
� 1994 M. M. Tatar
ECAI 94. 11th European Conference on Artificial Intelligence Edited by A. Cohn
Published in 1994 by John Wiley & Sons, Ltd.

Combining the Lazy Label Evaluation with
Focusing Techniques in an ATMS

Mugur M. Tatar1

Abstract. For large problems the ATMS often becomes the main
resource consumer in any reasoning system. We propose an archi-
tecture (the 2vATMS) that combines the advantages of two tech-
niques aiming to reduce the complexity of the ATMS tasks: (i) fo-
cusing on a few possible worlds, which abandons the requirement
of global label completeness; and (ii) the lazy label evaluation,
which avoids the label update work as long as there is no evi-
dence that it would be relevant for the problem solver. The
2vATMS integrates two logically dependent views on data: The
first view stores by which focus environments a node is sup-
ported. This information is easy to maintain and corresponds to
the information provided by a set of simple monotonic TMSs. The
second view provides more detailed information, i.e. about the
dependence on the assumptions. The labels of the detailed view
are similar to the ones computed by a focused ATMS, but their
maintenance is ensured only by request. The content of the first
view helps to achieve a very tight control of the environment
propagation in the detailed view. Moreover, the problem solver
has the opportunity to decide when the information offered by the
monotonic TMSs is sufficient, and when the switch to the more
detailed view is valuable.

1 INTRODUCTION

The assumption based truth maintenance systems [1] are instru-
ments used to record the dependence of inferred data on a set of
hypotheses. The ATMS is to be used in conjunction with a prob-
lem-solver which is responsible for the inferences communi-
cated to the ATMS. The ATMS records the inferences as purely
propositional material implications, also called justifications,
denoted by e.g. P1� P2 � ... Pk � Q. The ATMS also assigns a
node to every proposition the problem-solver reasons about.
There are distinguished nodes called assumptions, specified by
the problem-solver. A set of assumptions is an environment. The
ATMS labels all nodes with the complete set of minimal (w.r.t.
set inclusion) and consistent environments from which they are
derivable. There is a distinguished ATMS node (�) denoting
contradiction. The environments supporting � are called no-
goods and are removed from all node labels.

The success of the ATMS is due, among other motives, to pro-
viding a very efficient way of searching in multiple belief
spaces. However, the attempt of the basic ATMS to maintain the
complete, minimal and consistent supports for all it’s nodes at
all times leads to prohibitive computational costs [8]. Relaxing

1 Computer Science Department, Technical University of Cluj-Na-
poca, Romania. Current mailing address: Daimler-Benz, Systems
Technology Research, Alt-Moabit 91b, 10559 Berlin, Germany.
E-mail: tatar@dbresearch–berlin.de.

these requirements may reduce the computational costs. Two
successful approaches aiming to improve the performance of the
ATMS have been reported2:

(1) Focus the ATMS [6,8]. This approach relies on the ability
of the problem-solver to identify a set of more ”plausible” pos-
sible worlds. These most plausible possible worlds can be com-
municated to the ATMS as a set of focus environments. The fo-
cusing can be done both at the problem-solver’s level and within
the ATMS. At the problem-solver’s level, only those inferences
are performed which hold in at least one focus environment.
Within the ATMS, only those sets of assumptions which are con-
tained in at least one focus environment are propagated along the
justifications. The propagation of those sets of assumptions out-
side the current focus is temporarily blocked. Focusing the label
propagation, the global label completeness and consistency is
(temporarily) abandoned, but it will be guaranteed in a weaker
sense, i.e. with respect to the set of focus environments:

Consistency w.r.t. the focus environments: Every environ-
ment which is part of a node’s label and which is a subset of at
least one focus environment is consistent.

Completeness w.r.t. the focus environments: Every set of as-
sumptions which supports the derivation of a node, and which is
a subset of at least one focus environment is either in the node’s
label or is a superset of some environment from the node’s label.

