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This article was created during a seminar on IT security in the FH Wedel, considering
di�erent aspects of IT security. This particular article describes the security in industrial
IT systems, possible vulnerabilities and the attack vectors for such systems.

Starting with a brief overview of the development and the change of importance of
security within industrial IT-systems, this article will provide a critical viewing of various
statistics for acquisition of incidents in industrial IT-systems.
A discussion of the most common structures of industrial IT-systems and their most

important components with their speci�c requirements allows a more detailed view of
possible attack vectors on those systems, leading to a �nal example of an attack on an
industrial IT system: A analysis of the STUXNET worm.



Part I.

IT-security of industrial systems
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1. Introduction

With growing a�uence the wages raised and in most branches of industry many steps
were mechinized. Starting with single steps to be executed by simple machines controlled
and observed by humans, the industrial processes became more and more automated
by using sensors, relays, cam timers, drum sequencers and some dedicated closed-loop
controllers.
By combining some tasks and creating possibilities for connection and communication

of the controlling units for these small steps, the �rst industrial control networks were
built. These systems were very speci�c and relied on proprietary hardware and without
any common standard. The logic relies on the right wire-connection of the relays and the
other components. Changing the logic requires a physical change of the wire connection,
which requires a lot of time to maintenance.
To keep the system maintainable and �exible enough to perform small adjustments

without requiring electricians to rewire all components, the logic was more and more
implemented in software, running on digital computers, which were connected to the
sensors and actuators. The �rst controlling computers were general purpose computer
systems requiring protecting the computers' hardware from the plant �oor conditions.
But it was not practical to provide a room with conditions required by the controlling
hardware and connection all sensors and actuators to the hardware within it. Therefore
a new type of computers was created: The industrial purpose computer.
Industrial purpose computers were very robust against a greater range of temperature,

variations in power supply and vibrations or other mechanical movements. For an easy
connection of all the other industrial components they provide an easy bit-based in-
and output. The �rst controllers replaced the relay logic, so they were designed to be
programmed in a ladder-logic, which resembles a schematic diagram of the old replaced
relay logic. Later they changed to be programmed with instruction lists executed on a
stacked based machine.
Despite the di�erent ways of programming, controllers were replacing the classic in-

dustrial IT structure of hardware implementing processing logic more and more, so the
industrial logic was transferred into a software representation.

Nowadays all developed countries rely on a highly optimized industry. The IT-system,
managing and controlling these complex industrial processes, have to be protected from
attacks and failure, because a damage of the IT-system would stop the whole process
and possibly even create a danger to workers within the industrial facilities. An attack
on critical facilities of the infrastructure (power plants, gas stations etc.) could stop
economy in some parts and cause a loss of billions of dollars.
The last years, industrial IT-systems became bigger, more complex and they control
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more parts of the industrial processes. The security of those systems was not considered
in detail for long times. They seem to be secure just by having a proprietary system, so
it would require a lot of internal knowledge to attack such a system. But being a very
crucial target, professional attackers may invest in such a knowledge just to damage a
single facility by hacking into their IT-system.
When the slammer worm infected a nuclear power plant in 2003, even the last expert

of IT-security was convinced, that industrial facilities became networked with common
business application networks, that attacks on them became more and more likely, even
without physical access to the system and without detailed knowledge on every system
component.

In conclusion the security of industrial IT-systems is more important than ever before
and after years of ignoring the danger of attacks, the current security measure concepts
developed for other types of IT-systems (like application-server-systems, personal com-
puters, etc.) have to be inspected for making the industrial IT-systems more secure and
safe too.
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2. Incidents in industrial IT-systems

To �nd the weak points in a any security system, it is very important to analyze all
attacks and other security relevant incidents of industrial IT systems. It is also important
in order to prevent some incidents to evaluate reports and analyse incidents in other
industrial facilities using similar IT-systems and -structures.
To provide the required information for such an analysis, there were some attempts

to create a international database for statistical analysis of incidents with industrial
IT-systems and industrial systems in general.

2.1. The Industrial Security Incident Database

In 2001 Eric Byres, Justin Lowe and David Leversage from British Columbia Institute
of Technologies (BCIT) developed the Industrial Security Incident Database (ISID) for
tracking incidents in industrial control systems. In their academic research project they
tried to analyze trends and patterns of such incidents. After about �ve years of collecting
and analyzing incidents the BCIT and the database developers discontinued the project.

2.1.1. Database structure

The database de�nes a simple structure for tracking and provides a simple tool for in-
cident registration. In addition to a descriptive name, the date, the company branch, a
brief description of the incident and the impact on the company, more speci�c informa-
tion of the incident is reported by categorize the type of incident (e.g. accident, virus,
etc.), the entry point into the system (e.g. internet, network, control panel etc.), the
type of hardware and software which was impacted and as far as known also information
on the perpetrators and their motivation.
Additional information on measures to prevent the reoccurring of the incident can

also be registered within the database, which might be one of the most important but
sensitive information within a record. On the one hand information on countermeasures
may help to enhance the security level of other industrial facilities and their IT systems,
but they may also provide additional information for attackers to get access to the
described system.
To ensure the quality of the records within this database all incidents contains ref-

erences to con�rm the information and can be rated according to their reliability on a
scale from one (con�rmed) to four (hoax or urban legend).
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2.1.2. Type and extend of data generation

The data was collected by the researchers from public known incidents and by private
reporting from member companies. In exchange for reporting their incidents, the mem-
ber companies got read access to the database to use the recorded information on other
company incidents to close possible vulnerabilities before causing a new incident.

By 2004 41 incidents were logged in the ISID with eleven of them still pending on
detailed investigation. Seven incidents were �agged as urban legend and removed from
study data. In his report �The Myths and Facts behind Cyber Security Risks for Indus-
trial Control Systems� [Byres and Lowe, 2004] Byres analyzes the 34 remaining plausible
incidents:
Regarding the amount of incidents per year (�gure 2.1) a massive increase of reported

incidents since 2001 is detectable. Byres concludes the raise must be based partially on
the general raise of maleware in the internet. But most of the raise is based on the
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Figure 2.1.: Amount of incidents per year (1995-2003) according to the ISID

start ISID itself and the growing group of member companies reporting their incidents
to the database. Older entries in the database are all public known and investigated
incidents. Smaller incidents often caused no public stir, so getting knowledge that there
was an incident or even detailed information on this incident is not very likely.

One of the problems of the ISID was the small set of incidents reported to them,
regarding the estimated number of unknown cases which is about ten times higher ac-
cording to Byres ([Byres and Lowe, 2004]) . It is possible, that companies fear a damage
of their reputation reporting incidents to a database, where every other member company
can see the incidents.
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2.2. Repository of Industrial Security Incidents

Two years after closing the ISID research project Eric Byres started a collaboration
with Mark Fabro on the Repository of Industrial Security Incidents (RISI) with a goal
of making RISI available to the entire industrial automation community.
In this repository detailed information on security incidents in industrial systems are

collected and analyzed. Even supporting or member companies do not have direct access
to the information stored in there. Based on statistical analysis the information will be
processed for multiple reports handling types of systems or speci�c incidentlat types.
In July 2009 �nally the Security Incidents OrganizationTM was founded to operate the

RISI. This non-pro�t corporation was established to be a self-sustaining organisation
focused on performing research in the public interest and making the results of that
research available to the public on a nondiscriminatory basis.

2.2.1. Interaction of RISI and companies

Compared with the ISID, RISI also depends on companies and their submit of incident
records, but the raw incident information is not public to the group of participating
companies. Only the group of senior technical advisors has access to this information
for creating their analysis and reports.
Another possibility for companies to participate in the project is becoming a advisory

panel member, which has to provide guidance of the Security Incidents OrganizationTM

regarding their policies, products and services. They do a kind of community work
recruiting new member companies and updating press releases. Nevertheless advisory
panel member do not have any access on incident records nor on reports, which have
not been published.

In conclusion the RISI project is a development of the ISID provided by a self-
sustaining organisation. It is more likely companies will send them information on
incidents due to the closed incident database. The reports, which can be bought there,
provide many information on current incident situation in industrial systems, which
provides important know-how for the security of control systems.
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3. Logic controllers

A logic controller is one of the most important components in every industrial IT-system.
It is optimized for the general requirements of controlling industrial facilities based on
sensor information.
The task of a controller is to control some actuators based on information given

by sensors and the application logic implemented in the software on the controller.
Therefore an in�nitive loop is executed on it, in which the application is reading sensor
information, calculating the actions to perform based upon the input and setting the
required output values for the actuators.

