
NegCl�d � i � o� 	MinSupp�Conj�F���d���� SD� i�

SD � d � i � o is satis�able� �D����

SD j� �NegCl�d � i � o�
 Conj�F���d����� �D����

��	

No proper subsets of d� i� o have properties D���� D���� �D����

We show that the relations D��	 and D��� are equivalent�
d� � NextState�Sys� d� i � o��

���si � vj� 	 d���s�i 	 NextStateV ars s�t�
si � F�s�i� � SD � d � i � o j� �s�i � vj���

Since F is bijective� the last relation is equivalent with�
���s�i � vj� 	 F���d��� SD � d � i � o j� �s�i � vj���

This is further equivalent with�
SD � d � i � o j� Conj�F���d���� i�e�
SD j� �NegCl�d � i � o�
 Conj�F���d���� q�e�d�

D�� Theorem ������

Let Sys be a system� ioseq be an input�observation sequence for Sys and
�i� o� be an input�observation pair for Sys	 Let c be a state assignment for
Sys	 Then

c is a con�ict for the sequence ��i� o��ioseq� �

either

�	 SD � i � o � c is not satis�able� or

	 there exists c�� a minimal con�ict for ioseq� and i� � i� o� � o� c� � c�
such that �c�� i�� o�� 	 BackTranz�Sys� c����

Proof�

� Let c be a con�ict for ��i� o��ioseq�� Assume� by contrary�
that SD � i � o � c is satis�able and for any minimal con�ict
c�� for ioseq and for any i� � i� o� � o� c� � c� we have that
�c�� i�� o�� �	 BackTranz�Sys� c���� Then �cf� Def� ������� for any
minimal con�ict c�� of ioseq we have c�� �� NextState�Sys� c�i�o��
This means that NextState�Sys� c � i � o� is not a con�ict for
ioseq� i�e� there exists a path description pd for ioseq whose
initial state assignment is NextState�Sys� c � i � o�� But then
��c� i� o��pd� is a path description for ��i� o��ioseq�� which contra�
dicts the assumption that c is a con�ict for ��i� o��ioseq��

�� If SD � i � o � c is not satis�able� then c is a con�ict for
��i� o�� and cf� Property ����
 c is a con�ict for ��i� o��ioseq��

���

Suppose SD � i � o � c is satis�able and there exists a con�ict
c�� for ioseq� and i� � i� c� � c� o� � o such that �c�� i�� o�� 	
BackTranz�Sys� c���� Then� according to De�nition ������� c�� �
NextState�Sys� c � i � o�� Then NextState�Sys� c � i � o� is a
con�ict for ioseq� and thus c is a con�ict for ��i� o��ioseq��

q�e�d�

D�� Property �����

Let Sys be a PSS	 Let I be an input assignment� D be a steady state un�
der the input I and o be a set of �rst order sentences such that SD � I �
D � o is inconsistent	 Let TPj be the family of transition paths
 TPj �
��D� I� fg�� � � � � �D� I� fg�� where TPj has the length j � �	 Let CflSetj be
the set of minimal con�icts for the initial state of TPj extended with the
pair �D� I� o�	 Then
 there exist two �nite integers L � �� P � � such that
�j� j � L � CflSet�j�P � � CflSetj	

Proof� According to Corollary of Theorem �����	� since SD �
D � I is consistent� we have for any j � ��

c 	 CflSetj�� � c is a minimal element of MapBack�CflSetj�

where�MapBack�CflSetj� �� fc � D j ��i� � I� c� 	 CflSetj� �
�c� i�� o�� 	 BackTranz�Sys� c��g�

Clearly� CflSetj 	 P�D�� where P�D� denotes the power set of
D� This means that the series CflSet
� CflSet�� � � � takes values
from a �nite domain� Then there exist two positive integers n�m�
n � m such that CflSetn � CflSetm� But then CflSet�n��� �
MapBack�CflSetn� � MapBack�CflSetm� � CflSet�m���� By
induction it is trivial to show now that

�j � n � CflSet�j�m�n� � CflSetj�

The role of L�P from the statement of the property can be played
by n respectively m� n� q�e�d�

���

D�
 Theorem �����

We �rst give�

Property D���� Let Sys be a system� and m be a state assignment for Sys	
Let seq� seq� be two path descriptions for Sys having the length k � �	 Then

�seq � seq� � seq 	 Explk�Sys�m��
 seq� 	 Explk�Sys�m��

Proof� An immediate consequence of the de�nitions and of
Property D���� q�e�d�

The theorem states�

�k � ��MinExplk���Sys�m� io� is the set of the minimal elements of the
set
 f��d�o� io� oo�� �d

�
�� i�� o��� � � � � �d

�
k� ik� ok�� j

���d�� i�� o��� � � � � �dk� ik� ok�� 	MinExplk�Sys�m�
s	t	 ��d�o� io� oo�� 	MinExpl��Sys� d�� ��i�� o��� � � � � �ik� ok�� � io�� and

�j� � � j � k � d�j�� � NextState�Sys� ij � oj � d�j�g�

where ��� denotes the concatenation of two sequences	

Proof� The proof has two parts�

�� we prove that for any sequence
seq � ��d�o� io� oo�� �d

�
�� i�� o��� � � � � �d

�
k� ik� ok�� if

���d�� i�� o��� � � � � �dk� ik� ok�� 	MinExplk�Sys�m� io� s�t�
��d�o� io� oo�� 	MinExpl��Sys� d�� ��i�� o��� � � � � �ik� ok�� � io��
�j� � � j � k � d�j�� � NextState�Sys� ij � oj � d�j�g�

then seq is an explanation of m consistent with io� but not
necessarily minimal�

�� we prove that for any seq 	 MinExplk���Sys�m� io� we
have that seq � �d�o� io� oo�� � � � � �d

�
k� ik� ok�� and

���d�� i�� o��� � � � � �dk� ik� ok�� 	MinExplk�Sys�m� io� s�t�
��d�o� io� oo�� 	MinExpl��Sys� d�� ��i�� o��� � � � � �ik� ok�� � io��
�j� � � j � k � d�j�� � NextState�Sys� ij � oj � d�j�g�

���

Proof of �� Let seq � ��d�o� io� oo�� �d
�
�� i�� o��� � � � � �d

�
k� ik� ok��

such that

���d�� i�� o��� � � � � �dk� ik� ok�� 	MinExplk�Sys�m� io� s�t�
��d�o� io� oo�� 	MinExpl��Sys� d�� ��i�� o��� � � � � �ik� ok�� � io��
�j� � � j � k � d�j�� � NextState�Sys� ij � oj � d�j�g�

Then we know that d� � d�� and that d
�
� is consistent with

��i�� o��� � � � � �ik� ok�� � io�� This means that there exists a path
description for ��i�� o��� � � � � �ik� ok�� � io� whose initial state as�
signment is d��� Then this path description is
��d��� i�� o��� � � � � �d

�
k� ik� ok�� � pdio� where pdio is a path descrip�

tion for the sequence io whose initial state is NextState�Sys� ik�
ok � d�k�� Cf� Property D���� then ��d

�
�� i�� o��� � � � � �d

�
k� ik� ok�� 	

Explk�Sys�m�� Then seq 	 Explk���Sys�m�� and since
NextState�Sys� ik � ok � d�k� is consistent with io�
seq 	 Explk���Sys�m� io�� This completes the �rst part of the
proof�

Proof of �� Let seq � ��d�o� io� oo�� �d
�
�� i�� o��� � � � � �d

�
k� ik� ok�� 	

MinExplk���Sys�m� io�� Of course� �j� � � j � k � d�j�� �
NextState�Sys� ij � oj � d�j�� Clearly�
seq�k � ��d��� i�� o��� � � � � �d

�
k� ik� ok�� 	 Explk�Sys�m� io�� Then

there must exist a minimal path description
seqk � ��d�� i��� o

�
��� � � � � �dk� i

�
k� o

�
k�� 	 MinExplk�Sys�m� io� s�t�

seqk � seq�k� We show that i
�
j � ij� o

�
j � oj for all � � j � k�

Assume� by contrary� that this is not true� i�e� at least for a j
we have i�j � ij or o

