

Seminar paper

Software Quality
Testing: Concepts, Issues, and Techniques

Micha Waterböhr

June 4, 2013

Lecturer: Prof. Dr. Gerd Beuster

http://www.dict.cc/englisch-deutsch/docent.html

2

Index

1 Abstract ... 3

2 Introduction ... 4

3 Quality Assurance .. 5

3.1 Defect Prevention ... 5

3.2 Defect Reduction ... 6

3.3 Defect Containment .. 6

4 Testing ... 7

4.1 Testing Process .. 8

4.2 When to test .. 9

4.3 What to test .. 10

4.3.1 Black-box testing ... 10

4.3.2 White-box testing .. 11

4.4 When to stop testing ... 12

4.4.1 Usage based statistical testing .. 12

4.4.2 Coverage based testing ... 13

5 Different types of testing .. 15

6 Conclusion ... 17

7 List of figures ... 18

8 Literature ... 18

3

1 Abstract

This seminar paper will show how testing is integrated in the overall

process of software quality engineering. Since quality assurance plays

a major part in this process the basic ideas of quality assurance will be

explained. One of the most common tools for quality assurance is

testing. Therefore an introduction to the topic of Software Testing will

be given. The main content of this paper will then describe methods of

testing which can be used to classify different testing techniques and

put them into perspective. Questions about what to test and when to

stop testing will be discussed.

At the end we will give a short overview and description of different

types of testing which are most commonly used to ensure a certain

level of quality assurance. The goal is to give a comprehension of the

importance of software testing and some basic knowledge of the

concepts and issues of testing.

4

2 Introduction

In our modern society software systems are used everywhere around us. In our daily life we rely

on the proper functioning of software systems. The economy, our private life, work,

transportation, even some social functions are ruled by the use of software systems. These

systems are becoming more and more complex.

But how do we make sure that those systems work according to the user’s expectation? Let us

just think of some examples where the correct functioning of software is indispensable. The first

example that might come to mind is health care where software systems are used for medical

purposes. Just imagine what would happen if the improper functioning of some medical

equipment would cause some damage or even death of a person.

The malfunctioning of software installed in an airplane could cause a disastrous outcome. But

even on a lower level the outcome might be discontent customers leading to the loss of good

reputation for a certain business. This could even result in the breakdown of the said business.

This makes it necessary to find ways to make sure that those defects might be prevented,

reduced or contained. Testing is one of the greatest tools to ensure software quality. Testing in

fact is essential in order to produce software with a high level of quality and reliability.

5

3 Quality Assurance

Talking about software quality always leads to the topic of quality assurance. How can we be

sure that the software system has quality we want it to have?

The major activities of quality assurance are centred on ensuring that only few if any defects

remain in the software system when it is delivered to the customer. But since it is not always

possible to eliminate every single defect, thus having flawless software, quality assurance also

includes dealing with those still defects still remaining in the system. The goal is to contain

those failures or to reduce the resulting damage. This is known as defect containment.

Even before coding the software defect prevention activities are performed to reduce the chance

of injecting faults into the software. However, the main task will always be the reduction of

defects.

3.1 Defect Prevention

The goal of defect prevention activities is to reduce the chance that faults or defects are injected

into the software in the first place. The target of defect prevention activities is to eliminate the

error source. The first step would be to determine the error source that leads to fault injections.

Some of these error sources might be human misconceptions, incorrect designs or deviations

from the product specification, or the disregard for selected standards.

In case of human misconceptions a way to prevent defects is to train and educate the people

involved in developing the software. This will prevent certain types of faults from being

injected into software products. Tian broke this down into specific areas of knowledge that need

to be conveyed to the developers [TIAN05, p. 32]:

Fault is injected Software is released

Defect Conatainment

Figure 1 - Quality Assurance activities

Defect Reduction Defect Prevention

- Education and

training

- Fault detection

- Fault removal

- fault tolerance

- failure impact

minimization

6

1. Product and domain specific knowledge

2. Software development knowledge and expertise

3. Knowledge about Development methodology, technology and tools

4. Development process knowledge

To prevent the software from deviating from product specifications formal methods can be used

to ensure, that the product specifications are met. Formal methods include formal specification

and formal verification. A very influential formal method known as the axiomatic approach uses

so called pre-conditions and post-conditions to describe the program state before and after the

execution thus allowing us to see if the software is working according to these specifications.