(2) Give up the idea that all the nodes should have the labels
updated at any time. This second approach assumes that, at any
time, there is a significant number of nodes whose labels the
problem-solver is not interested in. The LazyRMS [9,10] com-
putes a node label only by request. The addition of a justification
no longer triggers the label update, but the LazyRMS marks
those nodes whose labels might be affected by the addition of
new justifications. So, if a node is marked, then also all its fol-
lowers in the network of justifications will get marked. The mark
indicates that the node’s label must be recomputed before usage.
Unmarked nodes have complete labels. When the problem-
solver asks for the label of a marked node, the following process
starts: first, the marked antecedent nodes of the queried node in
the justification net are detected and their labels are recursively
computed; then the changes in the antecedents are propagated to
the queried node.

The focusing technique and the lazy label evaluation reduce
the computational effort in two distinct ways: The focused
ATMS computes shorter labels; the lazy ATMS computes fewer
labels. A natural idea would be to combine the characteristics of

2 It is known that the algorithms underlying the basic ATMS have an
exponential worst case complexity. The techniques presented in
this paper aim at improving the average case complexity only.

M. TatarAutomated Reasoning
161

the lazy and of the focused ATMS. As also pointed out in [10],
the combination of these two techniques is not straightforward,
mainly because the focusing at the problem-solver’s level
makes the lazy label evaluation pointless : The problem-solver is
interested only in the data which hold under the current focus,
but if it had to query all the labels in order to find out this, then the
assumption underlying the application of the lazy ATMS would
be refuted.

In order to solve this apparent incompatibility we propose an
ATMS architecture which maintains two views on data (we will
call it 2vATMS). The views share the nodes and the justifica-
tions, but attach distinct labels to the nodes. The first view is
used only to find out whether a node holds in the current focus or
not. For each focus environment it contains a mark indicating if
the node holds in the context defined by that focus environment.
The computations in this view are performed immediately, when
a justification is added. The labels of the second view are similar
to the labels computed by the focused ATMS, but they are com-
puted only by request. We will call the first view as the focus
view and the second one as the detailed view. Based on the the
information stored in the focus view a very tight control of the
environment propagation in the detailed view is achieved.

The focus view is analogous to a set of single-context mono-
tonic TMSs3, one TMS for each focus environment. In many
cases this view provides all the information that is relevant for
the problem-solver. When this is not the case, the 2vATMS gives
the problem-solver the opportunity to switch to the more de-
tailed view.

2 THE 2vATMS

There are two basic suppositions underlying the ideas of the
2vATMS: (a) that, at any moment, the problem-solver is inter-
ested only in a small set of possible worlds, communicated as a
set of focus environments to the ATMS; and (b) that the problem-
solver is not interested all the time in the node’s detailed depen-
dence on the assumptions, but is interested to know which nodes
are supported by the current focus. At any time, however, the
problem-solver may express the interest in the detailed label of a
node.

The 2vATMS attaches two labels to the nodes: the f-label, and
the d-label. The d-labels logically correspond to the labels com-
puted by the focused ATMS, but their maintenance is delayed as
long as there is no evidence that they could be relevant for the
problem-solver. The f-labels have no correspondent in the basic
ATMS. The f-labels trace the dependence of the nodes on the fo-
cus contexts. Each focus environment has an associated identi-
fier in the focus view. The f-labels contain the identifiers of those
focus environments which support the node derivation (in the
following we will say that an f-label contains a certain focus en-
vironment, meaning that the f-label contains in fact the identifier
of that focus environment). So, if fi is a focus environment, then
the f-label of a node contains fi iff that node holds in the context
defined by fi. The views are logically related, i.e. the focus view

3 A monotonic TMS labels with IN the nodes which hold in the
current context.

A B C D E
{1,2} {1,2} {2,3} {1,3} {3}
{{A}} {{B}} {{C}} {{D}} {{E}}

J1 {1,2} J2 {1} J3 {3}

{1,2}
{{AB}}

r
{1}

q

{1,2}
{{AB}}

t {3}
{{CDE}}

J4

{1,2}

J5 {1}
J6 {3}

s {1,3}
{{ABD},{CDE}}

{{AD}} J7 {3}

u {3}
{{CDE}}

Figure 1.

