Wissensbasierte Systeme

Vorlesung 2 vom 20.10.2004 Sebastian Iwanowski FH Wedel

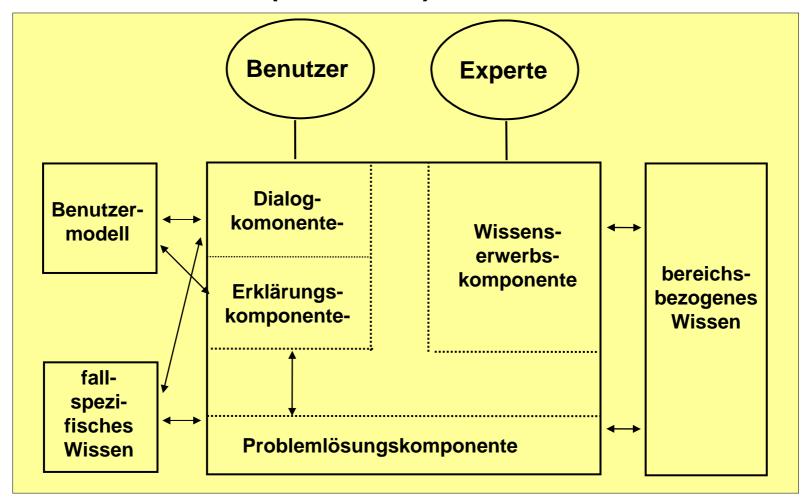
Wissensbasierte Systeme

- 1. Motivation
- 2. Prinzipien und Anwendungen
 - 3. Logische Grundlagen
 - 4. Suchstrategien
 - 5. Symptombasierte Diagnose
 - 6. Modellbasierte Diagnose

Kandidatengenerierung

Konfliktgenerierung

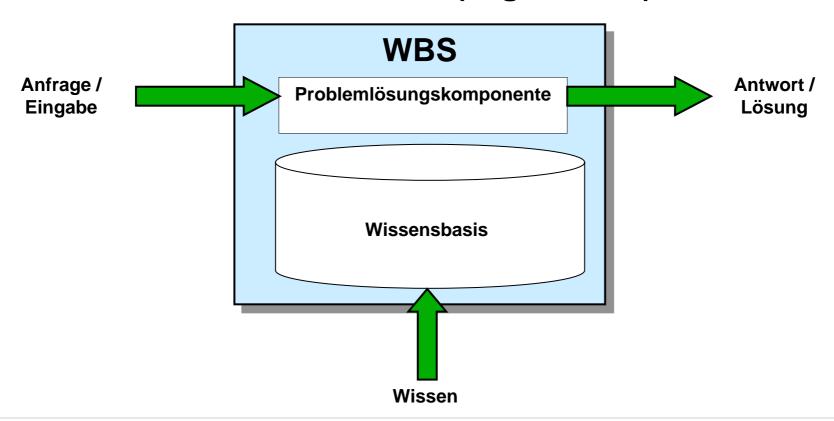
Wertpropagierung


Gesamtarchitektur

Komponentenmodellierung

- 7. Weitere Wissensrepräsentationsformen
- 8. Bewertung wissensbasierter Systeme

Was gehört zu einem Wissensbasierten System?


Architektur XPS (klassisch)

Was gehört zu einem Wissensbasierten System?

Architektur WBS (allgemeiner)

Was gehört zu einem Wissensbasierten System?

Wissen + Problemlösungskomponente = WBS

Daten Verarbeitungsregeln

Logisches Wissen:

Atome Regeln Ableitungsregeln

Fakten wenn ... dann ... Resolution, Unifikation

Funktionales Wissen:

Daten Funktionen Funktionsauswertung

Objektorientiertes Wissen:

Objekte Methoden Compiler / Interpreter

deklaratives prozedurales Steuerungs- Wissen

WBS2 Slide 5

Unterschied zwischen Daten und Wissen?