The problem with these formal methods is the high cost which is involved due to the hard task

to develop these formal specifications correctly without automated help and it is often difficult

to prove the formal verification.

3.2 Defect Reduction

As shown in figure 1, the main tasks of defect reduction are to detect faults that are already

injected into the software and then to remove the faults that are found. Fault detection is the

main part of defect reduction. Once the fault is identified it is easier to remove the fault since

the location where the problem is embedded is known. Testing is the main instrument to find

these faults. There are different testing techniques for different types of faults. We will discuss

the process of testing in general later on in more detail.

Besides testing inspection is another way to find faults. In inspection, software is examined

through a human inspector who critically reads and analyses the software code. Typically there

is not only one inspector but many. This technique leads to immediate fault removal.

3.3 Defect Containment

Defect containment takes effect after the software is released and targets those fault that

remained in the software and are causing failures while running or executing the software.

Defect containment minimizes the failure impact and thus contains it in a sense. This is very

important especially for safety critical systems.

Using software fault tolerance is another way to deal with faults that still remain in the software

system. A general method to achieve fault tolerance is to use redundancy, or spare parts, in the

program so that the system might stay operational even in the case of failure.

7

4 Testing

In a very simple way testing can be viewed as executing a program or software and look at its

behaviour or outcome. This obviously requires executable code. But this is more a form of

informal testing, which is done for example when the customer is executing the software

himself.

Testing also requires the human tester of course and also the time it takes to test. This will

obviously cost money and so software testing will always be a trade-off between budget, time

and quality.

Motivation

As discussed in the previous chapter quality assurance is the main purpose of software testing.

But originally testing was primarily used to demonstrate functionality or in other words to show

that the software works correctly [TIAN05, p. 68].

Another aspect of testing is to ensure that software is able to compete economically. If software

is full of faults is it most likely that this software is not able to compete with other software.

Also this might damage the reputation of the developing business.

A totally different angle is shown if we look at the possibility of saving time and work as testing

is a tool to find faults early in the developing process where it is a lot easier to correct the faults

in contrast to correcting them later on when they are discovered by customers.

The ISO standard [ISO/IEC 25010] gives a quality model that is comprised by the following

attributes that a piece of software should fulfil in order to reach a certain level of software

quality: functionality, reliability, usability, efficiency, maintainability and portability, security

and compatibility.

 Functionality is achieved through the existence of a set of functions and their specified

properties.

 Reliability is achieved though the capability of software to maintain its level of

performance under stated conditions for a stated period of time.

 Usability represents a set of attributes that bear on the effort needed for use, and on the

individual assessment of such use, by a stated or implied set of users.

 Efficiency is the relationship between the level of performance of the software and the

amount of resources used, under stated conditions.

 Maintainability is measured with the effort needed to make specified modifications.

 Portability is the ability of software to be transferred from one environment to another.

8

 Security includes characteristics like confidentiality, integrity, nonrepudiation,

accountability and authenticity.

 Compatibility includes the characteristics co-existence and interoperability.

Testing is an excellent way to ensure that software acquires these attributes.

4.1 Testing Process

Even though all major test activities are centred on test execution there are two other groups of

activities that we will consider being part of the testing process.

The following figure shows the chronological order for testing activities:

Because of the increasing complexity of software planning and preparation activities are

inevitable in order to be able to meet certain standards of software quality. Activities that are

included in planning and preparation are:

 Information gathering

 Goal setting

 Model construction

 Test case preparation

 Test procedure preparation

It is very important to set specific reliability or coverage goals. These goals will then be used as

the exit criterion for the testing activities. The test case preparation and test procedure

preparation will then be used as input for the execution activities. Preparing test cases is

naturally associated with test preparation. There are different methods of generating test cases

automatically and it is often necessary to select test cases based on some formal models since it

is not always possible to execute a program with every single test case.

