
FH Wedel

Seminar IT Security

Return Oriented Programming
Author:
Julian Wefers

Supervisor:
Prof. Dr. Gerd Beuster

WS 2012/2013

Contents

1 Introduction 2
1.1 Origins: Code injection . 2
1.2 Function calls on ASM level . 3

2 Architectural characteristics 3
2.1 Memory alignment . 3
2.2 Von Neumann Architecture . 4
2.3 Harvard Architecture . 4

3 Concepts of ROP 5
3.1 Idea . 5
3.2 From traditional programming to ROP 5
3.3 Search for Gadgets . 7

4 Attack vectors 8
4.1 Buffer Overflows . 9

5 ROP compiler 10

6 Counter Measures 10
6.1 Address Space Layout Randomization 10
6.2 Return-less kernel . 11
6.3 Runtime-based detection methods 12

7 Existing Applications of ROP and further development 12
7.1 Manipulating a voting machine 13
7.2 Adobe PDF Sandbox Exploit 13
7.3 ROP without returns . 14

8 Conclusion 15

1

1 Introduction

In this work, the basic principles and applications of Return Oriented Pro-
gramming as described by Ryan Roemer, Erik Buchanan, Hovav Shacham and
Stefan Savage will be presented, the historic origins and architecture specific
details as well as counter measured will be covered.

1.1 Origins: Code injection

The history of software attacking techniques is long and diverse. Closely related
to our topic of Return Oriented Programming are methods of code injection.
The idea of code injection is to use buffer overflows (see section 4.1) or similar
attack vectors in existing software to insert fragments of machine specific code
into the ram of a target computer system and then force the computer to execute
this code.

On most computer architectures used today, this is possible because the
computer does not distinguish between code and data. Both are series of bits
and bytes and it is due to the interpretation of the CPU, that these series are
treated as data or executable code. However, vendors of computer hardware
spent a lot of effort into closing this point of attack. The most important
counter measure is called W⊕X (W xor X), where the areas in the memory are
marked with a flag stating whether this area contains contains executable or
writable data. An area can never be both. Writable memory segments contain
data while executable segments contain program code. To load new code into
the memory, the operating system will write the code into a writable memory
area and then mark this area as executable, preventing any further writes to this
area. Therefore, the operating system remains the only instance to load new
code. An attempt to inject code through a software vulnerability would only
affect memory areas which are marked as writable. Several names from several
vendors exist for this technique, these are DEP (Data execution prevention) on
Windows, NX (No eXecute) from Intel, XD (eXecution Disabled) from AMD.

To circumvent this memory protection is the aim of return oriented program-
ming. Since new code can not be injected using the traditional way, the idea is
to use and recombine sets or series of existing instructions resulting in new, pre-
viously unintended behavior. For a successful attack of this kind, it is necessary
to gain access to the stack. To understand how this is done, we will cover some
basic concepts about how a modern CPU works on a low level.

2

1.2 Function calls on ASM level

An important aspect are how function calls work inside the CPU. Therefore, we
first need to look at some machine instruction from the x86 instruction set.

The control flow of a CPU is determined by the program counter, a hardware
register which holds a pointer to the currently processed machine instruction.
After each instruction, the memory management unit increments the program
counter to execute the next instruction. Special instructions can now influence
the program counter to transfer control to other instruction sequences. These
are for instance jump, call, loop and various conditional jump instructions. The
call instruction is the interesting one for this topic. On the x86 architecture, each
process has a stack. When a function is called with the call <label> instruction,
the CPU will store the current instruction address on top of the stack and then
load the address of the called function into the program counter. At the end
of each function, a ret statement will store the top value from the stack into
the program counter and thereby transfer the control flow back to the callee.
It is the programmers or the compilers responsibility, that the top value at this
moment is the previously stored address.

2 Architectural characteristics

For understanding the ways in which ROP can work, we need to look at some
characteristics of today’s computer architectures. Three aspects will be cov-
ered here, which are Memory alignment, the Harvard architecture and the Von
Neumann architecture.

