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1 Introduction

Password attacks are at the edge of accessing someones secrets. By learning to
judge the strength of a password and by understanding how hackers execute
attacks, users can make better estimations on how safe they are.

The entropy is widely used to measure how safe a password is, but many
sources draw inaccurate conclusions between the entropy of a random pass-
word and the strength of a password that was chosen by a person. It is
important to understand how these two differ and why realistic password
strength is often hard to determine.

Todays hardware gives hackers incredibly powerful machines to launch dif-
ferent types of password attacks. Common password patterns lower possible
permutations by such a magnitude that even seemingly safe passwords can
be successfully attacked. In combination with frequently used passwords and
personal information, hackers can further increase the effectiveness of their
attacks.

By explaining common terminologies and analysing different datasets we will
look at password attacks from the perspective of users, system administrators
and hackers. All three benefit by understanding how the others operate in
practice.



2 Types of Attacks

2.1 Online Attacks

Online password attacks are held against logins of network protocols like
POP3, SSH or FTP. The target that is being attacked is a remote computer
or server on a different network [1]. The rate at which an attack like this can
be processed, depends mostly on the protocol, the connection to the server
and the hardware of the server itself. Therefore the attacker has only a very
limited influence on the attack rate.

Another challenge with online attacks is the fact that not only a password, but
also the associated username is needed. If both of these inputs are unknown
the number of possible entries is the result of all possible passwords multiplied
by all possible usernames.

A tool that can be used for such an attack is hydra [2]. hydra is a command
line tool available for Windows and different unix based operating systems.
It’s free, open source and still under active development. The command for
running hydra will look similar to this:

“hydra -1 admin -P passwords.txt mail.domain.com pop3”

The lowercase 1 specifies that the username "admin" is already known. The
uppercase P stands for a list of passwords that are to be used for the attack.
In the end the address of the server as well as the protocol type is entered.
-h will give a full list of hydras syntax.

A common countermeasure against online attacks is a maximum number
of logins. Since the verification process is done by the server, it would be
possible to block specific IPs after a certain number of unsuccessful tries. A
human user is probably not affected by a limit of only one login per second or
100 tries a day. An attacker on the other hand will have a much harder time
executing password or DDoS attacks on such a server. Although protocols
like SSH can be enhanced for a maximum number of logins, it is not enabled
by default [3].



2.2 Offline Attacks

Offline attacks are held against password hashes like those produced by MD5,
SHA1 or SHA512. Before such an attack can be executed the attacker must
first gain a copy of the hashes that he wants to crack [1]. One of the criteria
for a secure hash function is the fact that the result cannot be reversed
to its input [4]. The attacker must therefore calculate hashes for different
passwords and check for identical entries in the data he aquired.

The rate at which an offline attack can be run, depends mostly on the
hashtype and the hardware of the computer. NTLM and MD5 will be pro-
cessed much faster than more complex hash functions like SHA512 or PDF
encryption hashes. The usage of GPUs has been gaining a lot popularity over
the past years, because they are designed for highly parallelised algorithms.
The architecture of GPUs compliments the arithmetic operations that are
needed for password attacks [5].

A tool that can be used for such an attack is hashcat. Just like hydra it’s open
source and available for different platforms. It’s still under active development
and a command for running hashcat can look like this:

“hashcat -a 0 -m 0 hashes.txt rockyou.txt”

-a 0 specifies that the attack type is wordlist and -m 0 tells hashcat that
the hashes are MD5 entries. hashcat will then calculate the hashes for the
passwords in the rockyou.txt file and cross reference them against the entries
in hashes.txt. The full list of hashcats syntax can be viewed with the -h
command.

Common countermeasures against offline attacks include Stretching and
Salting. Password Stretching describes the process of hashing a password
multiple times. The output of the hash function is used as the input of
the next iteration. The security increases because more processing time per
password is needed [6].

With Password Salting every user gets assigned a random value, which is
added to the password before hashing it. This means that two users with
the same password will have different password hashes in the database. This
way an intruder has to attack every user one-by-one and is not able to create
a hash table that works with all users [6].



3 Entropy

The strength of a password can be described by the number of guesses at-
tackers need to crack it. The more tries an hacker needs to find the password,
the more secure it is [7]. Length and element complexity of the password play
into account how large this number will be [8]. This results in two problems
when trying to measure the security of a password.

For one this number is highly subjective as every attacker would need a
different number of guesses. It’s difficult to judge how many tries the average
hacker might need. Also, this number can only be stated after an attack was
successful. Instead the entropy can be used to objectively predict this event
and measure the strength of randomly chosen passwords.

H= logg(NL) (1)

The entropy H of a password can be determined based on its length L and
the pool size N each element can be chosen from. Increasing the possible
complexity of each element or increasing the length will also increase the
entropy of a password [9].

Length of Password (L) Entropy

6 28
8 38
10 47
12 56
14 66

Table 1: Entropy based on password length. N = 26

Because of its exponential growth increasing the length of a password will
have a larger effect on the entropy than a more complex pool size [9]. There-
fore users who are interested in strengthening their passwords should consider
making it longer rather than using additional symbol groups like special char-
acters. Increasing both will still get the best results.