3.1. Requirements for controlling industrial processes

The most important requirement for controlling any industrial process is the safeness of
the controlling process. The controller has to react in a deterministic way on every input.
This includes also bringing the system into a safe state on invalid input, which requires a
stable controller system, which will not freeze or crash. With a valid input, the controller
must run in a standalone manner without any failure for long times (month/years). Many
desktop operation systems are not capable of running such a long time without becoming
slow or unstable by littering the memory over time.
Another crucial requirement is the ability to provide hard realtime execution of the

controlling logic. This requirement assures, the controller will determinate the right
reaction on some given input information from the sensors, in an exactly de�ned time
frame. To full�ll this requirement a special �rmware and operation system is required
on the controller. Most desktop operation systems cannot provide the realtime ability
for any application based on the system of their scheduler, and their target to make less
limitations on usage than realtime systems. A realtime system will automatically (based
on the kind of scheduling) require some limits for every task running on it and for their
total amount.
These two requirements �t apply to every industrial controller. They have to be

detailed exactly for every new project, where a controller should be used. The time that
is allowed to be required for executing the application must be determined and de�ned
when planning the structure of the system based on the other components.

Another obvious requirement is the amount of input and output connections. They
depend on the task of the controller, too, and on the sensors and actuators types, as for
example a single touch sensor may require less or at least a di�erent connection type
than a sensor for pressure or temperature.
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If the communication of multiple controllers is required, additional connections are
required, as for example an ethernet or �rewire connector. Handling the communication
of di�erent controllers is very di�cult in some cases, caused by the realtime requirement.
To ensure the controller does not have to wait for answers, the protocols should be
handled in a seperate task running on the controller and not interacting with the realtime
application task on it.
Therefore the complexity of a industrial IT-system increases dramatically on connect-

ing multiple controllers and letting them communicate. But nowadays this complexity
is required in multiple parts in the industry for handling the huge amount of actuators
in the sophisticated manufacturing process, regulated by the IT-system.

3.2. General and single purpose controllers

In general there are two kinds of controllers, which are used for di�erent tasks: The
general purpose controller, which is based on hardware modules and where the appli-
cation logic is fully build in software, which runs on an operations system designed for
the hardware module and the single purpose controller, which is a controller, that was
totally developed for one single purpose, including hardware- and software-development.

General purpose controllers for industrial systems are mostly designed in modules:
One base controller module on which the operation system and the application logic
is implemented and executed on. Additional extension packs for all kind of input and
output connections can be added and connected to this base module to provide the
required functionality.
Even if the controller could be build up by combining di�erent modules, there will

always be components within a single module, which are not required for the controller's
task. These components make a general purpose controller more expensive in produc-
tion than an optimized single purpose controller, which only contains all required com-
ponents. On the other hand, the untapped components allow to extend the controller's
functionality without making any modi�cation to the hardware.
Nowadays most general purpose controllers are programmable logic controllers (see

chapter 4. PLC: Programmable logic controller). They can be bought in many variations
from industrial IT suppliers like for example SIEMENS.

Single purpose controllers are more optimized on performing their task than general
purpose controllers. The general concept of implementing the application logic in soft-
ware is still persued here, but some operations may be implemented in hardware directly
to ensure a more performant execution and the �rmware running the application logic
is more optimized for the task providing only the required functions and having less
system overhead in the operation system.
Typically, compared to a general purpose controller providing the same functionality,

single purpose controllers are less expensive in production because they were build only
with the hardware components actually needed to full�ll their application. This bene�t
is paid for by signi�cant higher costs for the development of such controllers.
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Another downside of single purpose controllers is the di�culty of changing the logic
of the controller. Even small changes may not be possible or only be possible with huge
concessions on execution speed due to the limitations of hardware.

Due to the cost structure of the two general kinds of controllers, the single purpose
controller is used where a huge amount of controllers is produced, all computing ex-
actly the same task and where no changes of application logic are expected. The costs
for development are outweighted by the savings in production costs at high numbers.
Examples might be highly optimized controllers of the automative industry which are
built into every new car, where the controllers are expected not to change their general
behaviour for the automobiles lifecycle.
Another reason to choose a single purpose controller instead of a general purpose

one, even if the amount of required controllers is small, is the requirement of very high
speed realtime. Based on the small system footprint and overhead and the possibility to
transfer some of the calculations into hardware, single purpose controllers can guarantee
the requirement of much less time per loop execution.

Most industrial IT-systems are expected to change in time and mostly realtime con-
ditions providing guaranteed times within some 10ms are su�cient. Therefore the most
common type of controller is a general purpose controller. In nearly every branch of
industry racks full of them can be found controlling the actuators within the industrial
facilities.
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4. PLC: Programmable logic

controller

A programmable logic controller is general purpose controller. It is designed extremely
modular providing extension modules for more input and output arrangements and for
communication with other modules.
The instructions to execute are typically stored on a battery-backed-up or non-volatile

memory. Therefore compared to hardware implemented control systems changing some
parts of the controlling �ow has become much easier.

4.1. The operation system

As a consequence of the di�erent requirements for the control software on PLCs com-
pared to regular application computers or servers, there have to be specialised operating
systems for running such software. One of the most signi�cant di�erence is the require-
ment of realtime execution of the custom program instructions, which is not supported
by most common personal computer or server operation system.
In contrast to common option, that realtime execution means a very fast code ex-

ecution, a realtime condition only de�nes a �xed time range in which the code must
be executed, which could be a really long time. But in the industrial context this is
typically the time after which an actuator must react on a speci�c event measured by
sensors.

Figure 4.1 shows a simpli�ed �ow chart of the execution of a common PLC operation
system. After some startup routines the PLC continues to run an in�ntive loop: The
operation loop (see section 4.2. The execution loop).
To ensure the realtime capability of the operation, the custom controller program itself

must also �t the realtime requirements, which is important to mind when developing
these programs. Typically the IDEs for developing PLC programs provide algorithms
to check the requirements the program must ful�ll.

The �rst PLC initialation is only executed once each time the PLC starts the execu-
tion. This routine loads the required libraries for code execution and run some checks
for PLC hardware and software integrity, including a memory checkup. Which libraries
are loaded into the memory depends on the custom PLC program code and the settings
de�ned on transfer of the program on the PLC.
This �rst initialisation may take several seconds which is no problems for the real-

time ability of the PLC, because it only runs once on startup and is not included in
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copy sensor states to input image table

custom controller program

set actuator states by output image table

Figure 4.1.: Simpli�ed execution �ow of operations systems for PLCs

the operation loop. Except by hardware or PLC operation system errors or a manual
PLC shutdown, the PLC execution �ow will never end, which is normally necessary in
industrial context.

4.2. The execution loop

Within the operation system the execution loop is one of the most important parts. The
maximal time required to complete one loop cycle is proportional to the minimal time
a controller can de�ne as time required to react on a change of sensor information. So
the �rst thing to look at for raising the frequency of IO-Interactions is the minimisation
of the control loop and the removal of all not required code within.
Nevertheless there are some additional steps within the execution loop, which may

not handle any task of the industrial progress. They are required for a permanently safe
code execution and guarantee the high demands of reliability of the controller.

4.2.1. IO-Integrity

The simpli�ed model shows the operation loop, which is seperated in three steps (see
�gure 4.1): Copying the sensor states to the input image table, executing the custom
application program and setting the actuators by copying the output image table to the
physical output. With this setup, the physical in- and output are seperated from the
custom application program, which is required to ensure the integrity of input informa-
tion.

As an example, we assume we have a special sensor, which provides a two-bit value, and
we also have a two-bit output. The algorithm (see algorithm 4.2.1) starts by checking if a
very complex function f1 with the �rst (in1) and the second signal (in2) as input returns
true. If this happens the �rst output (out1) will be set to 1 and if another complex
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function f2 with the second parameter as argument returns true, too, the second output
(out2) will also be set to 1.
Obviously the program should only set out2 to 1, if the both functions f1 and f2 return

true with the given parameter.

if f1(getInput(in1), getInput(in2)) then
setOutput(out1, 1) if f2(getInput(in2)) then

setOutput(out2, 1)
else

end

else

end

Algorithm 4.2.1: Example algorithm of custom application program in the PLC

With direct access of the program to the physical in- and output this example code
might create unexpected results: After getting the input values for the �rst function
call, the input may change, so the second function might be based on di�erent sensor
information the the �rst call.
A similar situation exists for the output: The two bits of the output targets the same

actuator and de�nes an encoded command. Setting one bit after the other, which will
typically happen here, as the functions may take some time due to their complexity, will
propably show a wrong command at the output for some short time, causing a wrong
behaviour of the whole system.

So to avoid this problem an input and output bu�er is created, which is synchronized
with the physical in- and output before or after the custom application is executed by
the operating system. The program code can now only access the input and output
image tables and the integrity of the communication states can be garantueed during
program execution.

4.2.2. Runtime checkup

Especially in industrial systems, where the controllers are permanently running with
a typically high utilization, it is likely some parts of the hardware will break down
sometimes. Those malfunctions can create further damage if they are not recognized
immediately, as it may happen on memory errors for example.
The startup integrity check would usually detect such malfunctions and report them

instead of entering the execution loop to prevent further damage, but once entered the
execution loop, the startup integrity check will not be executed anymore until reboot.
To enable the PLC to detect errors during the execution loop, an additional checkup
can be added at the �rst position of the execution loop, as shown in �gure 4.2.
To keep the time for a single execution of the loop as small as possible, not the whole

checkup will be done at once. Each time the new additional checkup will be called, a
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Figure 4.2.: Execution �ow with additional integrity checkup

little part of a de�ned checkup process is full�lled. Therefore the whole checkup will be
done after some execution cycles.

4.3. External communication

Depending on the complexity and structure of the whole IT system in the industrial
facility, and the task for the controllers, it might be necessary for the controllers to
communicate with each others. This requirement causes some problems considering the
realtime capability of PLCs.

Some communication protocols and methods do not match realtime conditions or
require a speci�c frequence of execution to guarrantee their own realtime execution.
Typically this frequence will not be the same frequence the PLC needs for its main task.
One option to solve this problem of di�erent requirements is to �nd the greatest

common divisor of the required execution time cycle and to run the communication
protocol instructions and the custom application code in the same execution loop. This
solution ful�lls all requirements but will in most cases end in extrem high processing
requirements for the PLC, especially with more then two protocols and di�erent required
execution periods.

Regarding multiple controllers it is getting even more complicated: Assuming two
controllers are running with the same duration per period, it is unlikely the both share
exactly the same tact, so even between those two controllers communication requires
synchronizing mechanisms to provide a safe exchange of information.
To make things more complex, it is very likely for di�erent controllers to work at

di�erent frequences. A controller for an industrial laser for example controls a very
quick reacting system and must therefore work at a high frequence to react very fast
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on changes of conditions, but a controller for the cooling system, which has to cool the
laser among other things and reacts lazy compared to the laser system, can work with
a signi�cant lower frequency.

To solve this problem PLCs became capable of handling multiple tasks in parallel. The
communication is seperated from the application �ow and outsourced in speci�c libraries,
running their communication protocols in di�erent tasks. The libraries provide bu�ers,
which the application can access to use the library for communication.
Each library and the custom application can now be considered as seperate unit,

de�ned by its own execution loop with its own execution period as shown in �gure 4.3

start

PLC initialisation

custom
application
program

library
(ethernet)

library
(pro�bus)

library xyz

communication by bu�ers

Figure 4.3.: Execution �ow of multiple tasks on a single PLC

After splitting up the program �ow to serveral tasks running seperated and commu-
nicating with synchronized and safe bu�ers and methods, the problem of providing a
realtime condition can now be handled with regular realtime schedule algorithms, exe-
cuting several tasks on one or more processors ful�lling all the required time periods by
intellegent scheduling.
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5. The structure of industrial

IT-systems

A single controller is good for managing a single and simple task: Controlling a small
amount of actuators based on information from sensors. All actuators of the PLC should
act as a single unit building a single task.
To build up a whole industrial process by creating one task would be beyond the

possibilities of a controller. In most cases, extremly di�erent requirements for the small
tasks within an industrial process and their critical period times, a single controller
would require too much resources to ful�ll the task permanent and safe.

5.1. PLC-systems

A PLC-system is a simple and small network of multiple PLCs. In theory they can
communicate with any protocol, but due to standardization and maintainability they
use often protocols like Pro�bus or Ethernet, but for some tasks it is favorable to use
a speci�c proprietary protocol optimized for the speci�c task having a smaller protocol
overhead in communication.

Within a PLC-system each PLC can act as sensor or as actuator for another PLC.
A typical example for PLC systems is controlling an array of self-contained working
systems, all performing the same action. Every system itself is controlled by a PLC
which communicates with a master PLC regulating the supply of all the subsystems.
The master PLC has not to calculate the need of each subsystem, because the sub-

system's PLC indicates to the master PLC there is a need of supply. This ensures a
integrity of information between the master PLC and each subsystem.

5.1.1. Human-machine-interfaces in PLC-systems

In addition common PLC-systems have human-machine-interfaces. These interfaces are
used as display for current sensor information or a graphical visualisation of the system's
state.

In general, these interfaces in PLC-systems provide no option for workers to directly
interact or manipulate the progress, but in some cases a PLC working as interface for a
human to control the industrial process is connected with human input devices, acting
as sensors for the PLC. In this case the PLC can be used for small adjustments of the
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industrial process. Nevertheless acts a PLC-system autonomous without the requirement
of human interaction.

5.2. SCADA-systems

Supervision control and data aquisation (in short SCADA) systems represent complex
and easily adjustable control systems, managing a full industrial process. Within the
SCADA-system, the SCADA-server is the main component.
The whole industrial process is mapped on the server, providing several options for

manually de�ning limits or recommended values. The actuators in SCADA-systems are
still controlled directly by PLCs, but each PLC or PLC networt is connected to the
SCADA networt to retrieve information and commands from the SCADA server.

5.2.1. Logging and data aquisation

One of the advantages of SCADA systems compared to complex PLC systems is the
possibility of logging system events or collecting information on the systems state for a
given period to enable detailed analyses of the process and search for optimization.
This aquisation of data of the system is also very important for dynamic regulation

of recommended values, based on complex statical calculations which cannot be accom-
plished on PLCs due to their duration of execution.

Usually SCADA-servers are connected with application servers of the business appli-
cation network to provide their information on resources and production to common
business software, like ERP software. This can provide more possibilities for automati-
sation especially in resource planing.

20



6. Summary of the present situation

The amount of attacks and incidents in industrial IT-systems has grown the last years.
The infection of the Davis-Besse nuclear power plant [Byres and Lowe, 2004] was a wak-
ening call for industrial IT security and at least since then security measures are a
sensitive topic in industrial facilities. With the announcement of the STUXNET-worm,
which will be analysed more detailed in the next part of this article, the importance of
industrial IT security was brought to public.

6.1. New era of maleware

Most experts on IT security agreed on one fact: "Stuxnet is not only a new virus or
worm but it's a new era of malware." [Thabet, 2011a, p. 2] With STUXNET, worms
reach a new level of harm done to their victims. Providing the �rst rootkit for industrial
PLCs, industrial controllers got in crosshairs of attackers. Controlling the PLCs actually
means controlling the actuators, which is one of the biggest dangers for every industrial
facility.

Disguising maleware is not new for IT systems in any way, but keeping a powerful
weapon like STUXNET unrevealed for years, shows the importance of methods and
procedures to verify the security and integrity of IT-systems of any kind, including
those in industrial facilities.