Daten = Zeichen + Syntax

Information = Daten + Bedeutung

Wissen = Information + Verarbeitungsfähigkeit

Wissensverarbeitung:

Erkunden, Suchen,

Erkennen, Identifizieren, Bewusstmachen,

Untersuchen, Analysieren,

Entscheiden,

Informieren,

Verbessern, Restrukturieren,

Behalten

Aufgabenfelder bei der Erstellung von WBS

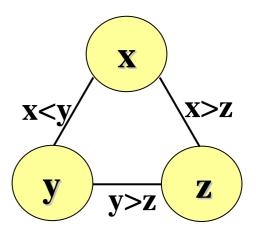
- Wissenserwerb
- Wissensrepräsentation
- Inferenzmechanismen
- Suche

Formen der Wissensrepräsentation

In WBS muss das Wissen formalisiert werden

- Frames
- Semantische Netze (Ontologien)
- Logik
- Produktionsregeln
- Constraints

Constraints


Constraints sind Neben- und Randbedingungen (üblicherweise für Variablen)

Bsp.:

Constraints:

Folgende Wertebereiche seien zugelassen:

$$x \in \{1,2\}, y \in \{1,2,3\}, z \in \{1,2,3,4\}$$

Klassifizierung von Wissensqualität

Die folgenden Kriterien sind unabhängig voneinander:

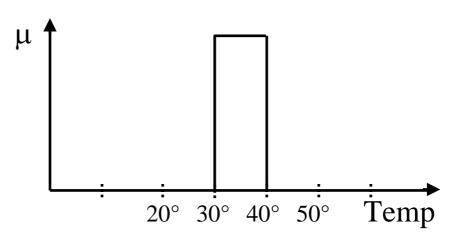
flach vs. tief (modular aufgebaut)

sicher vs. unsicher

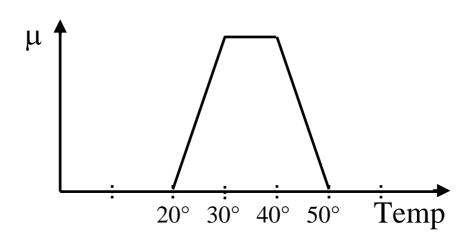
exakt vs. qualitativ / unscharf

Die Wartezeit von Auftrag 1 bei Maschine A beträgt 10 Minuten.

Die **Wahrscheinlichkeit**, dass die Wartezeit von Auftrag 1 bei Maschine A 10 Minuten beträgt, ist 0,9.


Die **Möglichkeit**, dass die Wartezeit von Auftrag 1 bei Maschine A 10 Minuten beträgt, ist 0,9.

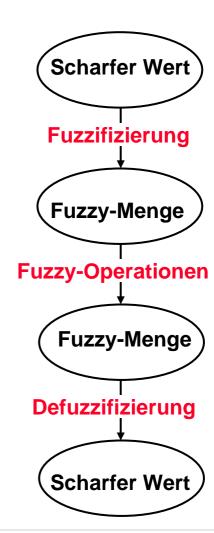
Das **Plausibilitätsintervall** der Hypothese, dass die Wartezeit von Auftrag 1 vor Maschine A 10 Minuten beträgt, ist (0,05; 0,95).


Die Wartezeit von Auftrag 1 vor Maschine A beträgt ungefähr 10 Minuten.