Character Complexity (N) Entropy

10 27
26 38
36 41
52 46
95 93

Table 2: Entropy based on a character complexity. . = 8



Passwords that are made up of actual words are called passphrases. Calcu-
lating the entropy of “correcthorsebatterystaple” using the entropy equation
based on single characters results in 118. However instead of analysing this
passphrase based on characters, one could also do it based on the four words
it consists of. “correct”, “horse”, “battery” and “staple” are all in the top
2000 of the most common english words [15]. Instead of seeing a tuple made
of 25 lowercase characters, it is also possible to see a tuple with the length
of 4 and a pool size of 2000. The same entropy equation is used, but since
this is based on a different model the result changes — in this case to 44.

H_pars = logz(26%°) = 118 (2)
Hyoras = l0g2(2000%) = 44 (3)

The actual entropy of this password depends on the method that was used
to generate it. If “correcthorsebatterystaple” is the result of 25 randomly
chosen lowercase characters than its entropy would be 118. If instead it was
created by using 4 random words from the 2000 most common words than
the entropy would be 44. However, since we should predict the strength of a
password from the perspective of an attacker, the entropy cannot be higher
than the lowest rating we can find to calculate it.

Another problem emerges when taking into account passwords that were
chosen by humans. These passwords cannot be seen as truly random, because
every person will include some level of self revelation. In theory it is still
possible to use the entropy equation to calculate its strength. In practice
it is almost impossible to choose N and L in a way that accounts for the
subjectivity of the person.

One approach to this gap between the entropy of a random password and
the realistic strength is used by a software called zxcvbn [14]. It tries to
account for patterns and predictable information users might include in their
passwords. For example "password" has an entropy of 38 calculated on a
character basis and an entropy of 9 when analysed as a word. However zxcvbn
rates its entropy as 0, because its known as the most common password in
the world.



4 Brute-Force

Systematically enumerating over all possible inputs and testing each as a
solution is called a brute-force search. Cracking a password by guessing
inputs is tedious work for a human being. If one could do it at a rate of
1 password per second, it would still take 10 days for trying all possible
combinations of just 3 characters. Any computer available today can do the
same in under a second.

A security company called Sagitta is currently selling a computer for $22.499
that ships with 8 NVidia GTX 1080 included. This machine is called Brutalis
and is benchmarked to run at 200 billion MD5 Hashes per second [10]. The
time it takes such a machine to attack different lengths of passwords can be
summarised as follows.

Length of Password Entropy Runtime

6 39 4 seconds
7 46 6 minutes
8 53 9 hours
9 59 36 days
10 66 9 years

Table 3: Sagitta Brutalis (NVidia GTX 1080) cracking all character combi-
nation on MDb5 hashes with hashcat v3.00

A strong 8 character password consisting of any of the 95 printable ASCII
characters will be cracked within 9 hours of using such a machine. Using
more complex Hashtypes than MD5 changes these numbers drastically.

Hashtype Runtime
MD5 9 hours
SHA1 30 hours
SHA256 4 days
1Password 9 years
Keypass 1.000 years

VeraCrypt (HMAC-SHA512)  40.000 years

Table 4: Sagitta Brutalis (NVidia GTX1080) calculating all 8 character
combinations with hashcat v3.00

A password protecting a VeraCrypt (HMAC-SHA512) Container can have 25
bits lower entropy than a password hashed with MD5 to offer a comparable
level of security, because the hashing algorithm is that much slower.



5 Patterns

Identifying password patterns helps hackers to make their attacks more
effective. The two most common ones are topologies and keyboard patterns.
Other popular patterns are dates, repeats, sequences and 133t speak [14].

5.1 Topologies

The topology of a password describes the overall structure of character types
that are being used at specific positions. If a pure brute-force attack seems
unlikely to be successful, the attacker might only test for passwords that
follow a specific set of rules. Characters are most often grouped in one of
four categories.

e u: uppercase letter (26)
e 1: lowercase letter (26)
e d: numeric digits (10)
e s: special character (33)

The password "SecretO1!" uses all four of these categories resulting in an
entropy of 59 based on characters. Its topology is "ullllldds" describing the
overall structure of its character set. If this topology is known or assumed
by an attacker the entropy drops to 40 resulting in roughly 500,000 times
less possible passwords.

Since this is the result of just 1 common password pattern, let’s have a look
at a distribution amongst real user data.

Topology  Frequency

11111111 9%
111111 8%
dddddd 6%
1111111 6%
dddddddd 4%
1111dd 3%

Table 5: Frequency of the top password topologies in the top 1 million worst
passwords [11]

The top 11 topologies make up 50% of all passwords. Since this is a collection
of the 1 million worst passwords, here’s a different dataset containing 14.3
million passwords.



Topology Frequency
1111111 4%
111111 4%
111111 4%
111111111 3%
ddddddd 3%
dddddddddd 3%

Table 6: Frequency of the top password topologies in the RockYou password
list [12]

The frequency of the top three most common topologies has dropped by
50%, but the overall order appears to be similar. In fact, 16 out of the top
20 patterns of each are completely the same. 18 out of 20 can be found by
using only lowercase letters and numbers. The top 22 topologies make up
50% of all passwords.