No

Figure 2 – Testing Process (compare [TIAN05, p. 69])

Exit

Entry

Yes

Execution Analysis &

Follow-up

Goals

satisfied?

Planning &

Preparation

9

In order to effectively execute many “test-runs” it is necessary to make sure that one failed test-

run will not block the execution of the other test runs.

After execution, the analysis and follow-up activities begin. The results from the test that is

being executed will be checked and analysed to see if the outcome is as expected or if some

failure has occurred. Knowing that an error did occur though is not the same as knowing exactly

where it did occur. So it is important to use every single detail of information from the test

results in order to be able to identify the location of the fault. Once this is accomplished the fault

can be removed.

4.2 When to test

Putting the process of testing into the bigger picture we will look at a figure depicting the

waterfall model which is commonly used. Even with a different model, other than the waterfall

model, the general idea stays the same.

As it is shown in figure 3 the testing phase follows right after the coding phase. But the focus of

defect reduction or defect removal already overlaps with the coding phase.

As explained in chapter 3 testing activities are split into planning & preparation, execution and

analysis & follow-up. Planning and preparation activities can be performed much earlier. Even

as early as in the design phase you could start planning for testing.

An example for such testing is Extreme Programming.

Figure 3 – QA activities in the waterfall process (source [TIAN05])

10

One of the fundamentals of Extreme Programming is “writing unit tests before programming

and keeping all of the tests running at all times.” [BECK99]

“Erich Gamma coined the phrase "Test Infected" to describe people who won't code if they

don't already have a test. The tests tell you when you are done—when the tests run, you are

done coding for the moment. When you can't think of any tests to write that might break, you are

completely done.” [BECK99]

This just shows that testing, since we defined test preparations as part of testing, indeed can

begin long before code is created. But in order to see the possibility that testing is possible after

product release we just need to think about informal testing by the customer as he is executing

the program over and over and maybe finding some still existing fault which then can be

addressed through the support for the product. As we can see testing is not confined to the

testing phase only. Anyhow, most parts of testing activities will always happen in the

designated testing phase.

4.3 What to test

As to know what to test we will differentiate between two methods of testing: Black-box testing

and white-box testing. Later on we will see that most testing types or techniques can be

categorised into one of these two methods.

4.3.1 Black-box testing

“Black-box (or functional) testing verifies the correct handling of the external functions

provided or supported by the software, or whether the observed behaviour conforms to user

expectations or product specifications.” [TIAN05]

Black-box testing is a software testing method in which the internal structure, design, and

implementation is not known to the tester. This method is named so because the software

program, in the eye of the tester, is like a black box. One cannot see what is inside.

Executable

program

BLACK-BOX TESTING

Input Output

11

Even just running the program and making observation of its outcome is a form of black-box

testing. This form is also known as “ad hoc” testing. An example of “ad hoc” testing is if the

customer is running the software and if a failure occurs he will hopefully report the problem and

it can be analysed and fixed.

The emphasis of black-box testing lies on reducing the chances that customers encounter

functional problems. The more black-box test is applied the lesser the chance that a customer

will randomly run into problems or failures since they could have been removed through the

testing already. The testing process mentioned earlier can be applied to the black-box testing

method. Then the focus in planning is to identify all the external functions that need to be tested.

Black-box testing is typically used to test large software systems which then act as the black

box. Since the whole program or unit which is to be tested needs to be executable, this testing

method is also used in rather late sub-phases of testing. This testing method is very effective in

detecting and fixing problems of interfaces and interactions. Since the tester does not need to

know the implementation details this method is also used by third party personnel or

professional testers.