1 = {A,B,D} 2 = {A,B,C} 3 = {C,D,E}

p

can be regarded as an abstraction of the detailed view. One con-
sequence of this is that the computation of the focus view is also
less expensive than the computation of the detailed view. The
2vATMS maintains by default only the focus view. However, if
the problem solver explicitly queries the d-label of a node, the
detailed view must be partially updated, but, as we shall see, the
information from the focus view can be used to control the com-
putations required. In the following, we describe how the f-la-
bels are computed and how the lazy computation in the detailed
view is performed.

The f-label of a justification is the set intersection among the
f-labels of justification’s antecedents. It is easy to see that the
consequent of a justification is supported by each focus environ-
ment from the justification’s f-label. The f-labels are computed
as follows: (i) the f-label of a premise is the total set of focus en-
vironments; (ii) the f-label of an assumption contains those fo-
cus environments which mention that assumption; (iii) for a dif-
ferent node n, the f-label is the union of the f-labels of the justifi-
cations that have n as consequent.

Example 1. figure 1. contains a small network of dependen-
cies with fully determined f-labels and d-labels. A, B, C, D, E are
assumptions and p, q, r, s, t, u, are derived nodes. There are 7 jus-
tifications depicted, e.g. J1 = A, B � p; J5 = q, r � s; an so on.
The set of focus environments used here is: 1: {A, B, D}, 2: {A, B,
C}, 3: {C, D, E}. The d-labels are shown in italics, the f-labels in
bold face. The f-label of s is the union of J5’s and J6’s f-labels.

The size of the f-labels can be kept bound if the problem-
solver uses at any time a limited set of focus environments, e.g.
two bytes are sufficient for working with a focus of size 16. Ex-
cept the assumptions and the premises, which have a complete
d-label at any time, the label completeness in the detailed view
depends on the sequence of justifications added and on the quer-
ies posed. In order to express the relationship between the f-label
and the d-label of a node at a given moment, the structure of a
node includes another field – the f-status: It contains the set of
focus environments w.r.t. which the node’s d-label might not be
complete. The f-status is always a subset of the f-label, and plays
a similar role as the mark which the LazyRMS attaches to its
nodes. A node with an empty f-status has a completely deter-
mined d-label w.r.t. the current focus. Two processes affect the
content of the f-status fields: (a) the addition of a new justifica-
tion; (b) a d-label query. The addition of a justification causes the
addition of new elements to the f-labels and to the f-statuses,
while the d-label queries cause the removal of some elements
from the f-statuses.

M. TatarAutomated Reasoning
162

A B C D E
{1,2} {1,2} {2,3} {1,3} {3}
{} {} {} {} {}

J1 {1,2} J2
{1} J3

{3}

{1,2,3}
{2,3}

r {1}q

{2,3}

t {1,3}
{1}

J4

{1,2,3}

J5 {1} J6 {1,3}

s {1,3}
{1}

{}

J7 {1,3}

u {1,3}
{1}

Figure 2.

p

{2,3}J8
{} {2,3} {} {}

{2,3}
{1,2,3}

{}

J9
{1}
{1}

{1}{1}

It is useful to define also the f-status propagated by a certain
justification: A justification’s f-status contains the set of focus
environments propagated by the justification w.r.t. which the d-
label completeness for the consequent node cannot be guaran-
teed. If the d-label of an antecedent node of the justification J is
not complete w.r.t. a focus environment fi , and if fi is propagated
by J, then the d-label completeness for J’s consequent cannot be
guaranteed w.r.t. fi. Also, when a justification is newly added, the
d-label completeness w.r.t. the focus environments propagated
by the justification cannot be guaranteed for the consequent
node, since the addition of a justification does not trigger the d-
label update. Thus (1) when a justification is added its f-status is
set equal with its f-label; (2) the f-status of a node is the set union
among the f-statuses of the justifications having that node as
consequent; (3) If the f-status of an antecedent node of a justifi-
cation J is modified such that the set F is incrementally added to
it, J’s f-status is set to the union of its old value and the intersec-
tion between F and J’s f-label (i.e. f-status(J) := f-status(J) � (F
� f-label(J))). The update of the f–statuses and of the f–labels is
performed simultaneously and in an incremental manner.

Example 2. Consider the network of dependencies depicted
in fig. 1., and assume that the d-label of every node is completely
determined (this is a rather unrealistic state for the 2vATMS
since it assumes that all the node d-labels have been queried).
Consequently, the f-status sets, not depicted in fig. 1., are empty
for all the nodes and justifications. Suppose we add two new jus-
tifications: J8 = c � p, and J9 = r � t. This will change the f-la-
bels and the f-statuses, but will not affect the detailed view. The
resulting state of the network is depicted in fig. 2. (the f-labels
have a bold face and the f-statuses are shown in italics; the d-la-
bels are not shown). The f-statuses of J8 and J9 are identical with
their f-label. The addition of J8 caused the update of the f-label
and of the f-status of p, J4 and q. The f-status {2,3} did not propa-
gate from q through J5 because the intersection with J5’s f-label
is empty. The addition of J9 caused the update of the f-status at: t,
J6, s, J7 and u. Note that when a new justification is added, the
LazyRMS marks all the followers of the consequent – meaning
that their label could have been modified by the operation. The
2vATMS, however, determines much more precisely the follow-
ers where the label completeness w.r.t. the focus might be vio-
lated. For instance, s is a follower of p in the network of depen-
dencies but the label completeness w.r.t. the focus cannot be af-
fected by the addition of J8 (only the addition of J9 caused the
update of the f-status of s).

When the problem-solver queries the d-label of a node, a pro-
cess very much alike to that from the LazyRMS [9,10] is initi-

ated, but the information from the focus view can be used to re-
duce the amount of computation required. The focus view is
used to selectively determine only those justifications that are
relevant for the current query. This significantly reduces the
number of nodes whose d-labels must be updated. In order to en-
sure the completeness of the d-label for a node n w.r.t. a focus
environment fi mentioned in n’s f-status, we consider only those
justifications for n whose f-status contain fi; for each such justifi-
cation the completeness w.r.t. fi for the antecedent nodes is recur-
sively ensured4. Finally, the incremental change from the ante-
cedents’ d-labels is propagated through the relevant justifica-
tions. Thus, a very tight control of the propagation in the detailed
view is achieved: The propagation of those environments out-
side the current focus is temporarily blocked by storing them in a
”blocked label” as in the focused ATMS. Moreover, the propaga-
tion of those environments which are implied by the current fo-
cus is blocked at the level of those individual justifications
which are not needed for answering the current query. After a d-
label is updated such that it is complete w.r.t. a focus environ-
ment, the focus environment is removed from the f-status.

The 2vATMS maintains an empty d-label and f-label for the
contradiction node (�). Any time when something propagates
to the f-label of the contradiction node, at least one focus envi-
ronment is inconsistent, and the d-label of the contradiction node
is automatically computed in order to find the minimal nogoods.
Afterwards, the focus and the detailed views are updated in order
to restore consistency. This implies that even if the d-label com-
pleteness w.r.t. the focus is not guaranteed, at least not until the
node is queried, the consistency of the d-labels w.r.t. the focus is
at all times guaranteed.

Example 3. Consider fig. 2., and assume that the problem-
solver asks for the d-label of s. Since the intersection between the
f-status of s and J5’s f-status is empty, J5 is not relevant for the
query. Only J6 affects d-label’s completeness w.r.t. the focus en-
vironment 1, so the d-label completeness w.r.t. the set {1} is re-
cursively ensured for J6’s antecedents (i.e. for t). Finally the en-
vironments which were not propagated through J9 are restarted,
but the propagation will be restricted to the justifications in-
volved in the current query: The incremental change from t’s d-
label will be propagated through J6, but not through J7. After this
process the set {1} is removed from the f-status of J9, t, J6, and s.
Note that, without the information from the focus view, a purely
lazy ATMS [10], would have recurred to update also the label for
q and p, and would have also had to consider the justifications J5,
J4, and J8 which were not relevant for this query.

3 CYCLIC DEPENDENCIES
The current implementation of the 2vATMS does not employ the
most parsimonious control technique when cycles in the justifi-
cations that are relevant for the current query are encountered.
In such a case the completeness w.r.t. the queried set of focus en-
vironments is ensured for all the nodes connected by the relevant
justifications (a similar approach is followed also by the La-
zyRMS [10]). In networks with high connectivity this can in-

4 In fact, special care must be taken when cycles in the dependencies
are encountered.

M. TatarAutomated Reasoning
163

crease significantly the work of the 2vATMS. Hopefully there is
in fact no need to ensure the label completeness w.r.t. the queried
focus environments for all members of such cycles. It is always
the case that the cycles in the dependencies can be ”broken”
when we are interested only in a specific node’s label.

The justification J5 from fig. 3 is not relevant when comput-

n1n2n3n4

n5

J1J2J3

J4 J5

Figure 3.

ing n1’s or n2’s d-label. It is always the case that, when comput-
ing the label of a node n, all the justifications having n as ante-
cedent can be ignored (thus J5 is ”ignored” during the recursive
computation of n2’s d-label). Breaking the above cycle at J5 has
the effect that the d-label of n1 or of n2 can be correctly computed
without enforcing the label completeness for n3, n4 and n5.

4 CONTEXT CHANGING

Changing the context within the focus worlds is performed at no
cost in the 2vATMS. However the addition of new focus envi-
ronments entails the addition of new elements to the f–labels.
Although the computations in the focus view are fairly cheap
and, usually, this overhead is balanced by the more restrictive
control of the computations in the detailed view, it can become
significant in the cases which require intensive context chang-
ing. Based on the observation that usually the focus environ-
ments do not differ dramatically in between, the following heu-
ristics can help reduce the costs of context changing:

(i) Incremental changing of the focus: When a focus environ-
ment f becomes inconsistent, do not remove immediately its as-
sociated identifier from nodes’ f-labels. Instead just mark that
identifier as ”invalid”. When a new environment g is added to
the focus assign it the ”invalid” identifier of f and update only the
followers of the assumptions from the set: (f \ g) � (g \ f). Since we
expect that f, g do not differ dramatically, a significant amount of
work can be saved because there is no need to relabel the nodes
which depended only on the assumptions from the set f � g.

(ii) If the problem-solver decides to add several focus envi-
ronments into the focus at a given time, then it is better to add the
focus environments in batches. The nodes depending only on the
common assumptions are processed only once this way.

The above two heuristics can be used in conjunction, of
course.

5 THE APPLICATION OF THE 2vATMS IN
MODEL BASED DIAGNOSIS

Model based diagnosis [2,3] seeks to identify the malfunction-
ing components of a device. The only information to be used is
how the components are connected to each other, how they be-
have, and a set of observations about the real device. The diagno-
sis must find those assignments of modes of behavior to the com-
ponents which are consistent with the observations. The diagno-

sis is driven by the contradictions identified between the as-
sumed modes of behavior and the observations. Such a diagnos-
tic engine can be implemented using a value-propagating engine
and an ATMS. The ATMS is used to keep track of the predicted
values’ dependence on the assumptions, and to identify the mini-
mal nogoods supporting the contradictions.

M11

M12

M13

M14

A1

A2

A3

M21

M22

Figure 4.

M15

M16

A4

A5

M23

M24

x

y

z

u

a

b
.
..

Usually, there are too many diagnoses which can account for
the observations. In focused diagnosis, we are interested in find-
ing only the most plausible ones, according to some criteria
[4,7,11]. Without the use of focusing, an exponential number of
predictions can be computed because combinations of predic-
tions from different modes need be computed. Even with fo-
cused value propagation, in a basic ATMS, the number of envi-
ronments propagated grows exponentially. The use of a focused
ATMS [6,8] significantly alleviates these problems, but such an
ATMS attaches labels for all the values propagated, although
usually only a small part of these labels might be interesting for
diagnosis. The 2vATMS will not spend effort to compute/update
the d-labels of those predictions not involved in any conflict
relevant for the current focus.

Example 4. Suppose we are diagnosing a pyramid of multi-
pliers and adders like that from fig. 4. Assume we supply the val-
ues of the inputs of the multipliers M1i. Values will be predicted
and propagated for all the lines of the circuit. As far as no conflict
is discovered, the 2vATMS does not attach any d-label to them.
Now suppose the value of x is measured, and it is found incor-
rect. The 2vATMS discovers the same conflict as the basic
ATMS would have discovered, i.e. { ok(M11), ok(M12), ok(M13),
ok(A1), ok(A2), ok(M21) }, but in the 2vATMS only the values
predicted at the output of the components from the above con-
flict will have their d-label computed. The number of labeled
values would remain constant in the 2vATMS, while it would al-
ways increase in the focused ATMS, even if the base of the three-
level pyramid of components from fig. 4 had 10,000 compo-
nents, instead of 6.

We have implemented a prototype of the 2vATMS and we
have run a series of preliminary tests in model based diagnostic
tasks. Our diagnostic engine never queried a 2vATMS node. The
discovery of the minimal conflicts is sufficient for finding the
diagnoses, while the information from the f-labels is sufficient
for focused value propagation.

Table 1. summarizes some of the results obtained while diag-
nosing the circuit from Fig. 4. Every component was character-
ized by 7 modes of behavior: ok / probability 0.75 - the correct
behavior; s1 / 0.1 - output stuck at 1; s0 / 0.05 - output stuck at 0; l
/ 0.04 - output equal with the left input; r / 0.04 - output equal
with the right input; s / 0.018 - output equal with the correct re-

M. TatarAutomated Reasoning
164

sult shifted with one bit to the left; u / 0.002- unknown failure. In
all the cases described in Tab. 1. the diagnostic engine focused
only on the first most probable diagnoses, but several diagnoses
were added to focus if they were equally probable. The table
compares the performance of using the focused ATMS vs. the
2vATMS (see [6,8] for comparisons between the focused ATMS
and the basic one). Column 3 compares the total size of the envi-
ronment database at the end of diagnosis (the nogoods were also
counted in this number). Column 4 compares the average length
of the labels, computed as the total label length divided by the
total number of ATMS nodes (the use of the 2vATMS does not
reduce the number of the nodes and the number of the conflicts
discovered vs. the use of the focused ATMS). Column 5
compares the total amount of time5 spent within the ATMS dur-
ing the diagnosis process. a and b are linked to the left respec-
tively the right input of the multipliers M1i.

6 DISCUSSION

The use of the simple basic ATMS leads to combinatorial explo-
sion very soon. Additional control mechanisms need to be found
before trying to scale up to larger tasks. Relaxing the require-
ment of global label completeness and the requirement that all
the nodes should have the label updated at any time, the amount
of work done within the ATMS can be reduced. We have pre-
sented an architecture which combines the lazy label evaluation
[10] with the focusing techniques [6,8]. We can also regard the
2vATMS architecture as tightly integrating a set of single–con-

5 These tests were run on a PC286 under DOS. The 2vATMS and
the diagnosis engine were implemented using C++. The prototype
did not embed all the ideas presented in this paper in the optimal
way.

text TMSs with a focused-lazy ATMS. Our preliminary tests,
with an unoptimized prototype, show significant reductions of
the time and memory consumed by the ATMS in diagnostic
tasks, even on small examples.

Other papers also observed that the focused ATMS performs
sometimes non-relevant work in diagnosis (cf. [5,7]). In [5] two
distinct TMSs are used in conjunction: a (single-context) LTMS,
and a focused ATMS. As opposed to our architecture, the LTMS
and the focused ATMS are loosely coupled in [5]. In the
2vATMS the content of the focus view is used to control the en-
vironment propagation. Also, by maintaining a set of single-
context TMSs, the 2vATMS performs the context switching
within the focus worlds at no cost.

[7] suggests to use special all-ok assumptions, representing a
conjunction of ok assumptions, and argue that this help reduce
the effort of ATMS node labelling during diagnosis. The identi-
fiers attached to the focus environments in the 2vATMS can be
regarded as single assumptions replacing the sets of assumptions
representing the focus environments.

Our architecture still guarantees the consistency of the d-la-
bels w.r.t. the current focus at any moment, since the whole envi-
ronment database is checked for consistency immediately after
the discovery of a new minimal nogood. One alternative, which
we have not tested, is to delay also the d-label consistency check
until the d-label is needed, as the LazyRMS [10] does.

ACKNOWLEDGEMENTS

The paper owes much to the discussions with Gerry Kelleher.
Sebastian Iwanowski provided extensive comments on earlier
drafts of this paper. I further want to thank the anonymous refer-
ees and my thesis supervisor, Ioan A. Letia.

Table 1. � focused ATMS ◊ 2vATMS

Input (a = 2 b = 3)
x y z u

Diagnosis Environments

 � ◊ ratio

Avg. label length

 � ◊ ratio

Time in seconds

 � ◊ ratio

144 36 27 108 {r(M14), r(A3)} 382 166 2.3 1.91 1.26 1.6 8.18 2.36 3.5

144 108 81 108 {r(M14)} 263 42 6.3 3 0.8 3.8 4.23 0.5 8.5

12 12 12 12 {s1(A2), s1(A4)} 206 85 2.4 1.69 1.18 1.4 3 1 3

84 144 96 64 {s1(M11), l(M15)} 342 67 5.1 2.4 0.85 2.8 6.8 0.77 8.8

REFERENCES

[1] de Kleer, J., An Assumption Based Truth Maintenance System,
Artificial Intelligence 28, (1986), p. 127–162.

[2] de Kleer, J., Williams, B., Diagnosing Multiple Faults, Artificial
Intelligence 32 (1987), p.97–1307.

[3] de Kleer, J., Williams, B., Diagnosis with Behavioral Modes,
Proc.IJCAI 1989, p. 1324–1330.

[4] de Kleer, J., Focusing on Probable Diagnoses, Proc. AAAI 1991,
(1991)

[5] de Kleer, J., Optimizing Focusing Model-Based Diagnoses, Proc.
3rd International Workshop on Principles of Diagnosis, 1992.

[6] Dressler, O., Farquhar, A., Putting the Problem Solver Back in the
Driver’s Seat: Contextual Control of the ATMS, ECAI TMS
Workshop, 1990.

[7] Dressler, O., Struss, P., Model–based Diagnosis with the Default–
based Diagnosis Engine: Effective Control Strategies that work in
practice, Siemens Report ARM-1-94, 1994.

[8] Forbus, K., de Kleer, J., Focusing the ATMS, Proc. AAAI 1988, p.
193–198.

[9] Kelleher, G., van Rij, T., The Application of Lazy RMS in Auto-
mated Diagnosis, Proc. ECAI 1992 Workshop on Applications of
RMS.

[10] Kelleher, G., Gaag, L., The LazyRMS: Avoiding work in the
ATMS, Computational Intelligence: An Int. Journal, Aug. 1993,
vol. 9., no. 3., p. 239–253.

[11] Tatar, M., Iwanowski, S., Efficient Candidate Generation in a
Model-Based Diagnostic Engine, Daimler-Benz Technical Report,
1994.