One approach to increase security is telling users to include lowercase letters,
uppercase letters and numbers in their passwords. Another dataset gives an
insight of this theory.

Topology Frequency
ullllldd 13%
ulllllldd 13%
ullldddd  11%
ullllllldd 7%
ulllldddd 5%

Table 7: Frequency of the most common password topologies in anonymous
corporate data by KoreLogic [13]

These top 5 topologies result in 50% of all user passwords. While the average
entropy of each password increased, users got less creative with their choice of
topologies. The patterns that describe the top 50% have a combined entropy
of 45 in comparison to an entropy of 57 it would take to crack half of the
RockYou passwords.



5.2 Keyboard Patterns

Keyboard patterns describe easily repeatable "walks" from one key to the
next on a keyboard. The 29th most common password "lqaz2wsx" [11] seems
much too random to be even in the Top 100. But when it’s typed using a
standard QWERTY-Keyboard the pattern becomes obvious.

Keyboard patterns are frequently used throughout the most common pass-
words. However, in reality they don’t pose a big thread [16]. Tools like zxcvbn,
which itself was named after a keyboard pattern, can easily recognise these
weak passwords and stop people from using them.



6 Password Lists

Lists of passwords are mainly used for two different purposes. They can
be analysed for length, patterns or other criteria, like we have done in the
previous chapter. The second purpose is inputting them into cracking tools
to run a brute-force attack exclusively on the included words. This is called
a dictionary attack.

Password lists can consist of leaked passwords, common names, actual dic-
tionaries or a mixture of the three. Popular lists among hackers are:

RockYou-List

10 Million Passwords by Mark Burnett

Leaked user passwords

English dictionary

Facebook first names

Most of them don’t exceed 100 million passwords and can often be tested
within a few seconds. That’s why many attackers combine these entries to
chains of passwords also called passphrases.

The entire english dictionary includes roughly 170,000 different words [18].
If we base a brute-force attack on this dictionary, every combination of two
random words has an entropy of 35. Increasing the chain to three words
results in 52 and four words represent an entropy of 70. Many times how-
ever users choose passphrases based on commonly used words. A six word
passphrase built around the 100 most common words has an entropy of 40.

10



7 Personalisation

Personal information make it into the passwords of many users. 136 out of
the 250 most common passwords include names, cities, sport teams, brands
or activities [11]. Without knowing the people these passwords belong to, it
is still safe to assume that these words have some kind of meaning to these
users.

In the time of social networks and sharing all kinds of media online, it is often
quite easy to collect information people might use to create their passwords. A
person of interest who is an intensive Facebook user, gives potential attackers
easy access to information about relatives, friends, birthdays, work, nicknames
or interests. With a little more effort it is possible to create a web crawler
that analyses posts and comments of that person and detects commonly used
words.

CUPP is an open source command line tool written in Python [17]. It allows
attackers to enter different kinds of information about a person like names,
dates, pets or family members. Afterwards it will generate a personalised
password list based on these information. CUPP has many options to tweak
the result. For example there’s "1337 Mode" that will switch certain letters
like "E" for numbers that look similar like "3".

Personalised password attacks sit on the other side of the spectrum when com-
paring them to high volume database attacks. They increase they likeliness
of cracking a single users password at the cost of time spent on information
gathering.

11



8 Summary

Security experts and hackers have spent a lot of time investigating how
average people create their passwords. They are one step ahead of those who
have only little knowledge of information theory and statistics. Passwords
that seem strong and random to an user can often be easily cracked with
todays computer hardware.

The entropy is good indicator for the strength of a password, given that it
was randomly generated. Humans however are not very good at making truly
random decisions. Their passwords are often influenced by the world around
them. This is where the entropy gets inaccurate. Tools like zxcvbn fill the
gap of making realistic security assumptions about personalised passwords.

From the perspective of an user one should try to use random password
generators from trustworthy sources and have a different password for each
use case. In combination with password managers that keep track of accounts,
one can stay assumably safe without complicating their lives. For passwords
that the user makes up on their own, it is best to validate the password
strength by a tool like zxcvbn. There are a lot of other password validators
that do not understand the difference between the entropy and the realistic
strength of a personalised password.

From the perspective of a security officer new problems can evolve when
forcing people to use a specific set of character types. Instead of judging a
password based on its character complexity, its much more useful to rate the
strength of the password as a whole. Other password related measures can
be made outside the actual choice of the passwords. Stretching and Salting
secure against the usage of hash tables and decrease possible attack rates.

From the perspective of an hacker one should differentiate between attacking
a large set of passwords and attacking a single user. Even large password lists
can be processed rather quickly with computers available today. Afterwards
the attack can be expanded to pure brute-force and dictionary attacks until
the effort stops being feasible. These attacks can be made more efficient by
using common topologies and patterns. Attacking a single user puts a lot
more work into the gathering of information than the execution of the attack
itself.

In the end a password needs to be more secure than the value of information
it is protecting, so that even the most skilled hacker has no feasible reason
to continue the attack.
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