4.3.2 White-box testing

“White-box (or structural) testing verifies the correct implementation of internal units,

structures, and relations among them.” [TIAN05]

With the white-box testing method the internal structure, design, and implementation is known

to the tester. In contrast to the model of the black-box we talk about a “white-box” even though

it would be more accurate to say “transparent-box” or even “glass-box” since the inside of the

box is visible.

White-Box

Figure 4 – Black-box testing

WHITE-BOX TESTING

Known Input Known Output

Figure 5 – White-box testing

12

Probably the simplest form of white-box testing is coverage statement testing by using some

debugging tools to go through the program step by step and check the state of the program after

each statement. Here the tester can see exactly which statement is being executed and can see if

the outcome is according to the expected outcome. If this is not the case the fault has

immediately been found and can be fixed right away, since the location is also known. Only

what is present in the code can be tested and accordingly it is hard to detect problems of

omission or design.

In order to effectively use this method it is required that the tester has a good understanding of

the code or is familiar with it. For this reason the person testing is most likely the programmer

himself. This dual role makes defect fixing much easier.

The white-box testing method is used for rather small objects und can consequently be used in

early sub-phases of testing.

4.4 When to stop testing

Probably the most important question about software testing is when to stop testing. A resource

based approach would be to stop testing when you run out of time or when you run out of

money. But this would be irresponsible if the goal is to achieve software quality.

Without defining some criterion we could test indefinitely and would never come to a realistic

stop. Normally testing stops when product is released and determines what level of software

quality the customer might expect. The decision about the exit from testing is associated with

achieving quality goals, in our case reliability or coverage goals. Software should only be

released if those goals have been achieved.

Two useful testing techniques that work to achieve these goals are usage based testing and

coverage based testing. The difference between these two techniques is the stopping criterion

used and the perspective from which the object is seen.

4.4.1 Usage based statistical testing

“Usage based statistical testing views the object from a user’s perspective and focuses on the

usage scenarios, sequences, patterns, and associated frequencies or probabilities.” [TIAN05]

With the usage based testing we look at a number of uses of the software. We speak of

“statistical” usage based testing because statistical sampling is needed due to the massive

number of different usage patterns. The overall testing environment resembles the actual

operational environment and the execution of specific test cases in a test suite resembles the

usage scenarios, sequences, or patterns with which a customer could possibly use the software.

13

The usage information is captured in so called “operational profiles”, short OPs. The operational

profile is a quantitative characterization of how the software will be used. There are two

different approaches to OPs.

The first approach is the model of flat OPs, which was first described by John Musa. According

to Musa a profile is a set of independent possibilities called elements, and their associated

probability of occurrence. It is a practical approach to ensure that a system is delivered with a

maximized reliability, because the operations most used also have been tested the most.

[MUS93]

The second approach is the Markov chain
1
 based usage model, or short Markov OPs. In this

approach finite state Markov chains are used to model the sequences. The states of the Markov

chain represent inputs to the software system, while the arcs imply an ordering of the inputs and

are annotated with probabilities.

Utilising these models ensures a certain level of reliability and as soon as one reaches the

reliability goal which is used as the stopping criterion one may stop testing.

4.4.2 Coverage based testing

“Coverage based testing views the objects from a developer’s perspective and focuses covering

functional or implementation units and related entities.” [TIAN05]

The stopping criterion for coverage based testing is some form of test coverage. The simplest

form could be a checklist of all the major functions of a program. Once all functions on the

checklist have been tested the desired coverage has been fulfilled and one my stop testing.

For most systematic testing techniques simple checklist are not enough. In such cases some

formal models are used.

Tian defines the generic steps and major sub-activities for coverage based testing as follows

[TIAN05]:

 Defining the model

 Checking individual model elements

 Defining coverage criteria

 Derive test cases

Coverage based testing is often used in early sub-phases of testing and can be performed by

either professional testers or by the developers themselves.

14

1
A Markov chain is a mathematical system that undergoes transitions from one state to another, between

a finite or countable probabilistic number of possible states.