�
j � oj � Let us then take a look at the fol�

lowing sequence� seqk�� � ��d�o� io� oo�� �d
��
�� i

�
�� o

�
��� � � � � �d

��
k� i

�
k� o

�
k���

where d��j�� � NextState�Sys� i�j � o�j � d��j � for all j� � � j � k�
and d��� � d�� � NextState�Sys� io � oo � d�o�� Cf� Property
D���� then seqk�� is a path description� seqk�� � seq� Since
d� � d��� � d��� seqk � seq��k � ��d

��
�� i

�
�� o

�
��� � � � � �d

��
k� i

�
k� o

�
k��� Then

�cf� Property D����� seq��k 	 Explk�Sys�m�� and then seqk�� 	
Explk���Sys�m�� Since seqk�� � seq �cf� Property D������
NextState�Sys� d��k�i

�
k�o

�
k� � NextState�Sys� d�k�ik�ok�� Then�

sinceNextState�Sys� d�k�ik�ok� is consistent with io we conclude
�cf� Property D����� that NextState�Sys� d��k�i

�
k�o

�
k� is consistent

with io� From this and the fact that seqk�� 	 Explk���Sys�m�

���

we conclude that seqk�� 	 Explk���Sys�m� io�� The last state�
ment� together with the fact that seqk�� � seq� contradict the
fact that seq 	MinExplk���Sys�m� io��

Thus� there exists seqk 	 MinExplk�Sys�m� io�� s�t� seqk �
��d�� i�� o��� � � � � �dk� ik� ok�� and d� � d��� Of course� ��d

�
o� io� oo�� 	

Expl��Sys� d�� ��i�� o��� � � � � �ik� ok�� � io�� We still have to show
that ��d�o� io� oo�� is a minimal element of that set�

Assume� by contrary� that there exists ��d�o� i
�
o� o

�
o�� � ��d

�
o� io� oo���

s�t� ��d�o� i
�
o� o

�
o�� 	 Expl��Sys� d�� ��i�� o��� � � � � �ik� ok�� � io�� Then

there exists a path description
seq� � ��d�o� i

�
o� o

�
o�� �d

�
�� i�� o��� � � � � �d

�
k� ik� ok�� such that

NextState�Sys� ik � ok � d�k� is consistent with io� Cf� Property
D����� since d� � d��� we get
seqk � seq�k � ��d

�
�� i�� o��� � � � � �d

�
k� ik� ok��� and then �cf� Property

D����� seq�k 	 Explk�Sys�m�� Moreover� since
NextState�Sys� ik � ok � d�k� is consistent with io�
seq�k 	 Explk�Sys�m� io�� Then seq

� 	 Explk���Sys�m� io� and
this violates the minimality of seq� since seq� � seq�

q�e�d�

��

Appendix E

Extended Abstract in German

���

Bibliography

�All��� J� Allen� Maintaining knowledge about temporal intervals� Com�
munications of ACM� ����������"�	�� �
���

�BB
�� Rene Bakker and M� Bourseau� Pragmatic Reasoning in Model�
Based Diagnosis� In Proc	 ��th European Conference on Arti�cial
Intelligence �ECAI��
�� pages ��	"���� Vienna� Austria� �

��

�Byl�
� Tom Bylander� Complexity of model�based diagnosis� Technical
Report �
�TB�COMPMOD� Ohio State University� �
�
�

�Byl
�� Tom Bylander� Some causal models are deeper than others� Ar�
ti�cial Intelligence in Medicine� ��������"���� �

��

�CDT�
� Luca Console� D�T Dupr'e� and P� Torasso� A theory of diagnosis
for incomplete causal models� In Proc	 ��th International Joint
Conference on Arti�cial Intelligence �IJCAI����� pages ����"
����� Detroit �USA�� �
�
�

�Cha��� C� Chang� The decomposition principle for theorem proving sys�
tems� In Proc	 ��th Annual Allerton Conf	 on Circuit and System
Theory� University of Illinois� �
���

�Cla
�� Claudia B(ottcher and Oskar Dressler� Diagnosis process dy�
namics� Holding the diagnostic trackhound in leash� In Proc	
Intern	 Joint Conference on Arti�cial Intelligence �IJCAI�����
pages �	��"�	��� �

��

�Cla
�� Claudia B(ottcher and Matthias Schick� Diagnosing struc�
tural faults by detecting hidden interactions� In Proc	 Intern	
Joint Conference on Arti�cial Intelligence �IJCAI����� Montreal�
Canada� �

�� Also in Proc� DX�
	�

��

�CPDT
�� Luca Console� Luigi Portinale� D�T Dupr'e� and P� Torasso� Di�
agnostic reasoning accross di�erent time�points� In Proc	 ��th
European Conference on Arti�cial Intelligence �ECAI��
�� pages
��
"���� Vienna �Austria�� �

��

�CT
�� Luca Console and P� Torasso� A spectrum of logical de�nitions
of model�based diagnosis� Computational Intelligence� ��������"
�	�� �

�� Also in� �HCdKe
���

�CT
	� Marie�Odile Cordier and Thiebaux� Event�based diagnosis for
evolutive systems� In Proc	 �th Internatinal Workshop on Prin�
ciples of Diagnosis �DX����� New Platz �USA�� �

	�

�Dav�	� Randall Davis� Diagnostic reasoning based on structure and
behavior� Arti�cial Intelligence� �	�����	�"	��� �
�	� Also in�
�HCdKe
���

�DF
�� Oskar Dressler and Adam Farquhar� Putting the problem solver
back in the driver�s seat� Contextual control of the atms� In
Lecture Notes in AI ���� Springer Verlag� �

��

�DJD�
�� Philippe Dague� O� Jehl� P� Deves� P� Luciani� and P� Taillibert�
When oscillators stop oscillating� In Proc	 �
th Int	 Joint Conf	
on Arti�cial Intelligence �IJCAI ����� pages ���
"����� Sydney�
Australia� �

�� Also in� �HCdKe
���

�dK��a� Johan de Kleer� An assumption based truth maintenance system�
Arti�cial Intelligence� ������"���� �
���

�dK��b� Johan de Kleer� Extending the atms� Arti�cial Intelligence�
������ �
���

�dK��c� Johan de Kleer� Problem solving with the atms� Arti�cial Intel�
ligence� ������ �
���

�dK��� Johan de Kleer� A general labeling algorithm for assumption�
based truth maintenance� In Proc	 AAAI���� pages ���"�
��
Saint Paul� MN� �
���

�dK�
� Johan de Kleer� A comparison of atms and csp techniques� In
Proc	 ��th IJCAI���� Detroit� USA� �
�
�

���

�dK
�a� Johan de Kleer� Exploiting locality in a tms� In Proc	 AAAI����
pages ��	"���� �

��

�dK
�b� Johan de Kleer� Using crude probability estimates to guide
diagnosis� Arti�cial Intelligence� 	�����"�
�� �

�� Also in�
�HCdKe
���

�dK
�� Johan de Kleer� Focusing on probable diagnoses� In Proc	
AAAI���� pages �	�"�	�� Anaheim CA� �

��

�dK
�a� Johan de Kleer� An improved incremental algorithm for gener�
ating prime implicates� In Proc	 �th AAAI��
� San Jose �CA��
USA� �

��

�dK
�b� Johan de Kleer� Optimizing focusing model�based diagnosis�
In Proc	 �rd Internatinal Workshop on Principles of Diagnosis�
pages ��"�
� Rosario WA� �

��

�DK
�c� D� Dvorak and B� Kuipers� Model�based monitoring of dynamic
systems� In Walter Hamscher� Luca Console� and J� de Kleer�
editors� Readings in Model�Based Diagnosis� Morgan Kaufmann�
�

��

�dKMR
�� Johan de Kleer� A� Makworth� and R� Reiter� Characterizing
diagnoses and systems� Arti�cial Intelligence� ��� �

�� Also in�
�HCdKe
���

�dKRS
�� Johan de Kleer� Olivier Raiman� and Mark Shirley� One step
lookahead is pretty good� In Proc	
nd Internatinal Workshop
on Principles of Diagnosis� pages ���"�	�� Torino Italy� �

��
Also in� �HCdKe
���

�dKW��� Johan de Kleer and Brian Williams� Diagnosing multiple faults�
Arti�cial Intelligence� ������
�"���� �
��� Also in� �HCdKe
���

�dKW�
� Johan de Kleer and Brian Williams� Diagnosis with behavioral
modes� In Proc	 ��th International Joint Conference on Arti�cial
Intelligence �IJCAI ����� pages ���	"����� Detroit MI� �
�
�
Also in� �HCdKe
���

���

�Doy�
� BJ� Doyle� A truth maintenance system� Arti�cial Intelligence�
���������"���� �
�
�

�Dre��� Oskar Dressler� An extended basic atms� In Proc	
nd Non�
monotonic Reasoning Workshop �Lecture Notes in AI �����
Springer Verlag� �
���

�Dre
�� Oskar Dressler� Problem solving with the nm�atms� In Proc	 �th
European Conference on Arti�cial Intelligence �ECAI����� pages
���"���� Stockholm� Sweden� �

��

�Dre
	� Oskar Dressler� Prediction sharing over time and contexts� In
Proc	 AAAI���� Seattle� USA� �

	�

�Dre
�� Oskar Dressler� On�Line Diagnosis and Monitoring of Dynamic
Systems based on Qualitative Models and Dependency�recording
Diagnosis Engines� In Proc	 �
th European Conference on Arti�
�cial Intelligence �ECAI����� Budapest� Hungary� �

��

�DS
�� Oskar Dressler and Peter Struss� Back to Defaults� Char�
acterizing and Computing Diagnoses as Coherent Assumption
Sets� In Proc	 ��th European Conference on Arti�cial Intelli�
gence �ECAI��
�� pages ��
"���� Vienna� Austria� �

��

�DS
	� Oskar Dressler and Peter Struss� Model�Based Diagnosis with
the Default�Based Diagnosis Engine� E�ective Control Strategies
that Work in Practice� In Proc	 ��th European Conference on
Arti�cial Intelligence �ECAI����� Amsterdam� the Nederlands�
�

	�

�FdK��� K� Forbus and J� de Kleer� Focusing the atms� In Proc	 AAAI����
pages �
�"�
�� �
���

�FdK
�� K� Forbus and J� de Kleer� Building Problem Solvers� MIT Press�
�

��

�FGN
�a� Gerhard Friedrich� Georg Gottlob� and Wolfgang Nejdl� Generat�
ing e�cient diagnostic procedures from model�based knowledge
using logic programming techniques� Computers Math	 Applic	�
���
�������"��� �

��

���

�FGN
�b� Gerhard Friedrich� Georg Gottlob� and Wolfgang Nejdl� Physical
impossibility instead of fault models� In Proc	 AAAI���� pages
���"���� Boston� USA� �

�� Also in� �HCdKe
���

�FGN
�� Gerhard Friedrich� Georg Gottlob� and Wolfgang Nejdl� For�
malizing the repair process� In Proc	 ECAI��
� Vienna� Austria�
�

��

�FL
�� Gerhard Friedrich and F� Lackinger� Diagnosing temporal misbe�
havior� In Proc	 IJCAI���� pages ����"����� Sydney� Australia�
�

��

�FN
�� Gerhard Friedrich and Wolfgang Nejdl� Choosing observations
and actions in model�based diagnosis�repair systems� In Proc	
�rd Intern	 Conference on Principles of Knowledge Representa�
tion and Reasoning �KR��
�� Morgan Kaufmann� �

��

�Gin
�� M� Ginsberg� Dynamic backtracking� Journal of Arti�cial Intel�
ligence Research� ����"	�� �

��

�Gol
�� D�J� Goldstone� Controlling inequallity reasoning in a tms�based
analog diagnosis system� In Proc	 �th Nat	 Conf	 on AI� pages
���"���� Anaheim� USA� �

�� Also in� �HCdKe
���

�GSR
�� T� Guckenbiehl and G� Schaefer�Richter� SIDIA� Extending pre�
diction Based Diagnosis to dynamic models� In W� Hamscher�
L� Console� and J� de Kleer� editors� Readings in Model�Based
Diagnosis� Morgan Kaufmann� �

��

�GSW�
� R� Greiner� B� Smith� and R� Wilkerson� A correction to the
algorithm in reiter�s theory of diagnosis� Arti�cial Intelligence�
	������
"��� �
�
� Also in� �HCdKe
���

�Ham
�a� Walter Hamscher� Acp� Reason maintenence and inference con�
trol for constraint propagation over intervals� In Proc	 �th Nat	
Conf	 on AI� pages ���"���� Anaheim� USA� �

�� Also in�
�HCdKe
���

�Ham
�b� Walter Hamscher� Modeling digital circuits for troubleshooting�
Arti�cial Intelligence� �������� �

�� Also in� �HCdKe
���

���

�HCdKe
�� Walter Hamscher� Luca Console� and J� de Kleer �eds�� Readings
in Model�Based Diagnosis� Morgan Kaufmann� �

��

�HD�	� Walter Hamscher and Randall Davis� Diagnosing circuits with
state� An inherently underconstraint problem� In Proc	 �th
Nat	 Conf	 on AI� pages �	�"�	�� Austin� USA� �
�	� Also in�
�HCdKe
���

�HP��� J� Hunt and C� Price� Explaining qualitative diagnosis� Engi�
neering Applications of AI� ����� �
���

�HP�
� J� Hunt and C� Price� Towards a generic qualitative�based diag�
nostic architecture� In Proc	 Avignon��� Conference on Second
Generation Expert Systems� �
�
�

�HW�	� L� Henschen and L� Wos� Unit refutations and horn sets� Journal
of the ACM� ����
�"���� �
�	�

�Iwa
	� Sebastian Iwanowski� An algorithm for model�based diagnosis
that considers time� Annals of Mathematics and Arti�cial Intel�
ligence� �����	�� �

	�

�JHL
�� C� Price J� Hunt and M� Lee� Automating the fmea process�
Intelligent Systems Engineering� ����� �

��

�JR
�� C� Joubel and O� Raiman� How time changes assumptions�
In Proc	 �th European Conference on Arti�cial Intelligence
�ECAI����� pages ���"���� Stokholm� Sweden� �

��

�KT
�� A� Kean and G� Tsiknis� An incremental method for generating
prime implicants�implicates� Journal of Symbolic Computation�

����"���� �

��

�Kui��� B� Kuipers� Qualitative simulation� Arti�cial Intelligence�
�
������
"���� �
���

�Kum� Vipin Kumar� Algorithms for constraint�satisfaction problems�
A survey� AI Magazine� spring �

����"		�

�KvdG
�� Gerry Kelleher and Linda van der Gaag� The lazy rms� Avoiding
work in the atms� Computational Intelligence
 An International
Journal�
������
"���� �

��

��	

�KvR
�� Gerry Kelleher and T� van Rij� The Application of Lazy RMS
in Automated Diagnosis� In Proc	 ECAI ���
 Workshop on Ap�
plications of RMS� Vienna� Austria� �

��

�Lac
�� Franz Lackinger� Model�Based Troubleshooting� Qualitative
Reasoning and the Impacts of Time� Technical Report CD�TR

����� Vienna University of Technology� Vienna� Austria� �

��

�Lew��� H� Lewis� Renaming a set of clauses as a horn set� Journal of
the ACM� �����	"���� �
���

�Mac��� A� Mackworth� Constraint satisfaction� In S�C Saphiro� editor�
Encyclopedia of Arti�cial Intelligence� pages ���"���� John Wi�
ley and Son� �
���

�Mar
�� Jo)ao Martins� The truth� the whole truth� and nothing but
the truth� an indexed bibliography to the literature of truth
maintenence systems� AI Magazine� pages �"��� �

��

�McA��� D� McAllester� An Outlook at Truth Maintenance Systems�
Technical Report AIM����� MIT� AI Lab�� Cambridge� MA�
�
���

�McA��� D� McAllester� Reasoning Utility Package� Technical Report
AIM����� MIT� AI Lab�� Cambridge� MA� �
���

�McA
�� D� McAllester� Truth maintenance� In Proc	 AAAI���� pages
���
"����� �

��

�McD
�� D� McDermott� A general framework for reason maintenance�
Arti�cial Intelligence� �����
"��
� �

��

�McI
	a� Sheilla McIlraith� Generating tests using abduction� In Proc	 �th
Conf	 on Principles of Knowledge Representation and Reasoning
�KR����� pages 		
"	��� �

	�

�McI
	b� Sheilla McIlraith� Towards a theory of diagnosis testing and
repair� In Proc	 �th Int	 Workshop on Principles of Diagnosis
�DX����� New Platz� USA� �

	�

�Moz
�� Igor Mozeti*c� Diagnostic e�ciency of deep and surface knowledge
in kardio� Arti�cial Intelligence in Medicine� �������"��� �

��

���

�Moz
�� Igor Mozeti*c� Hierarchicalmodel�based diagnosis� Int	 Journal of
Man�Machine Studies� ��������
"���� �

�� Also in� �HCdKe
���

�Moz
�� Igor Mozeti*c� A polynomial�time algorithm for model�based di�
agnosis� In Proc	 ��th European Conference on Arti�cial Intel�
ligence �ECAI ��
�� pages ��
"�
�� Vienna� Austria� �

��

�MR
�� Sheilla McIlraith and Raymond Reiter� On Tests for Hypothet�
ical Reasoning� In W� Hamscher� L� Console� and J� de Kleer�
editors� Readings in Model�Based Diagnosis� Morgan Kaufmann�
�

��

�Ng
�� T� Ng� Model�based Multiple Fault Diagnosis of Time�varying�
Continuous Devices� In Proc	 �th IEEE Conf	 on AI Applic	�
Santa Barbara� USA� �

�� Also in� �HCdKe
���

�NG
	� W� Nejdl and J� Gamper� Harnessing the power of temporal
abstractions in model�based diagnosis of dynamic systems� In
Proc	 ECAI���� Amsterdam� Netherlands� �

	�

�Nil��� N� Nilsson� Problem Solving Methods in AI� McGraw�Hill� �
���

�OFK
�� O� Oyeleye� F� Finch� and M� Kramer� Qualitative modeling and
fault diagnosis of dynamic processes by midas� In W� Hamscher�
L� Console� and J� de Kleer� editors� Readings in Model�Based
Diagnosis� pages ���"���� Morgan Kaufmann� �

��

�OR
�� D��J� Out and R�T� Rikxoort� On the construction of hierarchic
models� In Proc	 ECAI��
 Workshop on Model�Based Reasoning�
Vienna� Austria� �

��

�Out
�� Dirk�Jan Out� Strategies for e�cient model�based troubleshoot�
ing� PhD thesis� University of Twente� the Netherlands� �

��

�Pan�	� J� Pan� Qualitative reasoning with deep�level mechanismmodels
for diagnosis of mechanism failures� In Proc	 �st IEEE Conf	 on
AI Applic	� Denver� USA� �
�	� Also in �HCdKe
���

�PL��� C� Price and D� Lee� Deep Knowledge� Tutorial and Bibliogra�
phy� Technical Report IKBS ������	�� The University College
of Whales� �
���

���

�PWT
�� C� Price� M� Wilson� and J� Timmis� Generating fault trees
from fmea� In Proc	 �th International workshop on Principles of
Diagnosis �DX���� Val Morin� Canada� �

��

�Qui�
� W� Quine� On cores and prime implicants of truth functions�
American Math	 Monthly� ������"���� �
�
�

�Rai
�� Olivier Raiman� Diagnosis as a Trial� The Alibi Principle� In
W� Hamscher� L� Console� and J� de Kleer� editors� Readings in
Model�Based Diagnosis� Morgan Kaufmann� �

��

�RDB�
� Michael Reinfrank� O� Dressler� and G� Brewka� On the relation
between truth maintenence and autoepistemic logic� In Proc	
Intern	 Joint Conference on Arti�cial Intelligence �IJCAI�����
pages ����"����� �
�
�

�RdK��� Raymond Reiter and Johan de Kleer� Foundations of
assumption�based truth maintenance systems� Preliminary re�
port� In Proc	 AAAI���� pages ���"���� �
���

�RdKS
�� Olivier Raiman� Johan de Kleer� and Vijav Saraswat� Character�
izing non�intermittent faults� In Proc	 AAAI���� pages �	
"��	�
Anaheim� USA� �

�� Also in� �HCdKe
���

�Rei��� Raymond Reiter� A logic for default reasoning� Arti�cial Intel�
ligence� �����"���� �
���

�Rei��� Raymond Reiter� A theory of diagnosis from �rst principles�
Arti�cial Intelligence� ��������"
�� �
��� Also in� �HCdKe
���

�Rei�
� Michael Reinfrank� Fundamentals and Logical Foundations of
Truth Maintenance� PhD thesis� Link(oping University� Dept� of
Computer and Information Science� dissertations ���� �
�
�

�RJ��� L� Rabiner and B� Juang� An introduction to hidden markov
models� IEEE ASSP Magazine� �����	"��� �
���

�SD�
� Peter Stru+ and O� Dressler� Physical negation� Integrating fault
models into the general diagnostic engine� In Proc	 ��th Int	
Joint Conference on Arti�cial Intelligence �IJCAI ����� pages
����"����� Detroit� USA� �
�
� Also in� �HCdKe
���

���

�SMS
�� P� Struss� A� Malik� and M� Sachenbacher� Qualitative modeling
is the key� In Proc	 �th Int	 Workshop on Principles of Diagnosis
�DX����� Goslar� Germany� �

��

�SSL�
	� M� Sampath� R� Sengupta� S� Lafortune� K� Sinnamohideen� and
D� Teneketzis� A discrete event systems approach to failure di�
agnosis� In Proc	 �th Int	 Workshop on Principles of Diagnosis
�DX����� New Platz� USA� �

	�

�Str�
� Peter Stru+� Diagnosis as a process� In Working Notes of the
Workshop on Model�Based Diagnosis� Paris� France� �
�
� Also
in� �HCdKe
���

�Str
�a� Peter Stru+� Knowledge�based systems � the second generation
sets to work� In Proc	 �th GI Congress on Knowledge�based Sy�
atems� Munchen� Germany� �

��

�Str
�b� Peter Stru+� What�s in sd� towards a theory of modeling for di�
agnosis� In Proc	
nd Int	 Workshop on Principles of Diagnosis�
�

�� Also in� �HCdKe
���

�Str
�� Peter Stru+� Knowledge�based diagnosis� An important chal�
lenge and touchstone for ai� In Proc	 ECAI��
� pages ���"��	�
Vienna� Austria� �

��

�Str
	� Peter Stru+� Testing for discrimination of diagnoses� In Proc	 �th
Int	 Workshop on Principles of Diagnosis �DX����� New Platz�
USA� �

	�

�SW
�� Y� Sun and D� Weld� A framework for model�based repair� In
Proc	 AAAI ���� pages ���"���� �

��

�Tat
�� Mugur Tatar� Tehnologii de realizare a sistemelor expert� Tech�
nical Report �referat pentru doctorat�� Technical University of
Cluj� Cluj�Napoca� Romania� Nov� �

�� �romanian��

�Tat
	� Mugur Tatar� Combining the lazy label evaluation with focus�
ing techniques in an atms� In Proc	 ECAI ���� Amsterdam�the
Netherlands� �

	�

���

�TI
	a� Mugur T,atar and Sebastian Iwanowski� Aspects of e�cient fo�
cusing� In Proc	 �th Int	 Workshop on Principles of Diagnosis
�DX����� New Platz� USA� �

	�

�TI
	b� Mugur T,atar and Sebastian Iwanowski� E�cient Candidate Gen�
eration in a Model�Based Diagnostic Engine� Technical Report
F�S�
������ Daimler�Benz Research� Berlin� Germany� �

	�

�Tis��� P� Tison� Generalized consensus theory and application to the
minimization of boolean functions� IEEE Transactions on Elec�
tronic Computers� 	�		�"	��� �
���

�TL
�� Mugur T,atar and Alfred Let-ia� Embedding temporal reasoning
into the atms framework� In Proc	
nd German Conference on
Expert Systems �XPS����� Hamburg� Germany� �

��

�Wil��� B�C� Williams� Doing time� putting qualitative reasoning on
�rmer ground� In Proc	 �th National Conf	 on Arti�cial Intelli�
gence� pages ���"���� Philadelphia� USA� �
���

��

