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Abstract
This paper refers to a diagnostic engine based on de
Kleer’s GDE. It discusses two aspects of efficient
focusing: First, an ATMS is presented that com-
bines focusing techniques with the lazy label evalu-
ation. Second, a candidate generator is presented
that prunes the search space using a preference or-
dering and the knowledge about the last conflict that
ruled out a diagnosis. The preferred candidates are
generated sequentially according to a predefined
priority ordering. That ordering can be used to focus
both, the ATMS and the candidate generator, on a
constant number of diagnoses.

1 INTRODUCTION

The attempt to apply the model-based diagnostic methodol-
ogy to practical applications faces the problem of high com-
putational costs. This is more evident when the description
of several behavioral modes is required. One of the currently
followed approaches attempting to reduce these costs is to
restrict the attention on a small set of candidates currently in
the focus. The knowledge of the focus can be used to control
the prediction of values and also to control the environment
propagation in the underlying ATMS.

This paper discusses two aspects of efficient focusing in a
diagnostic engine: (1) an improved control technique of the
environment propagation in the ATMS, and (2) the problem
of efficiently computing the focus candidates. For practical
applications, the focus should not be chosen arbitrarily, but
should be defined according to some plausibility criteria.

According to our experience, a significant part of the label-
ling effort spent by the focusing ATMS (cf. [8]) is not rele-
vant for the diagnostic engine. In order to avoid the unneces-
sary labeling work we propose an ATMS which combines
the focusing techniques with the lazy label evaluation (our
ATMS is described in more detail in [12]). Our ATMS
achieves this by integrating a set of simple single-context
TMSs with a focused and lazy ATMS.
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For the candidate generator we adopt the general notion of
the preference ordering as it is defined in  [7]: a preference
order among the modes of each component is used to induce
a preference order among the candidates. The partial order
defined by the preference imposes a lattice structure on the
candidate space. It is easy to take advantage on this structure
and prune a whole subspace of candidates when conflicts are
discovered.

Because the order is not total, there can be a very large num-
ber of diagnoses which are preferred. For efficient focusing
the number of candidates currently in attention should be
small (not greater than k for example). In order to gain more
control in choosing the focus candidates we assume that we
further possess an additional priority criterion which tells
which of the preferred diagnoses should enter the focus.
Preference and priority ordering should be related to each
other in such a way that a more preferred diagnosis must also
come first in the priority ordering. Typical examples for
priority orderings that agree with the preference ordering are
the order by probability (when more probable modes are
more preferred), by the number of faults (when faulty modes
are less preferred) or by the sum of the mode indices (which
is similar to the probability ordering, but tends to prefer more
the candidates with less faults), to name just a few of them.
Moreover, the knowledge expressing that e.g. ”the bulbs
break more often than the wires”cannot be encoded in the
preferences as defined in [7]. Instead, such kind of knowl-
edge can be easily integrated in the priority control criterion.

Our candidate generator is able to construct a specified num-
ber of preferred candidates according to the priority without
generating the whole set of preferred diagnoses in advance
and applying a filter afterwards.

This paper is organized as follows: Section 2 sketches our
improved ATMS. Section 3 presents our candidate genera-
tor. In Section 4, we give some experimental results. Finally
we conclude and compare our work with related work.

2 THE 2VATMS: COMBINING
FOCUSING WITH THE LAZY LABEL
UPDATE

2.1  ATMS BACKGROUND

The assumption based truth maintenance systems (cf. [1])
are instruments used to record the dependence of inferred



data on a set of hypotheses. The ATMS is used in conjunction
with a problem-solver which is responsible for the infer-
ences communicated to the ATMS. The ATMS records the
inferences as propositional material implications, called jus-
tifications. The ATMS also assigns a node to every proposi-
tion the problem-solver reasons about. There are distin-
guished nodes called assumptions, specified by the problem-
solver. A set of assumptions is an environment. The ATMS
labels all nodes with the complete set of minimal (w.r.t. set
inclusion) and consistent environments from which they are
derivable. There is a distinguished ATMS node (�) denot-
ing contradiction. The environments supporting � are
called nogoods and are removed from all node labels.

The attempt of the basic ATMS to maintain the complete,
minimal and  consistent supports for all it’s nodes at all times
leads to prohibitive computational costs (cf. [2,11]). Relax-
ing these requirements may reduce the computational costs.
We shortly review in the following the focusing ATMS and
the lazy ATMS.

The focusing ATMS (cf. [8,2]) temporarily abandons the
global label completeness and consistency. This approach
relies on the ability of the problem-solver to identify a set of
more ”plausible” possible worlds which are communicated
to the ATMS as a set of focus environments. The focusing can
be done both at the problem-solver’s level and within the
ATMS. At the problem-solver’s level, only those inferences
are performed which hold in at least one focus environment.
Within the ATMS,  only those sets of assumptions which are
contained in at least one focus environment are propagated
along the justifications. The propagation of those sets of as-
sumptions outside the current focus is temporarily blocked.
The focusing ATMS guarantees weaker forms of consisten-
cy and completeness:

�   Consistency w.r.t. the focus environments: Every envi-
ronment which is part of a node’s label and which is a
subset of at least one focus environment is consistent.

�   Completeness w.r.t. the focus environments: Every set
of assumptions which supports the derivation of a node,
and which is a subset of at least one focus environment
is either in the node’s label or is a superset of some en-
vironment from the node’s label.

The LazyRMS (cf. [11]) abandons the idea that all the nodes
should have the labels updated at any time. This approach as-
sumes that, at any time, there is a significant number of nodes
whose labels the problem-solver is not interested in. The La-
zyRMS computes a node label only by request. The addition
of a justification no longer triggers the label update, but the
LazyRMS marks those nodes whose labels might be affected
by the addition of new justifications. So, if a node is marked,
then also all of its followers in the network of justifications
will get marked. The mark indicates that the node’s label
must be recomputed before usage. Unmarked nodes have
complete labels. When the problem-solver asks for the label
of a marked node, the following process starts: First, the
marked antecedent nodes of the queried node in the justifica-
tion net are detected and their labels are recursively com-
puted; then the changes in the antecedents are propagated to
the queried node.

2.2  THE 2VATMS

The focusing technique and the lazy label evaluation reduce
the computational effort in two distinct ways: The focused
ATMS computes shorter labels; the lazy ATMS computes
fewer labels. The focusing and the lazy label update cannot
be directly combined: The problem-solver is interested only
in the data which hold under the current focus, but if it had to
query all the labels in order to find out this, then there would
be no point to delay the label update.

The 2vATMS (cf. [12]) solves this apparent incompatibility.
It provides the problem-solver the information about which
focus environments support a node, without computing the
ATMS label. In order to do this the 2vATMS maintains two
views on data. The views share the nodes and the justifica-
tions, but attach distinct labels to the nodes.

The first view (called the focus view) traces the dependence
of the nodes on the  focus worlds (each focus world is com-
municated as a set of assumptions which are enabled in that
world, i.e. as a focus environment). The labels attached by
this view are called f-labels. The f-labels contain the identifi-
ers of those focus worlds in which the node is supported. The
information provided by the f-labels is analogous to that pro-
vided by a set of single-context monotonic TMSs2, one TMS
for each focus world. Figure 1 partly depicts a small network
of dependencies containing three assumptions (A,C,E), two
derived nodes and three justifications. The f-labels of the as-
sumptions contain the set of focus worlds in which the as-
sumption is enabled; each justification propagates the inter-
section of the f-labels of its antecedents; the f-label of a
derived node is equal to the union of the f-labels propagated
by its justifications.
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J1 {2}

{2}
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{2}
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1 = {A,B,D}
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s

J3
{3}
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Figure 1: Computing the f-labels

The only operations required in the focus view are the set
union and intersection, which can be very efficiently imple-
mented on bit strings, given that the size of the focus is usual-
ly small. The computations in this view are considered cheap
and are performed immediately, when a justification is add-
ed.

The second view (called the detailed view) traces the depen-
dance on the assumptions. The labels of this view (i.e. the d-
labels) are similar to the labels computed by the focused
2 A monotonic TMS labels with IN the nodes which hold in the current

context.



ATMS, but their maintenance is delayed as long as there is no
evidence that they could be relevant for the problem-solver.

In general the focus view provides all the information that is
relevant for the problem-solver. When this information is not
enough, the problem-solver may explicitly query the d-label
of a node. In such a case the detailed view must be partially
updated such as to ensure the completeness and consistency
w.r.t. the current focus for the d-label of the queried  node.
During this process, the 2vATMS takes advantage of the in-
formation from the focus view in order to control the com-
putations required in the detailed view.

In order to express the relationship between the f-label and
the d-label of a node at a given moment, the structure of a
node includes another information slot – the f-status: It con-
tains the set of focus worlds w.r.t. which the node’s d-label
might not be complete. The f-status is always a subset of the
f-label, and plays a similar role as the mark which the La-
zyRMS attaches to its nodes. A node with an empty f-status
has a completely determined d-label w.r.t. the current focus.
Also the justifications have an f–status attached. A justifica-
tion’s f-status contains the set of focus environments propa-
gated by the justification w.r.t. which the d-label complete-
ness for the consequent node cannot be guaranteed (for more
details see [12]). Two processes affect the content of the f-
status slots: (a) the addition of a new justification; (b) a d-la-
bel query. The addition of a justification causes the addition
of new elements to the f-labels and to the f-statuses, while the
d-label queries cause the update of some d-labels and the re-
moval of some elements from the f-statuses.

When the problem-solver queries the d-label of a node n, the
focus view is used to selectively determine only those justifi-
cations and nodes that might affect the completeness w.r.t.
the focus environments mentioned in n’s f-status. Thus, the
focus view is used during the query in order to precisely de-
termine the set of justifications which are relevant for the
current query. Usually, the size of the relevant network is
much smaller than the whole network. In order to ensure the
completeness of the d-label for a node n w.r.t. a focus world
wi mentioned in n’s f-status, we consider only those justifica-
tions for n whose f-status contain wi; for each such justifica-
tion the completeness w.r.t. wi for the antecedent nodes is re-
cursively ensured. Finally, the incremental change from the
antecedents’ d-labels is propagated through the relevant jus-
tifications only.

Thus, a very tight control of the environment propagation is
achieved: The propagation of those environments outside
the current focus is temporarily blocked by storing them in a
”blocked label” as in the focused ATMS. Moreover, the
propagation of those environments which are implied by the
current focus is blocked at the level of those individual justi-
fications which were not relevant for the current query.

Moreover, when computing the label for a specific node, all
the cycles in the antecedent justifications can be temporarily
”broken” by ignoring some justifications3. Consider figure
2. The justification J5 is not relevant when computing n1’s or
  3 The intuitive reason why this can be done is that the label of a node
depends only on the set of well-founded-supports for that node. But each
well-founded-support is, in fact, acyclic.

n2’s d-label. It is always the case that, when computing the
label of a node n, all the justifications having n as antecedent
can be ignored (thus J5 is ”ignored” during the recursive
computation of n2’s d-label).  Breaking the above cycle at J5
has the effect that the d-label of n1 or of n2  can be correctly
computed without enforcing the label completeness for n3,
n4 and n5.

n1n2n3n4

n5

J1J2J3

J4 J5

Figure 2.

The 2vATMS maintains an empty d-label and f-label for the
contradiction node (�). Any time when something propa-
gates to the f-label of the contradiction node, at least one fo-
cus environment is inconsistent, and the d-label of the con-
tradiction node is by default computed in order to find the
minimal nogoods. Afterwards, the focus and the detailed
views are updated in order to restore consistency.

2.3  USING THE 2VATMS IN DIAGNOSIS

If the problem-solver issues many queries for the 2vATMS
node d-labels, the advantages of postponing the label update
will diminish. Hopefully, in diagnosis, there is hardly any
need to inquire about the detailed dependance on the as-
sumptions as long as: (1) the minimal conflicts are discov-
ered, and (2) the information about which focus environ-
ments support a node is available. The information provided
by the focus view is sufficient for focused value propagation.
In this respect, the execution of the consumers attached to the
2vATMS nodes is triggered by the changes in the f-labels,
not by the changes in the d-labels. When firing the consum-
ers, the ones belonging to nodes that hold in more focus envi-
ronments are preferred to the ones belonging to nodes that
hold in fewer focus environments.
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Suppose we are diagnosing a pyramid of multipliers and ad-
ders like that from fig. 3. Assume we supply the values of the
inputs of the multipliers M1i. Values will be predicted and
propagated for all the lines of the circuit. As far as no conflict
is discovered, the 2vATMS does not attach any d-label to
them. Now suppose the value of x is measured, and it is found
incorrect. The 2vATMS discovers the same conflict as the
focused ATMS would have discovered, i.e. {ok(M11),
ok(M12), ok(M13), ok(A1), ok(A2), ok(M21)}, but in the



2vATMS only the values predicted by the components from
the above conflict will have their d-label computed.

Consider figure 4 in which an electrical circuit containing

. . . . . .
Wx=

Figure 4.

power supplies, wires, bulbs, etc. is partially depicted. Let
the focus of the diagnostic engine contain the candidate as-
suming that the wire wx is broken. If this candidate is consis-
tent with the observations then no value predicted as a conse-
quence of this fault need be labelled. Suppose further that the
assumption broken(wx) is contradicted by a measurement
from the right part of the circuit (the shadowed area). In this
case, the consequences of this fault must be labelled in the
right network, but, at least, they need not be labelled in the
left part of the circuit.

3 CANDIDATE GENERATION

3.1  HOW CANDIDATE GENERATION IS
EMBEDDED IN THE DIAGNOSTIC ENGINE

Our diagnostic engine interleaves prediction, conflict detec-
tion and candidate generation in a similar way as Sherlock
(cf. [3]) does (Focus is a global data structure containing the
focus candidates):

Controller for Model-Based Diagnosis
Initialize Focus by the candidate that assumes everything 

is normal 
Repeat

Set and acquire values and states for selected points 
of the technical system

Make inferences based on the acquired observations 
and considering the current Focus:

Whenever a conflict conf is detected do
For all focus diagnoses diag invalidated by conf 
do

Invoke Remove-Focus-Diagnosis(diag,conf)
While not Focus-Saturated(Focus) do

Invoke Insert-Focus-Diagnosis
until it is decided that the diagnoses of Focus are satisfac-

tory
End of Controller

The candidate generator, which will be discussed in more de-
tail in this section, is encoded in the two procedures Re-
move-Focus-Diagnosis and Insert-Focus-Diagnosis. The
heuristic Focus-Saturated decides how many diagnoses

should be in the focus at a certain moment. It may be chosen
arbitrarily.

We usually focus on a small number of candidates chosen
from the preferred ones according to an additional priority
criterion.  This enables us to tune the candidate generator
such that it supplies any number of candidates according to
any definition of plausibility which is defined on top of the
preference relation (for instance: the most probable pre-
ferred diagnoses, or the preferred diagnoses with a minimal
number of faults, or the preferred diagnoses mentioning
components from a specific class, etc.). Our experiments
show that the set of preferred diagnoses grows rapidly when
the set of conflicts increases. Thus, constructing the whole
set of preferred candidates in advance and applying an addi-
tional filter afterwards may be very expensive. This is why
we construct only a small subset of the preferred diagnoses
according to the priority criterion and the heuristic Focus-
Saturated.

The partial order defined by the preferences imposes a lattice
structure on the candidate space. We take advantage of this
structure and prune a whole subspace of candidates when a
conflict is discovered. The effect of using a small focus com-
bined with pruning the candidate space lead to considerable
reductions of the time required for diagnosis.

3.2  BASIC DEFINITIONS AND PROPERTIES

Let � be a technical system with n components C1, C2, ..., Cn.
For each component Ci define a set of behavioral modes mi1,
..., mik. Our definition for preference is the same as that used
in [7] and [9]:

Definition 1: (preference between modes)
Let m1, ..., mk be the behavioral modes of a component C.
Define a non-strict preference order � between these
modes:
   mi�mj means that mode mi is strictly preferred to mj.
   mi�mj means that mode mi is equally preferred with mj.
   mi�mj means that mode mi is preferred to mj, 

i.e.: mi�mj � mi�mj�mi�mj
Assume that the normal behavioral mode ok is strictly pre-
ferred to all other modes:   ok�mi for all modes mi�ok.

This preference order may be partial, i.e. neither mi � mj nor
mj � mi  need hold.

Definition 2: (direct successors of a mode)
Define DirectSuccessors(mi) by: 
{mj| mi�mj � 	( 
l: mi�ml�mj)}

A candidate assigns exactly one mode to each component of
�. We denote a candidate A by A={a(C1), ..., a(Cn)} where
a(Ci) is the mode which the candidate A assigns to compo-
nent Ci.

Definition 3: (preference between candidates)
 A candidate A={a(C1), ..., a(Cn)} is preferred to a candi-
date B={b(C1), ..., b(Cn)}, i.e.

 A�B   iff �i: a(Ci)=b(Ci) � a(Ci)�b(Ci)
In this case, we denote A to be a predecessor of B resp. B to



be a successor of A.
Denote  B  a direct successor of A iff A�B and there is no
candidate C such that A�C�B and A�C�B.

Definition 3 implies the following: If two candidates A and B
have the property that there exists a component Ci for which
a(Ci)�b(Ci) � a(Ci)�b(Ci), then A and B are not compara-
ble w.r.t. the preference relation, regardless how the modes
of the other components are related to each other.

Lemma 1:
If D is a direct successor of A then D is obtained from A by
replacing exactly one assignment to a component
a(Ci)A by an element of DirectSuccessors(a(Ci)).

Definition 4: (diagnosis)
A candidate is a diagnosis for � iff if it contains no con-
flicts.
A candidate A is a preferred diagnosis  for � iff it is a diag-
nosis for � and there is no diagnosis for � that is preferred
to A other than A itself.

According to the convention in Definition 1, the candidate
that assigns the ok mode to all components is the unique can-
didate preferred to every other candidate, i.e. all candidates
are successors of this candidate. Our candidate generator
performs a breath-first search in the lattice generated by the
preference order starting from the top element and replacing
inconsistent candidates by their direct successors. The fol-
lowing Lemma shows that we need not inspect all elements
of the search space:

Lemma 2:
Let A be a candidate that contains a conflict �. Let S be
another candidate. Then:
  S is a successor of A and does not contain �
� S is a successor of a direct successor D of A such that D
does not contain �.

Proof: Let A�{a(C1), ..., a(Cn)}, S�{s(C1), ..., s(Cn)}. �
is a subset of A, (��A).

�: Assume that S is a successor of A. By Definition 3,
for all i, either a(Ci)=s(Ci), or a(Ci)�s(Ci). Assume further
that S does not contain �, i.e. 
l: a(Cl)�\S. Since
a(Cl)�s(Cl), we conclude that a(Cl)�s(Cl). Define
D:�{a(C1),...,a(Cl–1),�,a(Cl+1),...,a(Cn)}, where:

�=s(Cl)  if s(Cl)DirectSuccessors(a(Cl))
or �DirectSuccessors(a(Cl)) otherwise.
Then D is a direct successor of A , does not contain �
(a(Cl)� � a(Cl)�D), and  has S as a successor.

�: Assume that D�{d(C1), ..., d(Cn)} is a direct suc-
cessor of A. By Lemma 1, there exists a unique l such that
d(Cl)DirectSuccessors(a(Cl)), and for all i�l,
a(Ci)=d(Ci). Suppose that S is a successor of D. Then S is
clearly also a successor of A. Now, if D does not contain C,
there exists at least one mode assignment a(Cp)�\D. Since
A does contain � and A differs from D only in the mode as-
signed to Cl, we obtain: p�l. Thus, d(Cl)��. Since S is a
successor of D, either  a(Cl)�d(Cl)=s(Cl) or

a(Cl)�d(Cl)�s(Cl). We infer that a(Cl)�S which implies
that S does not include C.
q.e.d.

Our algorithm will now ignore the direct successors of A
which contain the same conflict as A. This achieves a prun-
ing effect: At later stages of our search, we avoid to construct
other non-direct successors of A which contain the same con-
flict as A did. Lemma 2 proves that this pruning is correct, i.e.
no consistent candidates are lost due to the pruning.

Note that if A contains more than one conflict we can apply
the pruning only with respect to one of the conflicts. It is easy
to see that ignoring all of the direct successors that contain
any conflict contained in A, will give up the completeness of
the search for valid candidates.

3.3  SEARCHING FOR PREFERRED DIAGNOSES

In this section, we define the procedures Remove-Focus-
Diagnosis and Insert-Focus-Diagnosis manipulating the
Focus. Focus must contain preferred and valid4 candidates.
We control the number of candidates that are in Focus at a
certain moment independently from the candidate genera-
tion process. Each call of Insert-Focus-Diagnosis should
insert one more candidate diagnosis into Focus.

In the previous section, we have seen that all the candidates
can be constructed as successors of the candidate assuming
that everything is correct. Besides Focus, our algorithm
maintains another set of candidates: Candidates. The fol-
lowing properties of these two sets are ensured at every mo-
ment:
�   Focus contains only valid candidates.

�   All valid candidates are successors of at least one ele-
ment of Focus or Candidates.

�   No element of Candidates is preferred to any element
of Focus or Candidates.

As long as no conflict is discovered, these properties hold if
Focus contains only the element assuming that everything is
correct and if Candidates is empty. All the operations we
perform on Focus and on Candidates will preserve the above
properties: As long as an element stays in Focus or Candi-
dates, none of its successors need be computed. If an  ele-
ment A containing a conflict � is removed from Focus or
Candidates, the above properties are preserved if Candi-
dates gets all the direct successors of A not containing � (cf.
Lemma 2) which are also not a successor of any element of
Focus or Candidates. The above properties are still pre-
served when a valid element of Candidates is moved from
Candidates into Focus.

These considerations informally prove that the following is a
correct solution of our problem:

�   If a conflict � is found which invalidates an element of
Focus, this element is removed from Focus (see procedure
Remove-Focus-Diagnosis) and all of its direct successors
which do not contain � and which are not successors of other
elements of Focus or Candidates are inserted into Candi-
  4By ”valid” we understand here that a candidate does not contain any
conflict discovered so far.



dates (procedure Insert-Successors).
�   When a new element has to be added to Focus (this is done
by the procedure Insert-Focus-Diagnosis), the first element
of Candidates is removed from Candidates. If this element
does not contain any conflict, it is added to Focus. If it con-
tains a conflict, its direct successors are inserted into Candi-
dates and the search for the next valid element of Candidates
continues.

The elements of Candidates will be ordered according to an
additional priority ordering. Since we consider always the
first element of Candidates for an insertion into Focus, we
obey the fact that the diagnoses are found according to this
priority ordering.

In order to see that the additional priority criterion enables us
to enhance the expressibility of knowledge, take as an exam-
ple the knowledge ”the bulbs break more often than the
switches, which, in turn, break more often than the wires”.
Such knowledge cannot be encoded in the preferences as de-
fined here. But it can easily be expressed by the priority con-
trol criterion.

For convenience, we also give the pseudo-code for the al-
ready mentioned procedures:

Procedure Remove-Focus-Diagnosis (old-diag,conf)
old-diag: a focus diagnosis that has been found invalid now
conf: a conflict that invalidates old-diag (i.e., conf ⊆ diag)

Remove old-diag from Focus
Invoke Insert-Successors (old-diag,conf)

End of Remove-Focus-Diagnosis

Procedure Insert-Focus-Diagnosis
Repeat

top-cand := the first element of Candidates
Remove top-cand from Candidates
If there is a conflict conf which is a subset of top-cand

then
Invoke Insert-Successors (top-cand,conf)

else
Insert top-cand into Focus

until a new diagnosis has been inserted into Focus or 
Candidates is empty

End of Insert-Focus-Diagnosis

Procedure Insert-Successors (pred,conf)
pred: candidate whose direct successors not containing conf 

must be inserted into Candidates
conf: conflict that invalidates pred (thus, conf ⊆ pred)

For each element c(Ci)conf do:
For each element �DirectSuccessors(c(Ci)) do:

directSuccessor :� (pred \ {c(Cl) })  �  {�}
. If directSuccessor is not a successor of any element 

  in Focus or Candidates
  then

Insert directSuccessor into Candidates 
according to its priority

End of Insert-Successors

3.4  FURTHER IMPROVEMENT OF THE
CANDIDATE GENERATION PROCESS

The complexity of the above procedures depends on the
number and on the size of the discovered conflicts, as well as
on the size of the candidate space. When all the discovered
conflicts have size 1, the complexity is linear in the number
of the discovered conflicts, since the list Candidates will al-
ways be empty while the Focus will always contain exactly
one diagnosis. The worst case is obtained when all the con-
flicts have maximal size (i.e. the size of the candidates) since
then no pruning is possible and, potentially, the whole candi-
date space (having an exponential size in the number of com-
ponents) must be investigated.

When dealing with digital circuits, like the one from figure 3,
where most of the conflicts have a relatively small size, the
behavior of the above procedures is satisfactory even when
the only possible diagnoses are unlikely double and triple
faults. However, in the case of electrical circuits, like the one
from figure 4, the size of the conflicts is relatively large. This
causes the size of the Candidates list to explode. When the
size of the Candidates increases, the effort to maintain the
order according to the priority criterion and to check if a can-
didate is not a successor of any element from Candidates be-
comes significant, even if one interleaves the last check.

So, if the complexity of Candidates is still a problem, we
suggest to apply an additional filtering criterion when an in-
sertion of a new element into Candidates (see procedure In-
sert-Successors) has to be done. The elements which pass
the filter should be inserted into Candidates. The other ele-
ments should be either ignored – which gives up the com-
pleteness of the search, or be cached in an additional collec-
tion which may be examined later if one decides to relax the
filtering criterion. Useful filtering criteria could be based on:
the number of faults from a candidate (e.g. ”accept only the
candidates with less than k faults), on the types of faults in-
volved (e.g. ”accept only the candidates not involving an un-
known fault, or not involving other unlikely fault”), or on the
class of components assumed faulty (e.g. ”accept only the
candidates which do not assume a fault in module M”).

The application of a filering criterion can also be used for a
higher expressibility of knowledge considering the defini-
tion what ”the most plausible” diagnosis means: It may be
combined with the priority criterion. Of course, this requires
that the filtering criterion agrees with the partial order in-
duced by the preference relation.

4 EXPERIMENTAL RESULTS

We want to integrate our diagnostic engine into a software
system that helps central service facilities of Mercedes-Benz
in the localization of faulty exchangable parts. As a bench-
mark, we took a part of the electric distributor network for
the anti-blocking-system (ABS) which consisted of 71 com-
ponents like switches, lamps, diodes, relais, wires, etc. The
number of variables potentially holding relevant values was
475. Not all of the variables were observable and a lot of of
them only with a great effort (for example the resistance to
ground at a variable within a relay). The components had be-



tween 2 and 4 known modes of behavior (like normal, bro-
ken, short to ground). For matters of completeness, we also
defined one unknown mode of behavior.

Our diagnostic engine considers the notion of time and
works with different test situations (obtained by a different
setting of the switches). With that respect, we follow the
ideas of [10] (however, in other things our present diagnostic
engine differs considerably from that paper, e.g. in the im-
provements described here).

As a benchmark we took a series of 4 successive test patterns.
In each test pattern, we plugged in certain observations at
easily accessible points (like a bulb observation or a voltage
measurement at a plug connector) and set the switches into
definite positions. In the diagnoses resulting from each test
pattern, the consequences of the previous test patterns were
still considered (so, the number of conflicts increased mono-
tonically). Our focus heuristic considered at least 1 and at
most 7 diagnoses at one time and was additionally based on
the probability ratio of the diagnoses found. Our test series
led to several independent diagnoses which all of them
blamed components of the same exchangable unit. This is re-
garded as a satisfactory result by the technical service.

In the following, we give the number of the discovered mini-
mal conflicts as an indicator for the problem difficulty.

For this paper, we implemented also the basic, focused and
lazy ATMS’s in order to compare them to our 2vATMS. We
integrated the different ATMS versions into our diagnostic
engine where the candidate generation method was as pro-
posed here. The results are shown in Table 1. The lazyRMS

was very slow as indicated in rows i) and ii). It can easily be
seen that the improvement of the 2vATMS with respect to the
focusing ATMS increases with the problem difficulty.

Further, we implemented a candidate generation method
which dispensed with the pruning according to Lemma 2
(preference only) and another one that also dispensed with
the pruning according to the preferences (basic). Again, we
integrated the different versions into our diagnostic engine
where the ATMS used was a 2vATMS. The results are shown
in Table 2. The improvement rate of the pruning according to
Lemma 2 is only up to factor 5 in our test examples. This is
due to the fact that our application tends to have big conflicts.
However, in a logical circuit example where the conflicts
were shorter, the improvement rates were higher (cf. [13])

One may be surprised that the absolute time needed for the
tests was not that fast. This had two reasons: First, in contrary
to the domain of logical circuits, the domain of electrical cir-
cuits requires more intensive inferences in order to solve the
value propagation: The interactions between components
are not local. Nearly the entire system has to be propagated
through until a conflict between two different values can be
registered. Consequently, our conflicts usually have big
sizes. Further, the behavioral modes are more complicated,
especially when qualitative descriptions are not sufficient.
We used quantitative descriptions instead. The second rea-
son for the slow performance is the implementation itself:
We have implemented our engine in Smalltalk. Since not all
of the basic operations have been converted to fast primitive
functions yet, the absolute time is not optimal and will be
definitely improved in the implementation used in practice.

test
pattern

discovered
conflicts

lazy / focusing / 2v

total number of
different environments

lazy / focusing / 2v

sum of the label lengths

lazy / focusing / 2v

sum of the blocked
label lengths

lazy / focusing / 2v

time
(in seconds)

lazy /  focusing / 2v

i) 23 / 4 / 4  427 / 456 / 139  3200 / 853 / 233 0 / 384 / 2 779 / 65 / 10

ii) 62 / 10 / 10 1072 / 582 / 157 12098 / 1476 / 339 0 / 877 / 7 > 10000 / 84 / 10

iii) – / 21 / 21 – / 814 / 231 – / 1500 / 391 0 / 1682 / 41 – / 135 / 10

iv) – / 44 / 44 – / 1330 / 440 – / 2868 / 672 0 / 3533 / 123 – / 446 / 50

Table 1: Different ATMS systems in comparison

test
pattern

discovered
conflicts

size of Candidates
basic / preference only / preference + Lemma 2

time (in seconds)
basic / preference only / preference + Lemma 2

i) 4 749 / 113 / 25 25 / 13 / 10

ii) 10 1296 / 301 / 28 49 / 15 / 10

iii) 21 1870 / 857 / 107 102 / 31 / 10

iv) 44 4029 / 1784 / 281 390 / 273 / 50

Table 2: Different candidate generation methods in comparison

5 DISCUSSION

When dealing with several behavioral modes, focusing be-
comes a key feature in diagnosis. While there are several pa-
pers that discuss focusing the value propagation and the

ATMS (cf. [2,3,4,8]) only a few papers discuss candidate
generation in more detail. Dressler and Struss (cf. [7,9]) use
default logics to characterize the preferred diagnoses and the
NMATMS (cf. [6]) to compute them. A similar pruning, as
that  achieved  by us (cf. Lemma 2), is also achieved in the



NMATMS. The label of a special NMATMS node (noted �
in [9]) contains the preferred candidate diagnoses, and plays
a similar role as our Candidates list (cf. section 3.3). In the
NMATMS, the justifications installed as a consequence of
the nogood inference rule (cf. [5]) and the label propagation
play a similar role as the insertion of the immediate followers
of an inconsistent candidate by our algorithm. The elements
of �’s label are at each moment consistent (i.e. they contain
no known conflict). To achieve the same behavior as the can-
didate generation procedure from [9] we would have to re-
quire that our list Candidates contains only valid candidates.
In this respect, when a new conflict is discovered we would
have to scan the whole Candidates list and replace each in-
consistent element by its preferred and valid successors
which need not necessarily be direct successors (and may,
thus, require considerable time to compute them). We  think
that postponing the consistency check and the insertion of
the immediate followers of a candidate until the diagnostic
controller requires a new element for the Focus, is more effi-
cient. In our experiments, the Candidates list contains a sig-
nificant number of candidates at the end of a diagnostic ses-
sion. We save the time of computing the preferred diagnoses
which are successors of the inconsistent elements from Can-
didates. The NMATMS can also control the generation of the
preferred candidates in a certain extent, e.g. (1) by focusing
the label propagation on diagnoses with a minimal number
of faults, and (2) by controlling the moment when the justifi-
cations produced by the nogood inference rule are added to
the NMATMS. However, there is currently no mean of con-
trolling the number of environments attached by an ATMS to
a node label.

In our applications, we focus in fact on the most probable
preferred diagnoses. Sherlock (cf. [3]) focuses on the most
probable diagnoses, a notion very close to the most probable
preferred diagnoses. Note that the two sets are not identical
in general, even if one gives up the update of the probabilities
performed in [3]. This is because some of the most probable
diagnoses may not be preferred. We could also modify our
candidate generation algorithm such that it finds the most
probable diagnoses. Then we would have to insert all the di-
rect followers of a Focus element once the prediction fo-
cused on that candidate is exhausted, and thus it is confirmed
that the element is really a valid diagnosis given the current
set of observations. We do not know of a publication of the
details how Sherlock generates the leading diagnoses. It
would be interesting to know if it also achieves a pruning
similar to that due to Lemma  2.

The ”probabilities” assigned to the fault models need not be
in fact precise probabilities. They can be used just to encode
qualitative information of the form: ”a fault involving two
broken bulbs is more plausible than one involving a broken
wire, which in turn is more plausible than one assuming three
broken bulbs”.

Our use of the 2vATMS aims to further reduce the labeling
effort spent by the focused ATMS ([8,2]). The 2vATMS of-
fers by default only the information provided by a set of
monotonic single-context TMSs, which is sufficient for per-
forming focused value propagation. In our architecture, the
2vATMS d-labels are updated only when needed for com-

puting a new minimal nogood. The views are tightly
coupled, i.e. the content of the focus view is used to control
the computations required in the detailed view.

In [4], it was also noted that even the focused ATMS per-
forms frequently unnecessary labeling work for diagnosis
tasks. In [4], the HTMS was used in conjunction with a
single-context LTMS. Based on the observation that in prac-
tice most of the candidates are consistent, [4] used implicitly
the cheaper LTMS to validate a candidate, and switched to
the HTMS in order to find the minimal conflicts only when a
candidate was found inconsistent. But, different from our ap-
proach, the LTMS and the HTMS were only loosely coupled,
i.e. no advantage on the already computed view of the LTMS
was taken during the computation of the HTMS labels. Also,
by maintaining a set of TMSs, the 2vATMS performs the
context switching within the focus worlds at no cost.
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