15

5 Different types of testing

These short examples are only few of the existing types of testing and shall only give a certain

impression on what different approaches and types there are to test different aspect of a software

system.

Regression Testing

The idea behind regression testing is simply to repeat the tests that have been successful before

in case there have been any changes to the code. This ensures that recent changes do not break

functionality. You do not want to fix one thing just to realize that you have broken another

thing.

Usability Testing

This is a technique to determine how easy the software can be operated. Usability Testing

determines user satisfaction, user learning time and the users time effort to complete a task.

Performance Testing

In general, performance testing is performed to determine how fast some aspect of a system

performs under a particular workload. Testing techniques that derive from performance testing

are load testing, stress testing, and spike testing.

 Load testing is conducted to check whether the system is capable of handling an

anticipated workload.

 Stress testing is conducted to check the systems capability beyond the anticipated

workload

 Spike testing is conducted to check the systems stability when the load is suddenly

increased for a short duration.

Beta Testing

Beta testing takes place when the developing and “normal testing” is essentially completed.

Before the final release a group of so called beta testers will use the software in an environment

similar the real environment. These beta testers are people that would otherwise be real

customers. This testing technique is performed not by professional testers or developers but by

16

end-users for a period of time to find final bugs and problems. The beta testers so to speak try

out the software and help software development organizations improve their software quality.

17

6 Conclusion

In this paper we gave a short introduction into the topic of software testing and its importance.

This aggregation is based on the sixth chapter of Tian’s book on Software Quality Engineering

[TIAN05].

As shown systematic testing is essential in every software development process in order to

ensure software quality. It will not always be possible to do exhaustive testing, meaning testing

every possible input for a program. This makes it even more necessary to be aware of the

different testing methods and techniques.

As one can see, different techniques serve different purposes. There is not one perfect testing

technique that finds all the faults that might be injected into the software.

The best approach is to combine different techniques to benefit from them all.

In this paper we have described some of the more commonly known techniques. We also

discussed some of the important questions, when it comes to testing: What to test? When to

test? When to stop testing?

Finally we would say that time is worthwhile spend when software is tested thoroughly instead

of having to deal with immense cost that result from having to fix faults after the software has

been released.

18

7 List of figures

Figure 1 – Quality Assurance activities

Figure 2 – Testing Process (compare [TIAN05, p. 69])

Figure 3 – QA activities in the waterfall process (source [TIAN05])

Figure 4 – Black-box testing

Figure 5 – White-box testing

8 Literature

[TIAN05] Tian, Jeff: Software Quality Engineering – Testing, Quality Assurance,

and Quantifiable Improvement, 2005, ISBN 0-471-71345-7

[ISO/IEC25010] ISO/IEC 25010:2011- Systems and software engineering -- Systems

and software Quality Requirements and Evaluation (SQuaRE) --

System and software quality models

http://www.iso.org/iso/iso_catalogue/catalogue_tc

ISO/IEC JTC 1/SC 7

[BECK99] Beck, Kent: Extreme Programming Explained, 1999,

ISBN 0201616416

http://software2012team23.googlecode.com/git-

history/5127389d21813c2bd955c53999f66cede994578b/docs/literatu

re/Extreme_Programming_Explained_Kent_Beck_1999.pdf

[MUS93] Musa, John D.: Operational Profiles in Software-Reliability

Engineering, March 1993, IEEE Computer Society Press Los Alamitos,

CA, USA

http://www.iso.org/iso/iso_catalogue/catalogue_tc
http://software2012team23.googlecode.com/git-history/5127389d21813c2bd955c53999f66cede994578b/docs/literature/Extreme_Programming_Explained_Kent_Beck_1999.pdf
http://software2012team23.googlecode.com/git-history/5127389d21813c2bd955c53999f66cede994578b/docs/literature/Extreme_Programming_Explained_Kent_Beck_1999.pdf
http://software2012team23.googlecode.com/git-history/5127389d21813c2bd955c53999f66cede994578b/docs/literature/Extreme_Programming_Explained_Kent_Beck_1999.pdf