2.1 Memory alignment

Modern CISC architectures have a rich set of machine instructions which vary in
length of their opcodes and their parameters. As a consequence, a CISC CPU can
start to interpret a single command at an arbitrary memory position (measured in
whole bytes). A consequence of this is that instructions may not be interpreted
as intended. Take a look at the following opcodes and their representation in
x86 assembler:

f7 c7 07 00 00 00 test $0x00000007, %edi
0f 95 45 c3 setnz -61(%ebp)

This sequence tests a register against a bit pattern and sets a byte on the
stack if the pattern is not fulfilled. Now if we start the interpretation one byte
further, beginning with c7, the meaning of the code changes entirely and is even

3

revealing a ret statement at it’s end:

c7 07 00 00 00 0f movl $0x0f000000, (%edi)
95 xchg %ebp, %eax
45 inc %ebp
c3 ret

This conceptual vulnerability makes it possible to use code sequences and
instructions that were never intended to exist.

Most RISC architectures have an aligned memory architecture, meaning that
all instructions and data have a fixed length or a multiple of a fixed length.
The CPU will throw an error if a load instructions tries to access a non-aligned
address. Therefore, mis-intended instructions do not exist and and attacker can
only use existing and intended code sequences.

2.2 Von Neumann Architecture

Nearly all of todays used computers are based on the Von Neumann architecture.
Its main characteristic is a shared memory model, meaning that data and instruc-
tions lie together in the same main memory and are accessed through the same
interface by the CPU. Whether a data is considered an instruction or ordinary
data is decided by the CPU, depending on its actual instruction. For instance,
one could inject a byte string into the system which can be executed as a valid
instruction sequence. The fact that data can be interpreted as instructions if the
CPU is told to, creates a much larger area for the search for ROP gadgets.

2.3 Harvard Architecture

The Harvard architecture defines, in contrast to the Von Neumann architecture,
physically separated memory areas for data and instructions. As a consequence,
data and instructions can not be used interchangeable, thus preventing successful
code injections. Today, this type of architecture is mostly used in Digital Signal
Processors (DSP) and microcontrollers which fulfill very specialized tasks very
fast. There are also election machines, which follow the Harvard architecture
characteristics.

4

3 Concepts of ROP

3.1 Idea

To attack systems, which prevent effective code injection by W⊕X or by having
physically separated memory areas for data and instructions, we will not try to
inject our own code into the system but instead make use of the existing code
base that lies inside the memory already. However, it is very unlikely, that we will
find a piece of code that does exactly what we intend to do. Instead of searching
for exactly one fitting instruction sequence, we search for fragments of existing
code that we can chain together in new ways to achieve new behavior. These
fragments are called gadgets in return oriented programming. The gadgets must
end in a ret statement, which is basically an unconditional jump to an address
lying on top of the stack. By placing the starting addresses of our gadget on
the stack, each gadget will transfer control flow to the next gadget by loading
it’s successor’s address into the program counter. As a consequence, we have to
inject a sequence of addresses, parameters and immediate values onto the stack
that may be necessary during execution.

(a) Ordinary program layout (b) ROP program layout

3.2 From traditional programming to ROP

A traditional program is made up of instructions, it supports the concepts of
sequences, alternatives and repetitions. We will see that these concepts are
satisfied in ROP and how they are realized.

Sequence On x86, the program counter, called EIP (extended instruction
pointer) is responsible for executing instructions as a sequence, as it holds the
address of the currently executed instruction and will be implicitly incremented

5

after each instruction and can be changed by jump, call or ret instructions. In
ROP, we chain gadgets together by means of ret instructions. The addresses
for our gadget lie on the stack and are pointed to by the stack pointer (%esp,
extended stack pointer). %esp takes the place of the EIP, therefore we need pos-
sibilities to manipulate the stack pointer. The auto increment is realized through
the ret statement, as it increments the stack pointer to point to the next ad-
dress, that we placed on the stack. In this sense, a ROP program consists of a
specific stack layout, containing words that point to ROP instructions (Gadgets)
and other values that are used during execution.