6.2. Worms and viruses as weapons

STUXNET shows the power of worms and that they can be used as weapons, but using
software as weapons comes with a high risk of getting attacked as well. The power of
cyber weapons requires a new code of honour and a careful and advised deployment:

On the one side it is very di�cult to ensure only a target is a�ected by the attack.
Usually the targets are protected and not directly connected to the internet, forcing the
attacker to use a method of spreading. The method of spreading must work in a way
aggressive enough to breach all security measures protecting the target, but not a�ect
any non-related systems, which may have similar structures as the target.
The spreading progress should also work either in background avoiding the attack

to be observed or work with such a rate, the attack can spread enough before counter
measures can have an impact. This makes the spreading itself very complicated and a
careful development and planing as important as the development of the malicious code.
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On the other hand there is always the risk of using the attacker's code which may
be disassembled, reproduced and manipulated to start a new attack with similar e�ects
against the original attacker. The software can be reproduced based on the codes and
be manipulated without big requirements. Common weapon di�er in this point: Even
if the structure and technique of a weapon is known, wthe reproduction of this weapon
requires speci�c materials or facilities.
With STUXNET providing a PLC rootkit, the development of new worms targeting

speci�c industrial facilities based on SIEMENS STEP-7 controllers became relative easy.
So before using a cyberweapon the attacker must be sure, his own security measures are
e�ective against the used worm or virus, to minimize the risk of getting beaten at their
own game.
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Part II.

STUXNET � a cyber weapon

against the Iranian nuclear program
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7. The evolution of STUXNET

STUXNET is a very complex malware and maybe one of the �rst cyber weapons against
industrial IT-systems. It was designed to sabotage the Iranian nuclear weapon program.
The STUXNET-worm was discovered in June 2010 �rst, but afterwards more variants
of the worm were found (see table 7.1).
It was targeted at the development system of the Iranian nuclear facilities to ma-

nipulate the STEP-7 program, which is the IDE used to develope the programs for
the SIEMENS PLCs used within the uranium enrichment facilities. The manipulated
program generates malicious PLC programs, which causes damages within the facilities.
STUXNET succeeded in working unrevealed and slowing down the Iranian nuclear

program for years. The full damage caused by STUXNET can only be estimated, due
to the highly sensitive target.

Date Version Description

November 3rd, 2005 0.500 Registration of C&C server
November 17th, 2007 0.500 Date submitted to a public scanning device
June 22nd, 2009 1.001 Main binary compile timestamp
July 4th, 2009 0.500 Infection stop date
March 1st, 2010 1.100 Main binary compile timestamp
April 14th, 2010 1.101 Main binary compile timestamp
June 24th, 2012 1.x Infection stop date

Table 7.1.: Evolution of stuxnet versions [McDonald et al., 2013]

7.1. Parts of STUXNET

The latest version of STUXNET can be divided in three component packages, providing
complete di�erent tasks within the whole STUXNET project. Each of these components
was required to achieve the general target of slowing down the program without revealing
the STUXNET worm.

7.1.1. The dropper

The dropper was used to spread the worm within the network to infect all required system
for the �nal attack. To prevent the worm from spreading all over the world, which might
have revealed STUXNET much earlier, the worm spreaded via LAN, STEP-7-project
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�les and removable devices, but analysed the system after infection and removes itself,
if it recognized, that it infected a non-target system.
An additional mechanism for updating was integrated in order to distribute new ver-

sions even faster and more reliable. This updater even may download updates on PCs,
which are attached to an intranet, but not to the internet.

7.1.2. The backdoor compiler

STUXNET uses a kind of backdoor compiler: It manipulates multiple driver �les for
writing STEP-7 assembly on Siemens PLCs by using a man in the middle attack. This
backdoor allows STUXNET to manipulate the assembly written on the PLC without a
chance for the developer to notice.
The injected code generator creates the STEP-7 assembly blocks, when writing the

code on the PLCs. A very speci�c code manipulation will be executed ensuring only
specifc PLCs in the industrial control system became infected.

In order to make it even more di�cult for developers to reveal the infection, STUXNETs
man-in-the-middle component removes his own manipulation from the code, when load-
ing the infected PLC code back into the IDE, so even checking the code send to the PLC
by retrieving it afterwards will not reveal the worm.

7.1.3. PLC payload

The PLC payload is the �nal payload causing the damage. With the use of a PLC rootkit
which is part of STUXNET, some centrifuge and auxiliary valves are manipulated to
damage the cascaded centrifuges. The harm to the system is proceeded in eight steps,
damaging the centrifuges for a long time, without revealing a obvious reason for the
destruction.
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8. Attack scenario

The way the STUXNET attack really happend is not completly provable, but based
on the functional range of STUXNET a possible and reasonable attack scenario can be
reconstructed.