Fuzzy Sets als Beispiel für unscharfes Wissen

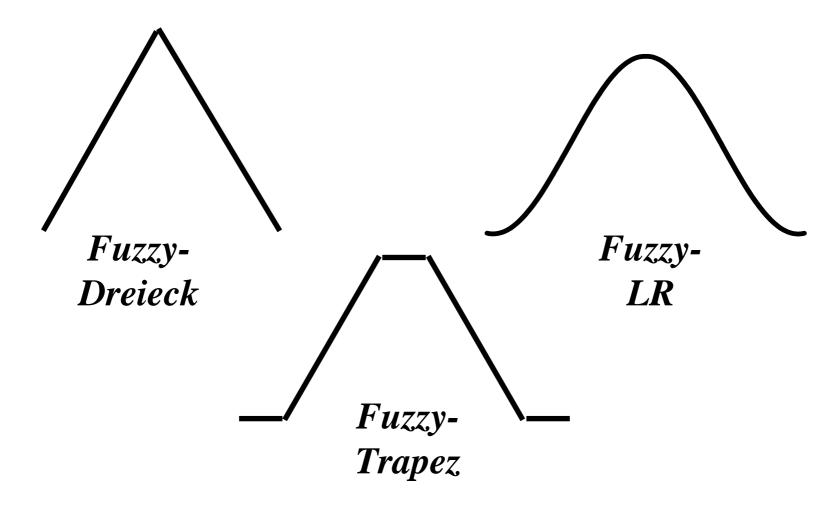
scharfe Menge

unscharfe Menge

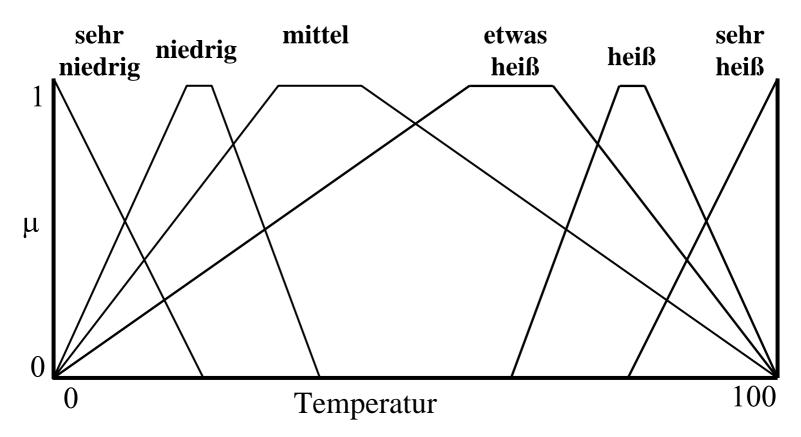


aus Wissensbasierte Systeme, Vorlesung 2, FH Deggendorf, 2004

Fuzzy Sets als Beispiel für unscharfes Wissen


Prinzip der Fuzzy-Technik:

Messung


Einstellung

Fuzzy Sets als Beispiel für unscharfes Wissen

Fuzzy Sets als Beispiel für unscharfes Wissen

Die linguistische Variable "Temperatur"

Fuzzy Sets als Beispiel für unscharfes Wissen

Beispiele für Fuzzy-Operatoren:

•
$$\mu_{C}(x) = \min \{ \mu_{A}(x), \mu_{B}(x) \}$$
 $x \in X$

•
$$\mu_{C}(\mathbf{x}) = \max \{\mu_{A}(\mathbf{x}), \mu_{B}(\mathbf{x})\}$$
 $\mathbf{x} \in \mathbf{X}$

•
$$\mu_{C}(\mathbf{x}) = \mathbf{1} - \mu_{A}(\mathbf{x})$$
 $\mathbf{x} \in \mathbf{X}$

Fuzzy Sets als Beispiel für unscharfes Wissen

es geht auch komplizierter:

•
$$\mu_{C}(\mathbf{x}) = \gamma \min\{\mu_{A}(\mathbf{x}), \mu_{B}(\mathbf{x})\} + \frac{1}{2}(1 - \gamma)(\mu_{A}(\mathbf{x}) + \mu_{B}(\mathbf{x}))$$

 $(\gamma \in [0, 1])$

Was macht diese Funktion?

Fuzzy Sets als Beispiel für unscharfes Wissen

Beispiel für eine Fuzzy-Regel:

```
Wenn (Distanz = klein)
und (Geschwindigkeit = groß),
dann (Bremskraft = groß)

Wenn (Distanz = mittel)
und (Geschwindigkeit = groß),
dann (Bremskraft = mittel)
```

Klassifizierung von Problemlösungsmethoden

Die folgenden Methoden hängen von der Wissensrepräsentation ab:

heuristisch:

```
wenn <Merkmalskonstellation> dann <Lösung>
```

- kausal:
 - überdeckende Klassifikation:

```
wenn <Lösung> dann <Merkmale>
```

funktionale Klassifikation:

(suche das beste Verhaltensmodell, das mit der beobachteten Systemfunktion konsistent ist)

Klassifizierung von Problemlösungsmethoden

Die folgenden Methoden hängen von der Wissensrepräsentation ab:

fallbasiert:

Fallbasis:

Gegeben Fälle von Merkmalskonstellation mit Lösung

• mit Ähnlichkeitsmaß:

Suche zu neuer Merkmalskonstellation die ähnlichste Merkmalskonstellation aus der Fallbasis und nimm deren Lösung

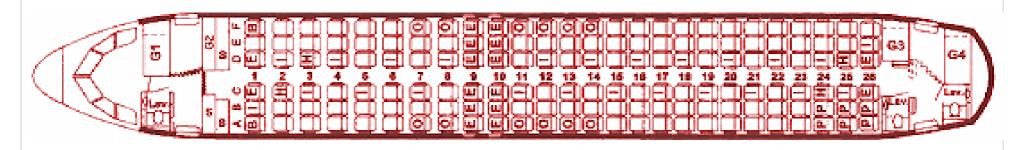
- mit neuronalen Netzen
- mit Data Mining:

Merkmale aus Fallbasis => neue Zusammenhänge

Wende dann eine der anderen Methoden an (heuristisch oder kausal)

Anwendungen für Wissensbasierte Systeme

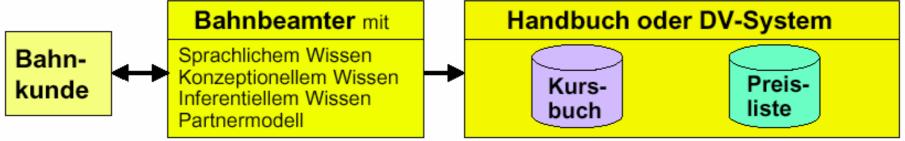
- Diagnose
- Konfiguration
- Informations- und Beratungssysteme
 - Reisebuchung

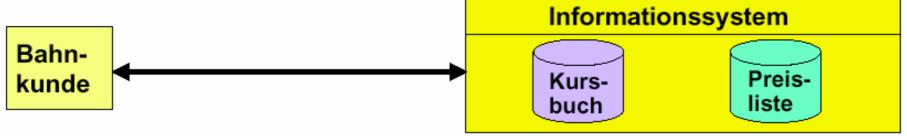

siehe Wissensbasierte Systeme, Vorlesung 6, FH Deggendorf, 2004

- Entscheidungsunterstützung
 - **Kreditbewertung** siehe *Wissensbasierte Systeme*, Vorlesungen 3 und 5, FH Deggendorf, 2004
 - Produktionsplanung siehe Wissensbasierte Systeme, Vorlesung 7, FH Deggendorf, 2004
 - Betriebswirtschaftliches Controlling

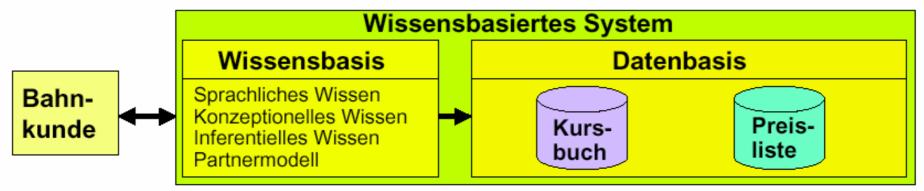
siehe Wissensbasierte Systeme, Vorlesung 8, FH Deggendorf, 2004

Bsp. für Konfiguration


Kabinenlayout für Passagierflugzeuge


Platzierung der Kabineneinrichtung (Sitze, Küchen, Toiletten, etc.) unter Berücksichtigung von:

- Kundenwünschen
- Technischen Möglichkeiten
- Legalen Beschränkungen
- Optimalitätskriterien


Datenverarbeitung vs. Wissensverarbeitung am Beispiel Bahnauskunft

Klassische Auskunftssituation ggf. mit DV-Einsatz zur Unterstützung des Beraters

Minderung der Dienstleistungsqualität bei Rationalisierung durch konventionellen DV-Einsatz

Vervielfachung der Beratungskapazität ohne Qualitätsverlust bei der Dienstleistung durch die Kombination von Wissens- und Datenverarbeitung © Wolfgang Wahlster