For unconditional jumps, we need to find gadgets that change the %esp in
favorable ways. It is important to understand, that an unconditional branch does
not mean to jump to another instruction series, but rather jump to another stack
area, where we stored another series of gadget addresses and immediate values.
Such a jump may be done, for instance, by using a gadget pop %esp, ret, as is
can take the address of our next stack segment and store it in the stack pointer.
The ret will now take it’s next gadget address from the new stack segment. As
we can see, the concept of sequence is satisfied by using the %esp to sequentially
execute gadgets.

Alternative Alternatives are realized as Conditional Jumps in machine code.
They are a very difficult to realize in ROP since it is very unlikely to find sequences
that change the %esp conditionally (as our %esp is basically our new %eip).
So, we are forced to synthesize our conditional branches out of the existing
instructions. In x86, a cmp statement would set a flag in the flag pseudo register
(called %eflags). Often, the cmp instruction is not necessary, because many
arithmetic instructions set flags as side effects. Conditional jump instructions
will then jump according to the condition of a certain flag. However, these
jump instructions work on the %eip register and are thus useless for ROP. To
conditionally manipulate the %esp, we will load the flag of interest from the
%eflags register into a general purpose register. Since we can now deal with a
general purpose register, we can for instance conditionally set a relative distance
and then add this value to the %esp. Another, not always possible strategy would
be to find gadgets, that encapsulate our desired branch behaviour in ordinary
fashion. For this, we write the values on which our branch decision relies into
general purpose registers and then execute gadgets, which compare these values
and perform some sort of branching.

Repetition Repetitions can be expressed as conditional jumps to an earlier
point in the code (earlier in the sense of execution time, not in memory position).
In a repetition, we want to repeat certain sequences of core more than once.

6

However, since we want to use a gadget sequence more than once, we must
make sure that the stack stays intact, even when we consume a gadget address
from the stack.

Immediate Values In ordinary programming, immediate values like constants
are often stored in a central place or may even be hard coded into the program.
As it is very unlikely to find gadgets that contain the exact desired values we will
use a different approach to deal with immediate values. As previously mentioned,
our prepared stack may not only contain gadget addresses but also immediate
values. These immediate values can be accessed through operations like pop,
that loads a value from the stack into a register of choice.

traditional ROP
mov 0x123 %eax; pop %eax;

As you can see, instead of just loading a value into a register, we take a value
from the stack, which we placed there before.

Variables This can be done just as in ordinary programming. Variables can be
stored for example on the heap and can be made accessible by references in our
crafted stack or by using existing variable locations in the code base we are using.
If we want to use these pre-existing locations, it may be necessary to make use
of load/store gadgets, to prepare these locations before accessing them.

3.3 Search for Gadgets

A ROP program consists of a series of these previously introduced gadgets. Since
we have to rely on the existing code base on the target system, we have to search
for these gadgets. We know, that each gadget must end in a ret instruction (on
x86) and we can search with a granularity of one byte, leveraging unintended
instructions as well. In any given library like libc plenty of these sequences can
be found. To ensure correct execution of a gadget, the following condition must
be fulfilled: The %esp must point to the gadget and the CPU must execute a
ret statement. The ret will instruct the CPU to transfer the control flow to the
address pointed to by the %esp. The gadget is then executed.