8.1. The infection of the system

The PLCs are typically programmed from Windows computers not connected to the
internet and in most cases not even to the internal network. As each PLC is con�gured
in a unique manner, the attackers needed schematics of the industrial control system.
These schematics were propably retrieved by earlier versions of STUXNET.
After retrieving the schematics, it was possible to setup a mirrored environment for

testing and debugging of the STUXNET code, which propably needs up to six month
for a team of �ve to ten developers and multiple individuals for managing, testing and
quality assurance.
In addition two drivers required for STUXNET were signed with two digital certi�cates

which are stolen from the companies. Due to their physical proximity it is possible, that
they were stolen by someone having phyiscal access to computers or networks with direct
access on the certi�cates.

To actually infect the target facility, the worm has to be brought in the facility. This
may have occoured by a third-party, like a contractor who may have access to the facility.
A removeable drive may be used for the �rst infection.
Once STUXNET had infected a PC within the facility, it starts to spread to other

computers on the LAN using a zero-day exploit. In addition Step-7 projects, which
are development projects for PLCs were infected, because it is likely they will once be
opened on the development PCs for the target PLCs. For a more aggressive spreading
another exploit was used for spreading by removable devices.

STUXNET tried to communicate with a Command and Control-Server (C&C Server)
for getting new commands and updates. Because it was assumed, that the key computers
are not connected to the internet, the information of the C&C server was provided within
the network by Peer-to-Peer connections of the infected PCs.

Once STUXNET found a suitable PC running the STEP-7 development environment,
it manipulated all code transfered on PLCs to sabotage the industrial process.
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8.2. STUXNET 0.5: The eight steps of system

manipulation

In STUXNET 0.5, the centrifuges of the infected industrial system were damaged slowly
in only eight steps of permanent manipulation of the executed code on the controller.

8.2.1. Step 1: Identi�cation of a steady state

The code veri�es the system has reached the steady state for the attack. Therefore all
states of centrifuge and auxiliary valves are logged and must noch change within 300
snapshots. All activated cascades must have run for at least the last three days and one
must have been operation for at least 35 days or all cascades at least 297 days in total.
This step is required to ensure, the manipulation does not start working immedi-

etely after starting the system or during some change of the system con�guration. In
both cases all changes and non-expected values from sensors and valves would be very
suspicious.

8.2.2. Step 2: Recording I/O snapshots for replay

Manipulating valve control values will create unusual sensor information which will be
suspicious and warning to technicans observing the system. To avoid these di�erent
sensor informations later, 21 I/O snapshots were taken for a replay during the manipu-
lation.

8.2.3. Step 3: Attack centrifuge valves

The normal operation pressure is measured and stored for later replay.
For each stage of centrifuges except the feed stage, multiple centrifuge valves will be

closed. The feed stage remains completly open, while the centrifuges at product end and
tails are completly closed.
If not all centrifuges of a stage are closed, the valves to close are chosen randomly.

8.2.4. Step 4: Secondy pressure reading

One random stage opens the �rst two centrifuges valves and the pressure will be read at
stage 1. Typically this pressure should be relativly low. This step might by omitted, if
the pressure measurement at the beginning of step 3 was not obtained proberly. In this
case hard coded default values are used as regular operation pressure.

8.2.5. Step 5: Wait for pressure change

The program remains in this step until a speci�c de�ned change of pressure is measured
or a time limit is reached.
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8.2.6. Step 6: Attack auxiliary valves

In this step all auxiliary valves are opened, expect the valves 17, 18 and 20. The code
waits for at least 2 minutes and 53 seconds before continuing with step 7.

8.2.7. Step 7: Wait and show replay

The code remains in this state for 6 minutes and 58 seconds showing the previously
recorded sensor values, so technicans will not suspect any unexpected behaviour of the
system. In addition setting new control values during this period is not possible.

8.2.8. Step 8: Reset

Reset all data and return to step 1.

8.3. STUXNET 1.x: Di�erence in centrifuge

manipulation

It is not really proved, whether the program of STUXNET 0.5 worked as expected and
damaged the centrifuges in the wished manner. Nevertheless the attackers changed
tactics in the new version STUXNET 1.0:
By changing the speed of the centrifuges it was much easier to damage them without

creating attention.
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