Since it is necessary to know the target system, one can build a library of ex-
isting code containing information about all possibly useful instruction sequences.
This search must contain all immutable memory areas of the system, which are
most often system libraries which will always be found at certain memory areas.
The search can be done by seeking the memory for return instructions and then

7

backtrack to index all possible instruction sequences. This is a possible data
structure for such a catalog:

data Codebase = Node Addres s [(I n s t r u c t i o n , Codebase)]

The structure describes an n-ary tree, where the root is always a ret state-
ment. Each node contains the address of the beginning of an instruction se-
quence and a list of existing prefixes for this instruction series, each pointing
to the starting address of this prefix. While we will almost definitely find more
than one address for certain instruction sequences, it is sufficient to store only
one of them. When building up the index, we have to backtrack from all found
instructions in each step to accurately fill it, but only store one address for each
possible sequence. It also means, that the addresses, following from a leaf to
the root, do not necessarily represent a connected instruction sequence. When
looking for a specific code sequence, one would start at the root and descend in
the tree, following the intended instruction series backwards. If only a part of the
desired code can be found, save the address from the last node in the tree and
start from the beginning. This means, that we split out code into two or more
gadgets. For each gadget, we will later save its address at our prepared stack.

For an architecture without memory alignment, we have to slightly alter our
indexing, since we can take unintended instructions into account. So, beginning
at a ret instruction, we have to go backward bytewise and check for each byte or
byte sequence, whether it is a valid instruction. This leads to the consequence,
that we can have more than one path through the tree following the same byte
pattern in the code base, but it rewards us with more possible code sequences.

In some cases, we will be forced to express a simple operation, that we can not
find in out library in an obvious matter, through other, possibly more operations.
When writing a ROP program, or compiling to a ROP program, one must be
able to identify other constructs. For instance, if we want a value in register
%eax, but can not find a gadget pop %eax; ret (for the sake of the example),
we could instead use an instruction series like pop %ebx; mov %ebx, %eax; ret
to achieve the same result, provided we don’t need a value in %ebx at that time.

4 Attack vectors

To start a ROP program, it is necessary to disturb a running program to start
the execution of our ROP program instead. Several possibilities exist.

8

4.1 Buffer Overflows

A common attack vector for all sorts of exploitations are buffer overflows. This
is a situation, when a write operation writes beyond the intended bound of a
memory area. For instance, every array has a given size. In low-level languages,
boundary checks are in the responsibility of the programmer. When we start to
fill up the array with values, but do not check if we are still within bounds, we
can write beyond the array’s allocated memory. This is called a buffer overflow.
In the example below, the buffer is an array, which we overflow by writing past
its bounds. Below, such a case is demonstrated by reading characters from stdin
and writing them into a buffer of size 6. However, the scanf function may read
an arbitrary large number of bytes and will store them starting at the beginning
of the buffer. Enter more than 5 characters (because a string needs a termination
byte) and scanf will write past the upper boundary of buffer and into the stack
on which the array lies.

i n t main (i n t argc , char ∗ a r g s [])
{

char b u f f e r [6] ; /∗ 5 cha r s + \0 byte ∗/
s c a n f ("%s " , b u f f e r) ;
return 0 ;

}

After finding such a vulnerability, an attacker might use this to craft a string,
which holds 6 arbitrary characters and then continues with machine code patterns
for a target architecture. The effect would be that past the upper boundary of
the buffer lies data which can be interpreted and executed as correct machine
code.

Buffer overflows commonly exist in software written in language that offer a
low level of abstraction. While these allow for greater speed of written software,
it is the programmer’s responsibility to ensure correct handling of input data.
This often leads to flawed programs and makes buffer overflows a commonly
used vulnerability to attack software of all kinds.

When attempting to inject a fake ROP stack through a buffer overflow, the
goal is to find and exploit a buffer overflow to write our rop payload onto the
overflown stack, containing the address of the first gadget on top of the stack,
so that when the function, where the buffer overflow exists tries to return, the
first gadget of our rop program is executed instead. Note, that a function may
have several more local variables that lie beneath the buffer that we overflow. In
this case, we have to prefix our payload with the exact amount of dummy values
to place our first gadget address in the right position for the ret statement of
the attacked program.

9

5 ROP compiler

By now, it should be clear that crafting a non-trivial ROP program by hand is
not very favorable. But since we showed how to create and populate an index
of existing code structures, we can actually automate the creation of a ROP
program and write our code in familiar high level languages like c. A compiler
consists of Phases which are lexing, parsing, generating code, and possibly a
dedicated optimization phase. Parsing and lexing can be done just as usual, the
interesting part is the code generation, as it can not simply construct instructions
but has to map the desired result to existing instruction sequences.

Instruction sequence index Abstract syntax tree

code generator

fake stack payload

The output of the code generation phase is not an executable binary, but a
fake stack payload that can be injected onto the actual stack using exploit tech-
niques. Since the stack must reference existing code sequences, the construction
of gadgets is the main task for a code generator.

With the data structure for indexing instruction sequences given, the next
step is to search for sequences within that structure, that resemble our commands
written in the high level language. If an exact sequence can not be found, the
compiler must attempt to transform the problem equivalently to find a gadget
sequence, that produces the same result while avoiding unwanted side effects.

6 Counter Measures

Some approaches exist to prevent attacks that rely on exploiting an existing code
base. The most important of them are:

6.1 Address Space Layout Randomization

ASLR is a technique that randomizes the positions of key data areas such as
system libraries, stacks and data segments for processes. It is implemented at

10

the OS level and is ideally influencing the OS startup as well, also randomizing
the position of essential code like the kernel and it’s libraries. The randomization
makes it very difficult for an attacker to guess the position of required code
sequences in advance. The security gain of ASLR obviously depends on the size
of the search space and the entropy of unused memory areas. A higher entropy
can be created by filling empty spaces of memory with random bytes, making
it harder for an attacker to properly locate useful code sequences since a grid
search for non-empty areas can not decrease the search space. A higher search
space can easily be achieved by increasing the amount of virtual memory that is
used by the OS.

Today, all major OS vendors have implemented ASLR into their operating
systems on kernel level. However, a recent exploit targeting Adobes PDF Reader,
presented in section 7.2 used a previous stage of malicious embedded code to
circumvent ASLR by constructing the gadgets at runtime.

6.2 Return-less kernel

Return-less kernels are a compiler based approach, targeting to introduce an
indirection to return addresses. In normal control flow, we usually deal with
call - ret pairs. A call will push the return address to the stack and then
transfer the control flow to a given address. The ret statement will load the
address to return to into the program counter and increment the stack pointer.
It essentially performs pop %eip. The indirection to create return-less kernels
consists of having a separate table for all used return addresses, and instead of
using the call instruction to push an immediate address onto the stack, an index
is pushed to the stack, pointing to an address in the table. Likewise, we will not
use a return statement to transfer control flow back to the caller, but instead use
the pushed index to retrieve a concrete address from the table and then jump to
this address.

11

This disables an attacker from choosing his own return address, since the
table can be initialized and populated offline, therefore marking it as read-only,
like all kernel data. However, this approach does not prevent attacks like return-
into-libc, which rely on complete and legitimate functions. This attack can still
be driven by overwriting the table index. But since ROP is a generalization of
previous attacks in the sense of return-into-libc, a Return-less-kernel degeneralizes
and limit the possibilities of exploiting existing code. One notably effect is the
restriction of branching that ROP offers and which makes up for Turing complete
computing.

6.3 Runtime-based detection methods

Several approaches exist to detect (not prevent) the usage of ROP during run-
time, thus giving the user the possibility to pull the plug for further investigation.
Two of them are introduced here:

Detecting frequent returns One approach called Dynamic Integrity Mea-
surement and Attestation (DynIMA) proposes the use of runtime checks for
several situations: The first is to mark untrusted data and terminate a process
execution if that data is misused, e.g. as a pointer. Second, the instruction count
between two ret execution is measured and an alert is raised if that count goes
higher than 5. This relies on the observation, that most rop gadgets contain only
2–5 instructions before calling the next ret. [5]

Stack shadow copy This approach tries to keep a shadow copy of the stack
somewhere in the memory and runs comparisons from time to time against the
real stack. However, it is difficult to maintain a synced stack and thus an al-
gorithm making the comparison needs a trigger implementation to detect, when
the stack differences are big enough to raise an alarm (possibly due to a change
of the stack pointer to an entirely different memory section).

7 Existing Applications of ROP and further
development

Although ROP is a very young technique, first presented in 2007, ROP has found
a number of noticeable application in real-world attacks and as implementations
in common exploit kits. Some examples will be presented here. In addition,
current research activities will be briefly introduced.

12

7.1 Manipulating a voting machine

In this research case, which was not a serious real-world attack, a group of
students, mostly from UC San Diego demonstrated a successful manipulation
of a Sequoia AVC Advantage voting machine [6]. This machine delivers some
serious security features: The complete software is stored in a read-only memory
and the Z80 processor strictly refuses to execute code that was fetched from
the RAM by means of hardware. This makes the Sequoia AVC, which design
originates in the late 80’s a Harvard architecture. As external input, a memory
cartridge is used.

The team reverse-engineered the machine and developed a simulator to de-
velop and test their exploit, using the real hardware only at the end to validate
their results. An interesting point is, that the Z80 processor has a very dense
and variable-length instruction set, resulting in absolutely no invalid instructions.
As a result, the exploit could make use of a lot of unintended instructions.

A stack buffer overflow was found in the cartridge processing, allowing the
team to craft a physically manipulated cartridge for which the flawed procedure
can be activated. The procedure loads several files, one of which is fixed-size,
but has several dozen unused bytes in it. At the first stage, the stack pointer is
modified to induce a rop jump to a memory section under control by the attacker,
namely the position of where the file lies in the memory. The attacker uses the
unused bytes to include the necessary gadgets to the attack. In a second step,
another file from the cartridge, containing the biggest part of the gadgets is then
loaded into the memory and the stack pointer will again be redirected to that
file, giving the attacker full control by the means of the injected gadgets.

After the control flow is taken, the machine can be forced to swap and steal
votes.

As the team had full access to the target system, this attack might not seem
to be relevant for the real world, but in countries, where the current government
has an interest to manipulate election outcomes, attackers may easily get full
access to actually used voting machines, thus making this case an important
study about the security of current systems.

7.2 Adobe PDF Sandbox Exploit

This exploit, as described in an article from Xiao Chen (McAfee) from February
2013 [7], is a fully functional zero-day exploit targeting Adobe’s PDF Reader and
uses techniques such as a complete ROP payload and highly JavaScript code
to escape the Readers Sandbox. It comes as a prepared PDF file, which has
embedded some obfuscated Javascript code to manipulate Adobes XML Forms
Architecture (XFA), an encoded XFA object and two binary streams which are

13

believed to be two encrypted DLL’s. The attack consists according to Chen of
two steps. The first one uses Javascript code to determine an address to one
of the readers base modules, to determine the version of the readers version,
amongst other things. At this stage, the Javascript code will construct the rop
payload based on the leaked information. Since the ROP payload is constructed
at runtime, the exploit can actually circumvent ASLR, as the target addresses
are retrieved after the target has been initialized. The two ROP parts used in
this exploit are used to decrypt the embedded DLL files and drop them to the
file system. Malware scanner fail to detect this, because all used code addresses
lie inside of Adobes Reader, which is a legitimately running process. Note, that
the attacker performed a decryption of files using only ROP code, showing the
possibilities of ROP.

7.3 ROP without returns

It this latest work from a team around Schacham, they introduce a new approach
to ROP [4], omitting actual ret statements and instead rely on constructs, that
achieve the same effect as a ret statement. Such a construct on x86 can be for
instance pop x; jmp *x where we load an address from the stack into a general
purpose register and then jump to this address. The most convenient statement
would be pop %eip which has practically the same effect as a ret statement.
Observations have shown, that these sequences do not show up with enough
frequency to find a turing complete set of gdgets that end in these sequences.
So instead of searching for gadgets that end in such sequences, it is sufficient to
find one of these constructs and reuse it. Therefore, our reusable ret replacement
will be called a trampoline as we use it just to transfer the control flow to the
next gadget. The reuse is achieved by searching for instruction sequences that
end in a so-called indirect jump to such a location, e.g. jump x where x is a
general purpose register. The difference to the trampoline is, that we will not
attempt to jump to an address from the stack (which would be our gadget list)
but instead store the well-known address of our trampoline in a general purpose
register through other means. Sequences ending in indirect jumps appear with
a sufficient frequency to use them to construct a Turing complete gadget set.
To enhance the concept, it is possible and depending on the target code base
reasonable to introduce more than one layer of indirecten, e.g. when the address
of the trampoline can not be constructed into a general purpose register but only
another sequence, itself resembling an indirect jump to the trampoline. This new
concepts renders the use of return-less kernels obsolete, when properly used and
therefore shows, that no security concept can be final.

14

8 Conclusion

We have seen that Return oriented Programming is a decent and powerful, yet
complex exploiting technique, which can be seen as a legitimate successor to
code injection and return-into-libc attacks. One of it’s main advantages is, that it
delivers the possibility of arbitrary, turing complete computations without having
to construct a multi-staged exploit with adventurous. This flexibility did not
came overnight but was the result of years of ongoing research and evolving attack
methods. Firstly presented in 2007, ROP has already found it’s way into the hand
of malicious code writers that injected rop-based code into zero-day-exploits of
avoid detection from malware scanners and similar approaches. However, counter
measures exist and are actively being developed but new research always invents
new ways of circumvent these counter measures, showing again that IT security
will always be an arms race.

The development of a functional rop attack requires however, fundamental
knowledge about computer architectures at a low level and is very expensive.
But with the upcoming of ROP exploit kits and compiler, even medium talented
cracker are now able to construct functional ROP exploits, making this technique
a serious threat for computer systems of all kinds.

References

[1] Return-Oriented Programming: Systems, Languages, and Ap-
plications; Ryan Roemer, Erik Buchanan, Hovav Shacham,
Stefan Savage; ACM Trans. Info. & System Security;
http://cseweb.ucsd.edu/∼hovav/dist/rop.pdf

[2] Defeating Return-Oriented Rootkits With "Return-less" Kernels; Jinku Li,
Zhi Wang, Xuxian Jiang, Mike Grace, Sina Bahram; Proceedings of the
5th European conference on Computer systems, Pages 195-208;

[3] On the Effectiveness of Address-Space Randomization; Hovav
Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, Dan Boneh; Proceedings of the 11th ACM confer-
ence on Computer and communications security, Pages 298-307;
http://www.cs.columbia.edu/∼locasto/projects/candidacy/papers/shacham2004ccs.pdf

[4] Return-Oriented Programming without Returns; Stephen Check-
oway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, Marcel Winandy; Proceedings of CCS 2010;
http://cseweb.ucsd.edu/∼hovav/dist/noret-ccs.pdf

15

[5] Dynamic integrity measurement and attestation: Towards defense against
return-oriented programming attacks; L. Davi, A.-R. Sadeghi, and M.
Winandy; Proceedings of the 2009 ACM workshop on Scalable trusted
computing; 2009, pages 49–54. ACM Press, Nov. 2009.

[6] Can DREs Provide Long-Lasting Security? – The Case of Return-
Oriented Programming and the AVC Advantage; Stephen Check-
oway, Ariel J. Feldman, Brian Kantor, J. Alex Halderman, Edward
W. Felten, Hovav Shacham; Proceedings of EVT/WOTE 2009;
http://static.usenix.org/event/evtwote09/tech/full_papers/checkoway.pdf

[7] Analyzing the First ROP-Only, Sandbox-Escaping PDF Exploit; Xiao
Chen; http://blogs.mcafee.com/mcafee-labs/analyzing-the-first-rop-only-
sandbox-escaping-pdf-exploit

16

